Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Cancer is a group of diseases caused by uncontrollable cell growth. Herbal medicines, derived from plants, have been used for centuries across cultures for their therapeutic benefits, effectively treating conditions like cancer. This study represents the anticancer effects of fractions of some medicinal plant extracts along with their apoptotic studies and their induction through p53-mediated Bax and Bcl-2 mRNA expression in HepG2 and U87MG cells.

Methods

The fractionation of crude methanolic extracts was done using Column Chromatography and Thin Layer Chromatography. The fractions were analysed for cytotoxicity against both the cell lines by MTT assay. Cancer cells were treated with 2 most active fractions and their mechanism of apoptosis induction was assessed by Flow Cytometry studies and the mRNA expression levels of p53, Bax, and Bcl-2 were determined by Reverse Transcriptase PCR. The presence of phytoconstituents in the active fractions was analysed by GC-MS.

Results

The active fractions revealed the apoptosis induction in both the cell lines and the RT-PCR studies suggested the mechanism of apoptosis induction through upregulation of p53 and Bax and downregulation of Bcl-2 mRNA. The GC-MS analysis of active fractions from and revealed the presence of phytochemicals such as 4-O-Methylmannose, Oleic acid, Erucic acid, . which might have contributed to the anti-proliferative and apoptotic effects of these fractions.

Discussion

4-O-Methylmannose was the major component identified with the highest peak area of 59%. The fractions from all the 4 plant extracts demonstrated significant cytotoxic effects on the liver (HepG2) and brain (U87MG) cancer cell lines, with particular emphasis on the active fractions BA FII, PM FII, and PM FIII. Additionally, the mechanisms of apoptosis induction through the modulation of p53, Bax, and Bcl-2 pathways, along with the presence of bioactive compounds further support the anticancer efficacy of these plant extracts. Also, to the best of our knowledge, this is the first study on fractions of and against U87MG cells.

Conclusion

The results highlight the promising potential of plant-derived natural products as anticancer agents. These findings provide valuable insight into the potential of herbal medicines and encourage further exploration of plant-based therapies for cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206396025250614030603
2025-06-23
2025-10-21
Loading full text...

Full text loading...

References

  1. SengarM. SachanA. Traditional medicinal system: Significance and future. In: Medicinal Biotechnology.Academic Press2025395910.1016/B978‑0‑443‑22264‑1.00003‑7
    [Google Scholar]
  2. VermaS. SinghS. Current and future status of herbal medicines.Vet. World20082234710.5455/vetworld.2008.347‑350
    [Google Scholar]
  3. KhanM.S.A. AhmadI. Herbal medicine: Current trends and future prospects. In: New Look to Phytomedicine.Academic Press2019313
    [Google Scholar]
  4. BrownJ.S. AmendS.R. AustinR.H. GatenbyR.A. HammarlundE.U. PientaK.J. Updating the definition of cancer.Mol. Cancer Res.202321111142114710.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  5. Global cancer statistics.2025Available from: https://gco.iarc.fr/en
  6. SinghS.P. MadkeT. ChandP. Global epidemiology of hepatocellular carcinoma.J. Clin. Exp. Hepatol.202515210244610.1016/j.jceh.2024.102446 39659901
    [Google Scholar]
  7. FilhoA.M. ZnaorA. SungucC. ZahweM. Marcos-GrageraR. FigueroaJ.D. BrayF. Cancers of the brain and central nervous system: global patterns and trends in incidence.J. Neurooncol.2025172356757810.1007/s11060‑025‑04944‑y 39883354
    [Google Scholar]
  8. YinS.Y. WeiW.C. JianF.Y. YangN.S. Therapeutic applications of herbal medicines for cancer patients.Evid. Based Complement. Alternat. Med.20132013111510.1155/2013/302426 23956768
    [Google Scholar]
  9. AhadB. ShahriW. RasoolH. ReshiZ.A. RasoolS. HussainT. Medicinal plants and herbal drugs: An overview.In: Medicinal and Aromatic Plants.ChamSpringer202110.1007/978‑3‑030‑58975‑2_1
    [Google Scholar]
  10. CostaT.D.S.A. VieiraR.F. BizzoH.R. SilveiraD. GimenesM.A. Secondary metabolites.Chromatography and Its Applications.BrazilInTech2012
    [Google Scholar]
  11. JaiswalJ. SiddiqiN.J. FatimaS. AbudawoodM. AlDaihanS.K. AlharbiM.G. de LourdesP.M. SharmaP. SharmaB. Analysis of biochemical and antimicrobial properties of bioactive molecules of Argemone mexicana.Molecules20232811442810.3390/molecules28114428 37298904
    [Google Scholar]
  12. Al-ThobaitiS.A. Abu ZeidI.M. Medicinal properties of desert date plants (Balanites aegyptiaca)—An overview.Glob. J. Pharmacol.2018121112
    [Google Scholar]
  13. AbdelazizS.M. LemineF.M.M. TfeilH.O. Filali-MaltoufA. BoukharyA.O.M.S. Phytochemicals, antioxidant activity and ethnobotanical uses of Balanites aegyptiaca (L.) Del. fruits from the arid zone of Mauritania, Northwest Africa.Plants20209340110.3390/plants9030401 32213817
    [Google Scholar]
  14. ChaudharyK.K. KumarG. VarshneyA. MeghvansiM.K. AliS.F. KarthikK. DhamaK. SiddiquiS. KaulR.K. Ethnopharmacological and phytopharmaceutical evaluation of Prosopis cineraria: An overview and future prospects.Curr. Drug Metab.201819319221410.2174/1389200218666171031125439 29086686
    [Google Scholar]
  15. SharmaP. TomarD.V. The pharmacognostic profile and therapeutic potential of the wonder tree, Prosopis cineraria: A review.J. Pharm. Negat. Results202213526652670
    [Google Scholar]
  16. GairolaS. GuptaV. SinghB. MaithaniM. BansalP. Phytochemistry and pharmacological activities of Pterocarpus marsupium: A review.Int. Res. J. Pharm.201011100104
    [Google Scholar]
  17. RahmanM.S. MujahidM.D. SiddiquiM.A. RahmanM.A. ArifM. EramS. AzeemuddinM.D. Ethnobotanical uses, phytochemistry and pharmacological activities of Pterocarpus marsupium: A review.Pharmacogn. J.2018106s
    [Google Scholar]
  18. AshrafA. SarfrazR.A. MahmoodA. DinM. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves.Ind. Crops Prod.20157424124810.1016/j.indcrop.2015.04.059
    [Google Scholar]
  19. AfsarT. RazakS. KhanM.R. MawashS. AlmajwalA. ShabirM. HaqI.U. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts.BMC Complement. Altern. Med.201616125810.1186/s12906‑016‑1240‑8 27473625
    [Google Scholar]
  20. JungB.S. LeeN.K. NaD.S. YuH.H. PaikH.D. Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents.J. Sci. Food Agric.20169662097210210.1002/jsfa.7324 26119891
    [Google Scholar]
  21. KamaliaA.Z. TunjungW.A.S. Efficacy of different solvents in the extraction of bioactive compounds and anti-cancer activities of Thymus vulgaris leaves and twigs.Indones. J. Pharm.2023343419430
    [Google Scholar]
  22. YassinA.M. El-DeebN.M. MetwalyA.M. El FawalG.F. RadwanM.M. HafezE.E. Induction of apoptosis in human cancer cells through extrinsic and intrinsic pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated Silvernanoparticles.Appl. Biochem. Biotechnol.201718241675169310.1007/s12010‑017‑2426‑3 28236195
    [Google Scholar]
  23. ZahranM.F. AliF.A. SaadA. MohamedM.F. AhmedE. Biochemical and phytochemical studies on Balanities aegyptiaca fruits.Biochem. Lett.2015101132610.21608/blj.2015.63388
    [Google Scholar]
  24. GnoulaC. MégalizziV. De NèveN. SauvageS. RibaucourF. GuissouP. MijatovicT. Balanitin-6 and -7: DiosgenylSaponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo.Int. J. Oncol.200832151510.3892/ijo.32.1.5 18097538
    [Google Scholar]
  25. AlosiJ.A. McDonaldD.E. SchneiderJ.S. PrivetteA.R. McFaddenD.W. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis.J. Surg. Res.2010161219520110.1016/j.jss.2009.07.027 20031172
    [Google Scholar]
  26. ChakrabortyA. GuptaN. GhoshK. RoyP. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium.Toxicol. In Vitro20102441215122810.1016/j.tiv.2010.02.007 20152895
    [Google Scholar]
  27. ChenR.J. HoC.T. WangY.J. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells.Mol. Nutr. Food Res.201054121819183210.1002/mnfr.201000067 20603834
    [Google Scholar]
  28. IbrahimO.H.M. Al-QurashiA.D. AsiryK.A. MousaM.A.A. AlhakamyN.A. Abo-ElyousrK.A.M. Investigation of potential in vitro anticancer and antimicrobial activities of Balanites aegyptiaca (L.) delile fruit extract and its phytochemical components.Plants20221119262110.3390/plants11192621 36235487
    [Google Scholar]
  29. HemannM.T. LoweS.W. The p53–Bcl-2 connection.Cell Death Differ.20061381256125910.1038/sj.cdd.4401962 16710363
    [Google Scholar]
  30. BasuA. HaldarS. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death.Mol. Hum. Reprod.19984121099110910.1093/molehr/4.12.1099 9872359
    [Google Scholar]
  31. SchulerM. GreenD.R. Mechanisms of p53-dependent apoptosis.Biochem. Soc. Trans.200129668468810.1042/bst0290684 11709054
    [Google Scholar]
  32. GaoC. WangA.Y. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma.J. Histochem. Cytochem.200957121139114810.1369/jhc.2009.954446 19729672
    [Google Scholar]
  33. MoyerA. TanakaK. ChengE.H. Apoptosis in cancer biology and therapy.Annu. Rev. Pathol.202520130332810.1146/annurev‑pathmechdis‑051222‑115023 39854189
    [Google Scholar]
  34. RaisovaM. HossiniA.M. EberleJ. RiebelingC. OrfanosC.E. GeilenC.C. WiederT. SturmI. DanielP.T. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis.J. Invest. Dermatol.2001117233334010.1046/j.0022‑202x.2001.01409.x 11511312
    [Google Scholar]
  35. NurhayatO.D. PutraI.P. SiberoM.T. KarimahS.N. AnitaS.H. YantoD.H.Y. KristantoM.A. First identification of potential bioactive compounds from ethanol extracts of Lepistasordida from Indonesia.IOP Conf. Ser. Earth Environ. Sci.20231271012058
    [Google Scholar]
  36. SousaB.C.M. GomesD.A. VianaA.F.S. SilvaB.A. BarataL.E.S. SartorattoA. LustosaD.C. VieiraT.A. Phytochemical analysis and antioxidant activity of ethanolic extracts from different parts of Dipteryx punctata (S. F. Blake).Amshoff. Appl. Sci. (Basel)20231317960010.3390/app13179600
    [Google Scholar]
  37. JoelO.O. MaharjanR. Effects of 5-Hydroxymethylfurfural isolated from Cola hispida on oral adenosquamous carcinoma and MDR Staphylococcus aureus.JMPHTR2021817
    [Google Scholar]
  38. Al-BaadaniW.A. Al-SammanA.M.M.A. AnantacharyaR. SatyanarayanN.D. SiddiqueN.A. MaqatiA.A. Kahkashan, Cytotoxicity effect and antioxidant potential of 5-Hydroxymethyl Furfural (5-HMF) analogues-An advance approach.J. Phytol.20241611412010.25081/jp.2024.v16.8817
    [Google Scholar]
  39. AltinozM.A. Elmaciİ. HacimuftuogluA. OzpinarA. HackerE. OzpinarA. PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson’s disease.Mol. Aspects Med.20217810087110.1016/j.mam.2020.100871 32703610
    [Google Scholar]
  40. NazıroğluA. ÇarhanA. NazıroğluM. Erucic acid increases the potency of cisplatin‐induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel.Cell Biol. Int.202448121862187610.1002/cbin.12248 39308167
    [Google Scholar]
  41. GiulittiF. PetrungaroS. MandatoriS. TomaipitincaL. de FranchisV. D’AmoreA. FilippiniA. GaudioE. ZiparoE. GiampietriC. Anti-tumor effect of oleic acid in hepatocellular carcinoma cell lines via autophagy reduction.Front. Cell Dev. Biol.2021962918210.3389/fcell.2021.629182 33614661
    [Google Scholar]
  42. DengB. KongW. SuoH. ShenX. NewtonM.A. BurkettW.C. ZhaoZ. JohnC. SunW. ZhangX. FanY. HaoT. ZhouC. Bae-JumpV.L. Oleic acid exhibits anti-proliferative and anti-invasive activities via the PTEN/AKT/mTOR pathway in endometrial cancer.Cancers 20231522540710.3390/cancers15225407 38001668
    [Google Scholar]
  43. KimJ.S. KimD.K. MoonJ.Y. LeeM.Y. ChoS.K. Oleic acid inhibits the migration and invasion of breast cancer cells with stemness characteristics through oxidative stress-mediated attenuation of the FAK/AKT/NF-κB pathway.J. Funct. Foods202411610622410.1016/j.jff.2024.106224
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206396025250614030603
Loading
/content/journals/acamc/10.2174/0118715206396025250614030603
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Anticancer; apoptosis; cancer; cell lines; phytochemicals; plant extracts
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test