Skip to content
2000
image of Screening of Bioactive Fractions from Balanites aegyptiaca and Pterocarpus marsupium for Anticancer Effects in HepG2 and U87MG Cells

Abstract

Introduction

Cancer is a group of diseases caused by uncontrollable cell growth. Herbal medicines, derived from plants, have been used for centuries across cultures for their therapeutic benefits, effectively treating conditions like cancer. This study represents the anticancer effects of fractions of some medicinal plant extracts along with their apoptotic studies and their induction through p53-mediated Bax and Bcl-2 mRNA expression in HepG2 and U87MG cells.

Methods

The fractionation of crude methanolic extracts was done using Column Chromatography and Thin Layer Chromatography. The fractions were analysed for cytotoxicity against both the cell lines by MTT assay. Cancer cells were treated with 2 most active fractions and their mechanism of apoptosis induction was assessed by Flow Cytometry studies and the mRNA expression levels of p53, Bax, and Bcl-2 were determined by Reverse Transcriptase PCR. The presence of phytoconstituents in the active fractions was analysed by GC-MS.

Results

The active fractions revealed the apoptosis induction in both the cell lines and the RT-PCR studies suggested the mechanism of apoptosis induction through upregulation of p53 and Bax and downregulation of Bcl-2 mRNA. The GC-MS analysis of active fractions from and revealed the presence of phytochemicals such as 4-O-Methylmannose, Oleic acid, Erucic acid, . which might have contributed to the anti-proliferative and apoptotic effects of these fractions.

Discussion

4-O-Methylmannose was the major component identified with the highest peak area of 59%. The fractions from all the 4 plant extracts demonstrated significant cytotoxic effects on the liver (HepG2) and brain (U87MG) cancer cell lines, with particular emphasis on the active fractions BA FII, PM FII, and PM FIII. Additionally, the mechanisms of apoptosis induction through the modulation of p53, Bax, and Bcl-2 pathways, along with the presence of bioactive compounds further support the anticancer efficacy of these plant extracts. Also, to the best of our knowledge, this is the first study on fractions of and against U87MG cells.

Conclusion

The results highlight the promising potential of plant-derived natural products as anticancer agents. These findings provide valuable insight into the potential of herbal medicines and encourage further exploration of plant-based therapies for cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206396025250614030603
2025-06-23
2025-09-01
Loading full text...

Full text loading...

References

  1. Sengar M. Sachan A. Traditional Medicinal System: Significance and Future. Medicinal Biotechnology. Academic Press 2025 39 59 10.1016/B978‑0‑443‑22264‑1.00003‑7
    [Google Scholar]
  2. Verma S. Singh S. Current and future status of herbal medicines. Vet. World 2008 2 2 347 10.5455/vetworld.2008.347‑350
    [Google Scholar]
  3. Khan M.S.A. Ahmad I. Herbal Medicine: Current Trends and Future Prospects. New Look to Phytomedicine. Academic Press 2019 3 13
    [Google Scholar]
  4. Brown J.S. Amend S.R. Austin R.H. Gatenby R.A. Hammarlund E.U. Pienta K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023 21 11 1142 1147 10.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  5. Global Cancer Statistics. 2025 Available from: https://gco.iarc.fr/en
  6. Singh S.P. Madke T. Chand P. Global Epidemiology of Hepatocellular Carcinoma. J. Clin. Exp. Hepatol. 2025 15 2 102446 10.1016/j.jceh.2024.102446 39659901
    [Google Scholar]
  7. Filho A.M. Znaor A. Sunguc C. Zahwe M. Marcos-Gragera R. Figueroa J.D. Bray F. Cancers of the brain and central nervous system: global patterns and trends in incidence. J. Neurooncol. 2025 172 3 567 578 10.1007/s11060‑025‑04944‑y 39883354
    [Google Scholar]
  8. Yin S.Y. Wei W.C. Jian F.Y. Yang N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med. 2013 2013 1 1 15 10.1155/2013/302426 23956768
    [Google Scholar]
  9. Ahad B. Shahri W. Rasool H. Reshi Z.A. Rasool S. Hussain T. Medicinal Plants and Herbal Drugs: An Overview. Medicinal and Aromatic Plants Cham Springer 2021 10.1007/978‑3‑030‑58975‑2_1
    [Google Scholar]
  10. Costa T.D.S.A. Vieira R.F. Bizzo H.R. Silveira D. Gimenes M.A. Secondary Metabolites In. Chromatography and Its Applications Brazil InTech 2012
    [Google Scholar]
  11. Jaiswal J. Siddiqi N.J. Fatima S. Abudawood M. AlDaihan S.K. Alharbi M.G. de Lourdes Pereira M. Sharma P. Sharma B. Analysis of Biochemical and Antimicrobial Properties of Bioactive Molecules of Argemone mexicana. Molecules 2023 28 11 4428 10.3390/molecules28114428 37298904
    [Google Scholar]
  12. Al-Thobaiti S.A. Abu Zeid I.M. Medicinal Properties of Desert Date Plants (Balanitesaegyptiaca)—An Overview. Glob. J. Pharmacol. 2018 12 1 1 12
    [Google Scholar]
  13. Abdelaziz S.M. Lemine F.M.M. Tfeil H.O. Filali-Maltouf A. Boukhary A.O.M.S. Phytochemicals, Antioxidant Activity and Ethnobotanical Uses of Balanites aegyptiaca (L.) Del. Fruits from the Arid Zone of Mauritania, Northwest Africa. Plants 2020 9 3 401 10.3390/plants9030401 32213817
    [Google Scholar]
  14. Chaudhary K.K. Kumar G. Varshney A. Meghvansi M.K. Ali S.F. Karthik K. Dhama K. Siddiqui S. Kaul R.K. Ethnopharmacological and Phytopharmaceutical Evaluation of Prosopis cineraria: An Overview and Future Prospects. Curr. Drug Metab. 2018 19 3 192 214 10.2174/1389200218666171031125439 29086686
    [Google Scholar]
  15. Sharma P. Tomar D.V. The Pharmacognostic Profile and Therapeutic Potential of the Wonder Tree, Prosopis cineraria: A Review. J. Pharm. Negat. Results 2022 ••• 2665 2670
    [Google Scholar]
  16. Gairola S. Gupta V. Singh B. Maithani M. Bansal P. Phytochemistry and Pharmacological Activities of Pterocarpus marsupium: A Review. Int. Res. J. Pharm 2010 1 1 100 104
    [Google Scholar]
  17. Rahman M.S. Mujahid M.D. Siddiqui M.A. Rahman M.A. Arif M. Eram S. Azeemuddin M.D. Ethnobotanical Uses, Phytochemistry and Pharmacological Activities of Pterocarpus marsupium: A Review. Pharmacogn. J. 2018 10 6s
    [Google Scholar]
  18. Ashraf A. Sarfraz R.A. Mahmood A. Din M. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod. 2015 74 241 248 10.1016/j.indcrop.2015.04.059
    [Google Scholar]
  19. Afsar T. Razak S. Khan M.R. Mawash S. Almajwal A. Shabir M. Haq I.U. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complement. Altern. Med. 2016 16 1 258 10.1186/s12906‑016‑1240‑8 27473625
    [Google Scholar]
  20. Jung B.S. Lee N.K. Na D.S. Yu H.H. Paik H.D. Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. J. Sci. Food Agric. 2016 96 6 2097 2102 10.1002/jsfa.7324 26119891
    [Google Scholar]
  21. Kamalia A.Z. Tunjung W.A.S. Efficacy of Different Solvents in the Extraction of Bioactive Compounds and Anti-Cancer Activities of Thymus vulgaris Leaves and Twigs. Indones. J. Pharm. 2023 34 3
    [Google Scholar]
  22. Yassin A.M. El-Deeb N.M. Metwaly A.M. El Fawal G.F. Radwan M.M. Hafez E.E. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles. Appl. Biochem. Biotechnol. 2017 182 4 1675 1693 10.1007/s12010‑017‑2426‑3 28236195
    [Google Scholar]
  23. Zahran Mohamed F. Ali Fahmi A. Saad A. Mohamed Mehaya F. ahmed E. Biochemical and phytochemical studies on Balanities aegyptiaca fruits. Biochemistry Letters 2015 10 1 13 26 10.21608/blj.2015.63388
    [Google Scholar]
  24. Gnoula C. Mégalizzi V. De Nève N. Sauvage S. Ribaucour F. Guissou P. Mijatovic T. Balanitin-6 and -7: DiosgenylSaponins Isolated from Balanitesaegyptiaca Del. Display Significant Anti-Tumor Activity In Vitro and In Vivo. Int. J. Oncol. 2008 32 1 5 15 10.3892/ijo.32.1.5 18097538
    [Google Scholar]
  25. Alosi J.A. McDonald D.E. Schneider J.S. Privette A.R. McFadden D.W. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J. Surg. Res. 2010 161 2 195 201 10.1016/j.jss.2009.07.027 20031172
    [Google Scholar]
  26. Chakraborty A. Gupta N. Ghosh K. Roy P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol. In Vitro 2010 24 4 1215 1228 10.1016/j.tiv.2010.02.007 20152895
    [Google Scholar]
  27. Chen R.J. Ho C.T. Wang Y.J. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol. Nutr. Food Res. 2010 54 12 1819 1832 10.1002/mnfr.201000067 20603834
    [Google Scholar]
  28. Ibrahim O.H.M. Al-Qurashi A.D. Asiry K.A. Mousa M.A.A. Alhakamy N.A. Abo-Elyousr K.A.M. Investigation of Potential In Vitro Anticancer and Antimicrobial Activities of Balanites aegyptiaca (L.) Delile Fruit Extract and Its Phytochemical Components. Plants 2022 11 19 2621 10.3390/plants11192621 36235487
    [Google Scholar]
  29. Hemann M.T. Lowe S.W. The p53–Bcl-2 connection. Cell Death Differ. 2006 13 8 1256 1259 10.1038/sj.cdd.4401962 16710363
    [Google Scholar]
  30. Basu A. Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol. Hum. Reprod. 1998 4 12 1099 1109 10.1093/molehr/4.12.1099 9872359
    [Google Scholar]
  31. Schuler M. Green D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 2001 29 6 684 688 10.1042/bst0290684 11709054
    [Google Scholar]
  32. Gao C. Wang A.Y. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma. J. Histochem. Cytochem. 2009 57 12 1139 1148 10.1369/jhc.2009.954446 19729672
    [Google Scholar]
  33. Moyer A. Tanaka K. Cheng E.H. Apoptosis in Cancer Biology and Therapy. Annu. Rev. Pathol. 2025 20 1 303 328 10.1146/annurev‑pathmechdis‑051222‑115023 39854189
    [Google Scholar]
  34. Raisova M. Hossini A.M. Eberle J. Riebeling C. Orfanos C.E. Geilen C.C. Wieder T. Sturm I. Daniel P.T. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol. 2001 117 2 333 340 10.1046/j.0022‑202x.2001.01409.x 11511312
    [Google Scholar]
  35. Nurhayat O.D. Putra I.P. Sibero M.T. Karimah S.N. Anita S.H. Yanto D.H.Y. Kristanto M.A. First Identification of Potential Bioactive Compounds from Ethanol Extracts of Lepistasordida from Indonesia. IOP Conf. Ser. Earth Environ. Sci. IOP Publishing 2023
    [Google Scholar]
  36. Sousa B.C.M. Gomes D.A. Viana A.F.S. Silva B.A. Barata L.E.S. Sartoratto A. Lustosa D.C. Vieira T.A. Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff. Appl. Sci. (Basel) 2023 13 17 9600 10.3390/app13179600
    [Google Scholar]
  37. Joel O.O. Maharjan R. Effects of 5-Hydroxymethylfurfural Isolated from Cola hispida on Oral Adenosquamous Carcinoma and MDR Staphylococcus aureus. JMPHTR 2021 8 1 7
    [Google Scholar]
  38. Al-Baadani W.A. Al-Samman A.M.M.A. Anantacharya R. Satyanarayan N.D. Siddique N.A. Maqati A.A. Kahkashan Cytotoxicity effect and antioxidant potential of 5-Hydroxymethyl Furfural (5-HMF) analogues-An advance approach. J. Phytol. 2024 16 114 120 10.25081/jp.2024.v16.8817
    [Google Scholar]
  39. Altinoz M.A. Elmaci İ. Hacimuftuoglu A. Ozpinar A. Hacker E. Ozpinar A. PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson’s disease. Mol. Aspects Med. 2021 78 100871 10.1016/j.mam.2020.100871 32703610
    [Google Scholar]
  40. Nazıroğlu A. Çarhan A. Nazıroğlu M. Erucic acid increases the potency of cisplatin‐induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel. Cell Biol. Int. 2024 48 12 1862 1876 10.1002/cbin.12248 39308167
    [Google Scholar]
  41. Giulitti F. Petrungaro S. Mandatori S. Tomaipitinca L. de Franchis V. D’Amore A. Filippini A. Gaudio E. Ziparo E. Giampietri C. Anti-tumor Effect of Oleic Acid in Hepatocellular Carcinoma Cell Lines via Autophagy Reduction. Front. Cell Dev. Biol. 2021 9 629182 10.3389/fcell.2021.629182 33614661
    [Google Scholar]
  42. Deng B. Kong W. Suo H. Shen X. Newton M.A. Burkett W.C. Zhao Z. John C. Sun W. Zhang X. Fan Y. Hao T. Zhou C. Bae-Jump V.L. Oleic acid exhibits anti-proliferative and anti-invasive activities via the PTEN/AKT/mTOR pathway in endometrial cancer. Cancers 2023 15 22 5407 10.3390/cancers15225407 38001668
    [Google Scholar]
  43. Kim J.S. Kim D.K. Moon J.Y. Lee M.Y. Cho S.K. Oleic acid inhibits the migration and invasion of breast cancer cells with stemness characteristics through oxidative stress-mediated attenuation of the FAK/AKT/NF-κB pathway. J. Funct. Foods 2024 116 106224 10.1016/j.jff.2024.106224
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206396025250614030603
Loading
/content/journals/acamc/10.2174/0118715206396025250614030603
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Anticancer ; cell lines ; plant extracts ; phytochemicals ; apoptosis ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test