Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The toxic effects of cisplatin limit its therapeutic efficacy on hepatocellular carcinoma (HCC). Cisplatin(IV) (Pt(IV)) with better stability needs an effective drug delivery strategy. Here, we explored the toxic and inhibitory effects and cell Pt contents of monomethoxyl poly(ethylene glycol)-block-poly(e-caprolactone)-block-poly(L-lysine) (MPEG-b-PCL-b-PLL)/Pt(IV) micelles (M(P3)) on HCC, and evaluated the therapeutic effect of (M (Pt (IV)) on HCC and .

Methods

We successfully constructed HCC model in BALB/c mice and prepared M(P3). The H22 and HepG2 cells were incubated with cisplatin, M(P3), and cisPt(IV)-(COOH) at 2, 10, 20, 50, 100 and 250 µM equivalent platinum (Pt) concentrations for 48 h and at 5 µM for 2/6 h. The HCC mice received cisplatin, M(P3), and cisPt(IV)-(COOH) (5 mg equivalent Pt/kg, once a week) for five weeks. The cell activity was assessed by MTT assay. The Pt contents were assayed by an inductively coupled plasma mass spectrometer (ICP-MS). The liver tumor weight was measured. The levels of liver tumor hepatorenal function indicators and malignant indicators were estimated by biochemical analysis and Western blot.

Results

The activity of H22 and HepG2 cells: cisPt(IV)-(COOH)2-treated > M(P3)-treated > cisplatin-treated. The Pt contents of H22 and HepG2 cells: M(P3)-treated > cisplatin-treated > cisPt(IV)-(COOH)-treated cells. The hepatorenal function of HCC mice: M(P3)-treated > cisPt(IV)-(COOH)-treated > cisplatin-treated. According to the weight and levels of malignant indicators of liver tumor, the therapeutic effect on HCC mice: cisplatin-treated > M(P3)-treated > cisPt(IV)-(COOH)-treated.

Conclusions

Although the inhibitory effect of M(P3) on HCC is not as good as cisplatin, M(P3) has significantly lower hepatorenal toxicity and remarkably higher cell Pt contents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206347681250312142125
2025-05-26
2025-10-22
Loading full text...

Full text loading...

References

  1. LiX. WuQ. MaF. ZhangX. CaiL. YangX. Mitochondrial fission factor promotes cisplatin resistance in hepatocellular carcinoma.Acta Biochim. Biophys. Sin.202254330131010.3724/abbs.2022007 35538029
    [Google Scholar]
  2. NevolaR. RuoccoR. CriscuoloL. VillaniA. AlfanoM. BecciaD. ImbrianiS. ClaarE. CozzolinoD. SassoF.C. MarroneA. AdinolfiL.E. RinaldiL. Predictors of early and late hepatocellular carcinoma recurrence.World J. Gastroenterol.20232981243126010.3748/wjg.v29.i8.1243 36925456
    [Google Scholar]
  3. MoawadA.W. MorshidA. KhalafA.M. ElmohrM.M. HazleJ.D. FuentesD. BadawyM. KasebA.O. HassanM. MahvashA. SzklarukJ. QayyumA. AbusaifA. BennettW.C. NolanT.S. CampB. ElsayesK.M. Multimodality annotated hepatocellular carcinoma data set including pre- and post-TACE with imaging segmentation.Sci. Data20231013310.1038/s41597‑023‑01928‑3 36653372
    [Google Scholar]
  4. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  5. HouZ. LiuJ. JinZ. QiuG. XieQ. MiS. HuangJ. Use of chemotherapy to treat hepatocellular carcinoma.Biosci. Trends2022161314510.5582/bst.2022.01044 35173139
    [Google Scholar]
  6. El-DemiryS.M. El-YamanyM. El-GendyS.M. SalemH.A. SaberM.M. Necroptosis modulation by cisplatin and sunitinib in hepatocellular carcinoma cell line.Life Sci.202230112059410.1016/j.lfs.2022.120594 35500680
    [Google Scholar]
  7. XuX. YangX. SongY. ChenB. YuX. XuT. ChenZ. Dysregulation of non-coding RNAs mediates cisplatin resistance in hepatocellular carcinoma and therapeutic strategies.Pharmacol. Res.202217610590610.1016/j.phrs.2021.105906 34543740
    [Google Scholar]
  8. SzeflerB. CzeleńP. Will the interactions of some platinum (II)-based drugs with B-vitamins reduce their therapeutic effect in cancer patients? Comparison of chemotherapeutic agents such as cisplatin, carboplatin and oxaliplatin-a review.Int. J. Mol. Sci.2023242154810.3390/ijms24021548
    [Google Scholar]
  9. SuS. ChenY. ZhangP. MaR. ZhangW. LiuJ. LiT. NiuH. CaoY. HuB. GaoJ. SunH. FangD. WangJ. WangP.G. XieS. WangC. MaJ. The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022.Eur. J. Med. Chem.202224311468010.1016/j.ejmech.2022.114680 36152386
    [Google Scholar]
  10. HamayaS. OuraK. MorishitaA. MasakiT. Cisplatin in liver cancer therapy.Int. J. Mol. Sci.202324131085810.3390/ijms241310858 37446035
    [Google Scholar]
  11. GhoshS. Cisplatin: The first metal based anticancer drug.Bioorg. Chem.20198810292510.1016/j.bioorg.2019.102925 31003078
    [Google Scholar]
  12. AputenA.D. EliasM.G. GilbertJ. SakoffJ.A. GordonC.P. ScottK.F. Aldrich-WrightJ.R. Potent Chlorambucil-Platinum(IV) prodrugs.Int. J. Mol. Sci.202223181047110.3390/ijms231810471 36142383
    [Google Scholar]
  13. BasuU. BanikB. WenR. PathakR.K. DharS. The Platin-X series: Activation, targeting, and delivery.Dalton Transactions.20164533129921300410.1039/C6DT01738J
    [Google Scholar]
  14. WexselblattE. GibsonD. What do we know about the reduction of Pt(IV) pro-drugs?J. Inorg. Biochem.201211722022910.1016/j.jinorgbio.2012.06.013 22877926
    [Google Scholar]
  15. HallM.D. HambleyT.W. Platinum(IV) antitumour compounds: Their bioinorganic chemistry.Coord. Chem. Rev.20022321496710.1016/S0010‑8545(02)00026‑7
    [Google Scholar]
  16. WongD.Y.Q. AngW.H. Development of platinum(IV) complexes as anticancer prodrugs: The story so far.COSMOS2012080112113410.1142/S0219607712300020
    [Google Scholar]
  17. WangR. HeD. WangH. WangJ. YuY. ChenQ. SunC. ShenY. TuJ. XiongY. Redox-sensitive polyglutamic acid-platinum(IV) prodrug grafted nanoconjugates for efficient delivery of cisplatin into breast tumor.Nanomedicine 20202910225210.1016/j.nano.2020.102252 32615336
    [Google Scholar]
  18. XiaoH. QiR. LiuS. HuX. DuanT. ZhengY. HuangY. JingX. Biodegradable polymer − cisplatin(IV) conjugate as a pro-drug of cisplatin(II).Biomaterials201132307732773910.1016/j.biomaterials.2011.06.072 21783244
    [Google Scholar]
  19. GaoJ. ChenL. QiR. ZhouZ. DengZ. ShiJ. QinT. ZhaoS. QianY. ShenJ. Simultaneous delivery of gene and chemotherapeutics via copolymeric micellar nanoparticles to overcome multiple drug resistance to promote synergistic tumor suppression.J. Biomater. Appl.201934113014010.1177/0885328219839254 30971178
    [Google Scholar]
  20. PatravaleV.B. UpadhayaP.G. JainR.D. Preparation and characterization of micelles.Methods Mol. Biol.20192000192910.1007/978‑1‑4939‑9516‑5_2
    [Google Scholar]
  21. QiR. LiuS. ChenJ. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery.J. Control. Release2012159225126010.1016/j.jconrel.2012.01.015
    [Google Scholar]
  22. HallM.D. DillonC.T. ZhangM. The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells.J. Biol. Inorg. Chem.20038772673210.1007/s00775‑003‑0471‑6
    [Google Scholar]
  23. SongH. WangR. XiaoH. A cross-linked polymeric micellar delivery system for cisplatin(IV) complex.Eur. J. Pharm. Biopharm.2013831637510.1016/j.ejpb.2012.09.004
    [Google Scholar]
  24. XuH. WeiY. ZhangY. XuY. LiF. LiuJ. ZhangW. HanX. TanR. ShenP. Oestrogen attenuates tumour progression in hepatocellular carcinoma.J. Pathol.2012228221622910.1002/path.4009 22374713
    [Google Scholar]
  25. YuH. ShiG. Cisplatin chemotherapy-induced miRNA-210 signaling inhibits hepatocellular carcinoma cell growth.Transl. Cancer Res.20198262663410.21037/tcr.2019.03.26 35116795
    [Google Scholar]
  26. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  27. SunY. ZhangW. BiX. YangZ. TangY. JiangL. BiF. ChenM. ChengS. ChiY. HanY. HuangJ. HuangZ. JiY. JiaL. JiangZ. JinJ. JinZ. LiX. LiZ. LiangJ. LiuL. LiuY. LuY. LuS. MengQ. NiuZ. PanH. QinS. QuW. ShaoG. ShenF. SongT. SongY. TaoK. TianA. WangJ. WangW. WangZ. WuL. XiaF. XingB. XuJ. XueH. YanD. YangL. YingJ. YunJ. ZengZ. ZhangX. ZhangY. ZhangY. ZhaoJ. ZhouJ. ZhuX. ZouY. DongJ. FanJ. LauW.Y. SunY. YuJ. ZhaoH. ZhouA. CaiJ. Systemic therapy for hepatocellular carcinoma: Chinese consensus-based interdisciplinary expert statements.Liver Cancer202211319220810.1159/000521596 35949289
    [Google Scholar]
  28. HuangY. KouQ. SuY. LuL. LiX. JiangH. GuiR. HuangR. NieX. LiJ. Combination therapy based on dual-target biomimetic nano-delivery system for overcoming cisplatin resistance in hepatocellular carcinoma.J. Nanobiotechnol.20232118910.1186/s12951‑023‑01840‑3 36918874
    [Google Scholar]
  29. DateT. KucheK. ChaudhariD. GhadiR. SahelD.K. ChitkaraD. JainS. Hitting multiple cellular targets in triple-negative breast cancer using dual-action Cisplatin(IV) prodrugs for safer synergistic chemotherapy.ACS Biomater. Sci. Eng.2022862349236210.1021/acsbiomaterials.1c01582 35522530
    [Google Scholar]
  30. WeiD. YuY. ZhangX. WangY. ChenH. ZhaoY. WangF. RongG. WangW. KangX. CaiJ. WangZ. YinJ.Y. HanifM. SunY. ZhaG. LiL. NieG. XiaoH. Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models.ACS Nano20201412169841699610.1021/acsnano.0c06190 33283501
    [Google Scholar]
  31. HuangX. LiG. LiH. ZhongW. JiangG. CaiJ. XiongQ. WuC. SuK. HuangR. XuS. LiuZ. WangM. WangH. Glycyrrhetinic acid as a hepatocyte targeting ligand-functionalized platinum(IV) complexes for hepatocellular carcinoma therapy and overcoming multidrug resistance.J. Med. Chem.202467108020804210.1021/acs.jmedchem.4c00144 38727048
    [Google Scholar]
  32. XiaoH. QiR. LiT. AwuahS.G. ZhengY. WeiW. KangX. SongH. WangY. YuY. BirdM.A. JingX. YaffeM.B. BirrerM.J. GhoroghchianP.P. Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents.J. Am. Chem. Soc.201713983033304410.1021/jacs.6b12108 28166401
    [Google Scholar]
  33. YangL. XuJ. XieZ. SongF. WangX. TangR. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo.Asian J. Pharm. Sci.202116676277110.1016/j.ajps.2021.08.001
    [Google Scholar]
  34. AnJ.H. LiC.Y. ChenC.Y. WuJ.B. ShenH. Raloxifene protects cisplatin-induced renal injury in mice via inhibiting oxidative stress.OncoTargets Ther.2021144879489010.2147/OTT.S314810 34588782
    [Google Scholar]
  35. ParkH.R. JoS.K. ChoH.H. JungU. Synergistic anti-cancer activity of MH-30 in a murine melanoma model treated with cisplatin and its alleviated effects against cisplatin-induced toxicity in mice.In Vivo20203441845185610.21873/invivo.11979 32606154
    [Google Scholar]
  36. ShenC. LiJ. ZhangQ. TaoY. LiR. MaZ. WangZ. LncRNA GASAL1 promotes hepatocellular carcinoma progression by up-regulating USP10-stabilized PCNA.Exp. Cell Res.2022415111297310.1016/j.yexcr.2021.112973 34914965
    [Google Scholar]
  37. XiJ. SunY. ZhangM. FaZ. WanY. MinZ. XuH. XuC. TangJ. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway.Exp. Cell Res.201938111910.1016/j.yexcr.2019.04.005 31054856
    [Google Scholar]
  38. HanH. LinT. WangZ. SongJ. FangZ. ZhangJ. YouX. DuY. YeJ. ZhouG. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression.Pharmacol. Res.202318710659310.1016/j.phrs.2022.106593 36496136
    [Google Scholar]
  39. LiuG. YinL. OuyangX. ZengK. XiaoY. LiY. M2 macrophages promote HCC cells invasion and migration via miR-149-5p/MMP9 signaling.J. Cancer20201151277128710.7150/jca.35444 31956374
    [Google Scholar]
  40. ChenP.C. ChenC.C. KerY.B. ChangC.H. ChyauC.C. HuM.L. Anti-metastatic effects of antrodan with and without cisplatin on lewis lung carcinomas in a mouse xenograft model.Int. J. Mol. Sci.2018196156510.3390/ijms19061565 29794990
    [Google Scholar]
  41. LiL. ChenY. WangQ. LiZ. LiuZ. HuaX. HanJ. ChangC. WangZ. LiD. Albumin-encapsulated nanoparticles of Naproxen Platinum(IV) complexes with inflammation inhibitory competence displaying effective antitumor activities in vitro and in vivo.Int. J. Nanomed.2021165513552910.2147/IJN.S322688 34429597
    [Google Scholar]
  42. YangX. YeungW.H.O. TanK.V. NgT.P.K. PangL. ZhouJ. LiJ. LiC. LiX. LoC.M. KaoW.J. ManK. Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model.Drug Deliv.202128152052910.1080/10717544.2021.1895908 33685316
    [Google Scholar]
  43. DengQ.P. WangM.J. ZengX. ChenG.G. HuangR.Y. Effects of glycyrrhizin in a mouse model of lung adenocarcinoma.Cell. Physiol. Biochem.20174141383139210.1159/000467897
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206347681250312142125
Loading
/content/journals/acamc/10.2174/0118715206347681250312142125
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test