Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 23, Issue 16, 2023
Volume 23, Issue 16, 2023
-
-
Fragment-based Drug Discovery Successful Contributions to Current Pharmacotherapeutic Agents Arsenal against Aggressive Cancers: A Mini-Review
Authors: Leandro M. Santos and Nelson José Freitas da SilveiraAfter a decade of approval of the drug vemurafenib in 2011, the hopeless scenario imposed by some severe cancer types has been mitigated by the magic bullets developed through fragment-based drug discovery. Moreover, this recent approach to medicinal chemistry has been successfully practiced by academic laboratories and pharmaceutical industry workflows focused on drug design with an enhanced profile for chemotherapy of aggressive tumors. This mini-review highlights the successes achieved by these research campaigns in the fruitful field of the molecular fragment paradigm that resulted in the approval of six new anticancer drugs in the last decade (2011-2021), as well as several promising clinical candidates. It is a particularly encouraging opportunity for other researchers who want to become aware of the applicability and potency of this new paradigm applied to the design and development of powerful molecular weapons in the constant war against these merciless scourges of humanity.
-
-
-
Managing Cancer Treatment in Patients with Renal Dysfunction: The Role of Chemotherapy
Authors: Ziba Aghsaeifard and Reza AlizadehMalignancy is characterized by damage to several vital organs, and utilizing chemotherapy as a treatment option can have toxic effects on healthy body tissues. Kidney function is commonly compromised by cancer and chemotherapy. These effects can be pre-renal, intrarenal, or postrenal. Tumor lysis syndrome and electrolyte disturbances are also common in this group of patients. Etiologies of this dysfunction are poorly understood; therefore, careful monitoring and management of renal function are required in such cases. This narrative review aimed to highlight some of the common renal abnormalities among patients receiving cancer and chemotherapy.
-
-
-
STAT3 Signaling Axis and Tamoxifen in Breast Cancer: A Promising Target for Treatment Resistance
Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.
-
-
-
MDM2-mediated Inhibitory Effect of Arsenic Trioxide on Small Cell Lung Cancer Cell Line by Degrading Mutant p53
Authors: Yu-Sheng Wang, Ji-Zhong Yin, Xiao-Qian Shi, Xue-Wei Zhao, Bing Li and Meng-Hang YangIntroduction: Small cell lung cancer (SCLC) is featured by a high TP53 mutant rate. Our previous research found that arsenic trioxide (As2O3) could significantly inhibit the growth and metastasis of SCLC. Studies have shown that the degradation of mutant p53 mediated by murine double minute 2 (MDM2) can be induced by As2O3, which probably contributes to the inhibition of SCLC, but the detailed mechanism is still unclear. We aimed to testify that As2O3 can inhibit the growth of SCLC cells by degrading mutant p53 protein via binding to MDM2. Methods: CCK-8 assay, cell cycle analysis, and western blot of apoptosis markers were used to evaluate the inhibitory effect of As2O3 on NCI-H446 cells (containing mutant p53) and NCI-H1299 cells (p53 null). The effects of As2O3 on p53 and its downstream proteins were identified by western blot using mut-p53-knockdown and overexpressed cell models. MDM2-knockdown cell models were constructed, and western blot, co-IP of mut-p53, and ubiquitin were carried out to explore the mediating effect of MDM2 in As2O3 induced mut-p53 degradation. Results: As2O3 inhibited proliferation and induced cell cycle arrest and apoptosis of SCLC cells in a dose- and timedependent manner. After mut-p53 knockdown or overexpressed, the inhibitory effect of As2O3 was dampened or enhanced. Additionally, As2O3-induced mut-p53 ubiquitination was significantly weakened after MDM2 knockdown. Conclusion: As2O3 could inhibit SCLC cells by inhibiting proliferation and inducing cell cycle arrest and apoptosis. These inhibitory effects were achieved at least in part by upregulating MDM2, which, in turn, promotes ubiquitination and degradation of mut-p53.
-
-
-
Mechanism of Procyanidin B2 in the Treatment of Chronic Myeloid Leukemia Based on Integrating Network Pharmacology and Molecular Docking
Authors: Hong-Xing Li, Yuan-Xue Jing, Yi-Hong Chai, Xiao-Hong Sun, Xiao-Xia He, Shi-Long Xue, Ya-Ming Xi and Xiao-Ling MaObjective: To study the pharmacological mechanism of procyanidin B2 (PCB2) on chronic myeloid leukemia (CML) by integrating network pharmacological methods systematically. Methods: Firstly, the potential target genes of PCB2 were predicted by the pharmacological database and analysis platform (TCMSP and Pharmmapper). Meanwhile, the relevant target genes of CML were collected from GeneCards and DisGene. Pooled data were collected to screen for common target genes. Furthermore, the above intersection genes were imported into the String website to construct a protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. Besides, molecular docking was performed to verify the possible binding conformation between PCB2 and candidate targets. Finally, MTT and RT-PCR experiments of K562 cells were performed to verify the above results of network pharmacology. Results: A total of 229 PCB2 target genes were retrieved, among which 186 target genes had interaction with CML. The pharmacological effects of PCB2 on CML were related to some important oncogenes and signaling pathways. The top ten core targets predicted by Network Analysis were as follows: AKT1, EGFR, ESR1, CASP3, SRC, VEGFA, HIF1A, ERBB2, MTOR, and IGF1. Molecular docking studies confirmed that hydrogen bonding was the main interaction force of PCB2 binding targets. According to the molecular docking score, the following three target proteins were most likely to bind to PCB2: VEGFA (-5.5 kcal/mol), SRC (-5.1 kcal/mol), and EGFR (-4.6 kcal/mol). After treatment of PCB2 for 24h, mRNA expression levels of VEGFA and HIF1A decreased significantly in K562 cells. Conclusion: Through integrating network pharmacology combined with molecular docking, the study revealed the potential mechanism of PCB2 anti-chronic myeloid leukemia.
-
-
-
Synthesis of S-2-phenylchromane Derivatives and Evaluation of the Antiproliferative Properties as Apoptosis Inducers in Cancer Cell Lines
Authors: Yunfeng Zhang, Jiale Ma, Yujie Pei, Zeyuan Xie, Dong-Jun Fu and Jun LiBackground: Cancer remains one of the major health issues globally, where chemotherapy forms the main treatment mode for different types of cancers. Due to cancer cell ability to develop resistance, decreased clinical effectiveness of anticancer drugs can occur. Therefore, the need to synthesize novel antitumor drugs remains important. Objective: The aim of our work consisted of synthesizing S-2-phenylchromane derivatives containing the tertiary amide or 1,2,3-triazole fragments with promising anticancer activity. Methods: A series of S-2-phenylchromane derivatives were synthesized and evaluated for cytotoxic activity against three selected cancer cell lines (HGC-27 human gastric carcinoma cell line, Huh-7 epithelial-like tumorigenic cells, and A549 adenocarcinomic human alveolar basal epithelial cells) using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Hoechst staining was used to detect the effects of S-2-phenylchromane derivatives on apoptosis. The apoptosis percentages were detected by annexin V-fluoresceine isothiocyanate/propidium iodide (Annexin V-FITC/PI) double staining assay with flow cytometry. Expression levels of apoptosis-related proteins were detected by western blot. Results: Cell line A549, consisting of adenocarcinomic human alveolar basal epithelial cells, displayed the highest sensitivity to the S-2-phenylchromane derivatives. Among these compounds, E2 showed the most potent antiproliferative activity against A549 cells with an IC50 value of 5.60 μM. Hoechst staining and flow cytometry analysis revealed apoptosis in A549 cells by compound E2. In addition, activation of the expression levels of caspase-3, caspase-7, and their substrate poly (ADP-ribose) polymerase (PARP) by E2 was detected by western blot. Conclusion: In summary, results point towards compound E2, an S-2-phenylchromane derivative, as a potential lead molecule in anticancer agents for human adenocarcinomic alveolar basal cells based on the induction of apoptosis.
-
-
-
Chemical Constituents from the Roots of Jasminum sambac (L.) Ait. and their Cytotoxicity to the Cancer Cell Lines
Authors: Olagoke Z. Olatunde, Jianping Yong and Canzhong LuBackground: The roots of J. sambac is the Traditional Chinese Medicine (TCM) with analgesic and anesthetic effects. However, relatively fewer studies on the chemical compositions and the biological activities of the roots of J. sambac have been carried out till now. We studied the chemical compositions of the roots of J. sambac planted in Fujian Province to discover new compounds from this TCM to develop new drugs or drug candidates. Aim: This work aims to find the new compounds from the roots of Jasminum sambac (L.) Ait. (J. sambac) for the development of new drugs or drug candidates. Methods: The dichloromethane (DCM) extract was selected to isolate over silica gel column chromatography to obtain different polar fractions. Several similar fractions were combined according to Thin Layer Chemotherapy (TLC) or High-Performance Liquid Chromatography (HPLC) analysis. The combined fractions were reisolated by silica gel column chromatography, preparative TLC or HPLC to obtain nine pure compounds (1-9). The purity of the isolated compounds was detected by HPLC, and their structures were determined by 1D, 2D NMR, and HRESIMS analysis. The in vitro anticancer activity was evaluated using Cell Counting Kit-8 (CCK8) method. Results: Nine compounds were isolated in this work. Compounds (1-3) are new compounds, while compounds (4-9) were isolated for the first time from the roots of J. sambac. Their structures were elucidated by 1D, 2D NMR, and HRESIMS analysis. The biological evaluation showed that compound 7 exhibited potent cytotoxic efficacy against MCF-7 cell lines with IC50 values of 148.3 μM for 24 hs and 35.94 μM for 48 hs, respectively; compound 1 displayed significant cytotoxic potential against MCF-7 cell lines with IC50 value of 38.5 μM for 24 hs; while compound 3 and 4 displayed potent cytotoxic effects against MCF-7 cell lines with IC50 values of 161.1 μM and 243.7 μM for 48 hs, respectively. Conclusion: We discovered new compounds from the roots of J. sambac. and several compounds exhibited potent cytotoxity to MCF-7 cell lines. This work encourages us to further study the chemical constituents and their biological activities from the roots of J. sambac.
-
-
-
Design and Evaluation of SLNs Encapsulated Curcumin-based Topical Formulation for the Management of Cervical Cancer
Authors: Manu Singhai, Vikas Pandey, Sumel Ashique, Ghanshyam D. Gupta, Daisy Arora, Tanweer Haider and Neeraj MishraObjective: Curcumin has the propensity to inhibit cancer growth, slow cancer development, increase chemotherapy effectiveness, and shield healthy cells from radiation treatment harm. As a result of curcumin's ability to block several signaling pathways, cervical cancer cells can once again proliferate normally. To optimize topically applied curcumin-loaded solid lipid nanoparticles (SLNPs) for the treatment of cervical cancer, this study set out to establish the relationship between design variables and experimental data. It also performed in vitro characterizations to determine the formulation's efficacy and safety. Methods: Curcumin-loaded SLNPs were constructed and optimized using a systematic design of experiment (DoE) technique. SLNPs that were loaded with curcumin were produced utilizing a cold emulsification ultrasonication process. Using the Box Behnken Design, it was determined how independent variables (factors) like the quantity of lipid (A), the quantity of phospholipid (B), and the concentration of surfactant (C) affected the responses of the dependent variables (responses), such as particle size (Y1), polydispersity index (PDI) (Y2), and entrapment efficiency (EE) (Y3) (BBD). Results: The ideal formulation (SLN9) was chosen using the desirability technique based on 3-D surface response graphs. Using polynomial equations and three-dimensional surface plots, the influence of independent factors on the dependent variables was evaluated. The observed responses were almost equal to the levels that the optimal formulation expected. The improved SLNP gel's shape and other physicochemical characteristics were also assessed, and they were determined to be ideal. The sustained release profile of the produced formulations was validated by in vitro release tests. Studies on hemolysis, immunogenic response, and in vitro cell cytotoxicity demonstrate the efficacy and safety of the formulations. Conclusion: To improve the treatment effect, chitosan-coated SLNPs may carry encapsulated curcumin to the desired location and facilitate its localization and deposition in the desired vaginal tissue.
-
-
-
Shikonin Causes Non-apoptotic Cell Death in B16F10 Melanoma
Authors: Haleema Ahmad, Megan S. Crotts, Jena C. Jacobs, Robert W. Baer and James L. CoxBackground: Melanoma treatment is highly resistant to current chemotherapeutic agents. Due to its resistance towards apoptotic cell death, non-apoptotic cell death pathways are sought after. Objective: We investigated a Chinese herbal medicine, shikonin, and its effect on B16F10 melanoma cells in vitro. Methods: Cell growth of B16F10 melanoma cells treated with shikonin was analyzed using an MTT assay. Shikonin was combined with necrostatin, an inhibitor of necroptosis; caspase inhibitor; 3-methyladenine, an inhibitor of autophagy; or N-acetyl cysteine, an inhibitor of reactive oxygen species. Flow cytometry was used to assess types of cell death resulting from treatment with shikonin. Cell proliferation was also analyzed utilizing a BrdU labeling assay. Monodansylcadaverine staining was performed on live cells to gauge levels of autophagy. Western blot analysis was conducted to identify specific protein markers of necroptosis including CHOP, RIP1, and pRIP1. MitoTracker staining was utilized to identify differences in mitochondrial density in cells treated with shikonin. Results: Analysis of MTT assays revealed a large decrease in cellular growth with increasing shikonin concentrations. The MTT assays with necrostatin, 3-methyladenine, and N-acetyl cysteine involvement, suggested that necroptosis, autophagy, and reactive oxygen species are a part of shikonin’s mechanism of action. Cellular proliferation with shikonin treatment was also decreased. Western blotting confirmed that shikonin-treated melanoma cells increase levels of stress-related proteins, e.g., CHOP, RIP, pRIP. Conclusion: Our findings suggest that mainly necroptosis is induced by the shikonin treatment of B16F10 melanoma cells. Induction of ROS production and autophagy are also involved.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
