Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The occurrence of gain of function mutations in has been associated to survival, and drug resistance in Leukemia. screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.

Objective

This study was designed to screen selected mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.

Methods

In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.

Results

Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC-4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated . However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.

Conclusion

The aggressive form of pediatric leukemia, carrying STAT5BN642H mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206350463241226032324
2025-02-10
2025-12-17
Loading full text...

Full text loading...

References

  1. MaurerB. KollmannS. PickemJ. Hoelbl-KovacicA. SexlV. STAT5A and STAT5B—twins with different personalities in hematopoiesis and leukemia.Cancers (Basel)20191111172610.3390/cancers11111726 31690038
    [Google Scholar]
  2. HammarénH.M. VirtanenA.T. RaivolaJ. SilvennoinenO. The regulation of JAKs in cytokine signaling and its breakdown in disease.Cytokine2019118486310.1016/j.cyto.2018.03.041 29685781
    [Google Scholar]
  3. VillarinoA.V. KannoY. O’SheaJ.J. Mechanisms and consequences of Jak–STAT signaling in the immune system.Nat. Immunol.201718437438410.1038/ni.3691 28323260
    [Google Scholar]
  4. WaldmannT.A. ChenJ. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: Implications for immunotherapy.Annu. Rev. Immunol.201735153355010.1146/annurev‑immunol‑110416‑120628 28182501
    [Google Scholar]
  5. MurrayP.J. The JAK-STAT signaling pathway: input and output integration.J. Immunol.200717852623262910.4049/jimmunol.178.5.2623 17312100
    [Google Scholar]
  6. OwenK.L. BrockwellN.K. ParkerB.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression.Cancers (Basel)20191112200210.3390/cancers11122002 31842362
    [Google Scholar]
  7. MatutesE. The 2017 WHO update on mature T- and natural killer (NK) cell neoplasms.Int. J. Lab. Hematol.201840S1Suppl. 19710310.1111/ijlh.12817 29741263
    [Google Scholar]
  8. ShahmarvandN. NagyA. ShahryariJ. OhgamiR.S. Mutations in the signal transducer and activator of transcription family of genes in cancer.Cancer Sci.2018109492693310.1111/cas.13525 29417693
    [Google Scholar]
  9. de AraujoE.D. OrlovaA. NeubauerH.A. BajuszD. SeoH.S. Dhe-PaganonS. KeserűG.M. MorigglR. GunningP.T. Structural implications of STAT3 and STAT5 SH2 domain mutations.Cancers (Basel)20191111175710.3390/cancers11111757 31717342
    [Google Scholar]
  10. de AraujoE.D. ErdoganF. NeubauerH.A. Meneksedag-ErolD. ManaswiyoungkulP. EramM.S. SeoH.S. QadreeA.K. IsraelianJ. OrlovaA. SuskeT. PhamH.T.T. BoersmaA. TangermannS. KennerL. RülickeT. DongA. RavichandranM. BrownP.J. AudetteG.F. RauscherS. Dhe-PaganonS. MorigglR. GunningP.T. Structural and functional consequences of the STAT5BN642H driver mutation.Nat. Commun.2019101251710.1038/s41467‑019‑10422‑7 31175292
    [Google Scholar]
  11. HalimC.E. DengS. OngM.S. YapC.T. Involvement of STAT5 in oncogenesis.Biomedicines20208931610.3390/biomedicines8090316 32872372
    [Google Scholar]
  12. WanP. HeX. HanY. WangL. YuanZ. Stat5 inhibits NLRP3 -mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting MIR -182 transcription.Chem. Biol. Drug Des.20231021142510.1111/cbdd.14229 36905318
    [Google Scholar]
  13. BhattacharyaD. TeramoA. GaspariniV.R. HuuhtanenJ. KimD. TheodoropoulosJ. SchiavoniG. BarilàG. VicenzettoC. CalabrettoG. FaccoM. KawakamiT. NakazawaH. FaliniB. TiacciE. IshidaF. SemenzatoG. KelkkaT. ZambelloR. MustjokiS. Identification of novel STAT5B mutations and characterization of TCRβ signatures in CD4+ T-cell large granular lymphocyte leukemia.Blood Cancer J.20221223110.1038/s41408‑022‑00630‑8 35210405
    [Google Scholar]
  14. RajS. SasidharanS. DubeyV.K. SaudagarP. Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation.PLoS One2019148e022133110.1371/journal.pone.0221331 31425543
    [Google Scholar]
  15. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  16. ChenD. OezguenN. UrvilP. FergusonC. DannS.M. SavidgeT.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing.Sci. Adv.201623e150124010.1126/sciadv.1501240 27051863
    [Google Scholar]
  17. KumarY. SinghH. PatelC.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.J. Infect. Public Health20201391210122310.1016/j.jiph.2020.06.016 32561274
    [Google Scholar]
  18. HallD.C.Jr JiH.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease.Travel Med. Infect. Dis.20203510164610.1016/j.tmaid.2020.101646 32294562
    [Google Scholar]
  19. RahmanF. TabrezS. AliR. AlqahtaniA.S. AhmedM.Z. RubA. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins.J. Tradit. Complement. Med.202111217317910.1016/j.jtcme.2021.01.006 33520682
    [Google Scholar]
  20. AlnajjarR. MostafaA. KandeilA. Al-KarmalawyA.A. Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease.Heliyon2020612e0564110.1016/j.heliyon.2020.e05641 33294721
    [Google Scholar]
  21. BhattacharyaK. BordoloiR. ChanuN.R. KalitaR. SahariahB.J. BhattacharjeeA. In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2.J. Genet. Eng. Biotechnol.20222014310.1186/s43141‑022‑00314‑7 35262828
    [Google Scholar]
  22. ParksJ. SmithJ. Clinical implications of basic research how to discover.202014
    [Google Scholar]
  23. PhamH.T.T. MaurerB. Prchal-MurphyM. GrausenburgerR. GrundschoberE. JavaheriT. NivarthiH. BoersmaA. KolbeT. ElabdM. HalbritterF. PencikJ. KazemiZ. GrebienF. HengstschlägerM. KennerL. KubicekS. FarlikM. BockC. ValentP. MüllerM. RülickeT. SexlV. MorigglR. STAT5BN642H is a driver mutation for T cell neoplasia.J. Clin. Invest.2017128138740110.1172/JCI94509 29200404
    [Google Scholar]
  24. DiopA. SantorelliD. MalagrinòF. NardellaC. PennacchiettiV. PaganoL. MarcocciL. PietrangeliP. GianniS. TotoA. SH2 domains: folding, binding and therapeutical approaches.Int. J. Mol. Sci.202223241594410.3390/ijms232415944 36555586
    [Google Scholar]
  25. KeilhackH. DavidF.S. McGregorM. CantleyL.C. NeelB.G. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes.J. Biol. Chem.200528035309843099310.1074/jbc.M504699200 15987685
    [Google Scholar]
  26. NiihoriT. AokiY. OhashiH. KurosawaK. KondohT. IshikiriyamaS. KawameH. KamasakiH. YamanakaT. TakadaF. NishioK. SakuraiM. TamaiH. NagashimaT. SuzukiY. KureS. FujiiK. ImaizumiM. MatsubaraY. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia.J. Hum. Genet.200550419220210.1007/s10038‑005‑0239‑7 15834506
    [Google Scholar]
  27. BandapalliO.R. SchuesseleS. KunzJ.B. RauschT. StützA.M. TalN. GeronI. GershmanN. IzraeliS. EilersJ. The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse.Haematologica20149910e188
    [Google Scholar]
  28. KielM.J. VelusamyT. RollandD. SahasrabuddheA.A. ChungF. BaileyN.G. SchraderA. LiB. LiJ.Z. OzelA.B. BetzB.L. MirandaR.N. MedeirosL.J. ZhaoL. HerlingM. LimM.S. Elenitoba-JohnsonK.S.J. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.Blood201412491460147210.1182/blood‑2014‑03‑559542 24825865
    [Google Scholar]
  29. MaX. WenL. WuL. WangQ. YaoH. WangQ. MaL. ChenS. Rare occurrence of a STAT5B N642H mutation in adult T-cell acute lymphoblastic leukemia.Cancer Genet.20152081-2525310.1016/j.cancergen.2014.12.001 25749351
    [Google Scholar]
  30. RajalaH.L.M. EldforsS. KuusanmäkiH. van AdrichemA.J. OlsonT. LagströmS. AnderssonE.I. JerezA. ClementeM.J. YanY. ZhangD. AwwadA. EllonenP. KallioniemiO. WennerbergK. PorkkaK. MaciejewskiJ.P. LoughranT.P.Jr HeckmanC. MustjokiS. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia.Blood2013121224541455010.1182/blood‑2012‑12‑474577 23596048
    [Google Scholar]
  31. RajalaH.L.M. PorkkaK. MaciejewskiJ.P. LoughranT.P.Jr MustjokiS. Uncovering the pathogenesis of large granular lymphocytic leukemia—novel STAT3 and STAT5b mutations.Ann. Med.201446311412210.3109/07853890.2014.882105 24512550
    [Google Scholar]
  32. LuoQ. ShenJ. YangY. TangH. ShiM. LiuJ. LiuZ. ShiX. YiY. CSF3R T618I, ASXL1 G942 fs and STAT5B N642H trimutation co-contribute to a rare chronic neutrophilic leukaemia manifested by rapidly progressive leucocytosis, severe infections, persistent fever and deep venous thrombosis.Br. J. Haematol.2018180689289410.1111/bjh.14456 27984641
    [Google Scholar]
  33. CrossN.C.P. HoadeY. TapperW.J. Carreno-TarragonaG. FanelliT. JawharM. NaumannN. PieniakI. LübkeJ. AliS. BhullerK. BurgstallerS. CargoC. CavenaghJ. DuncombeA.S. Das-GuptaE. EvansP. ForsythP. GeorgeP. GrimleyC. JackF. MunroL. MehraV. PatelK. RismaniA. SciuccatiG. Thomas-DewingR. ThorntonP. VirchisA. WattS. WallisL. WhitewayA. ZegockiK. BainB.J. ReiterA. ChaseA. Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia.Leukemia201933241542510.1038/s41375‑018‑0342‑3 30573779
    [Google Scholar]
  34. BabushokD.V. PerdigonesN. PerinJ.C. OlsonT.S. YeW. RothJ.J. LindC. CattierC. LiY. HartungH. PaesslerM.E. FrankD.M. XieH.M. CrossS. CockroftJ.D. PodsakoffG.M. MonosD. BiegelJ.A. MasonP.J. BesslerM. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia.Cancer Genet.2015208411512810.1016/j.cancergen.2015.01.007 25800665
    [Google Scholar]
  35. HennighausenL. RobinsonG.W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B.Genes Dev.200822671172110.1101/gad.1643908 18347089
    [Google Scholar]
  36. NelsonE.A. WalkerS.R. XiangM. WeisbergE. Bar-NatanM. BarrettR. LiuS. KharbandaS. ChristieA.L. NicolaisM. GriffinJ.D. StoneR.M. KungA.L. FrankD.A. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations.Genes Cancer201237-850351110.1177/1947601912466555 23264850
    [Google Scholar]
  37. NamS. ScutoA. YangF. ChenW. ParkS. YooH.S. KonigH. BhatiaR. ChengX. MerzK.H. EisenbrandG. JoveR. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling.Mol. Oncol.20126327628310.1016/j.molonc.2012.02.002 22387217
    [Google Scholar]
  38. World Health Organization. Regional Office for the Eastern Mediterranean. ( 2019) . Healthy diet. World Health Organization. Regional Office for the Eastern Mediterranean.2019Available from: https://iris.who.int/handle/10665/325828 (accessed on 12-11-2024).
  39. MillerS.A. DykesD.D. PoleskyH.F. A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Res.1988163121510.1093/nar/16.3.1215 3344216
    [Google Scholar]
  40. Brachet-BotineauM. DeynouxM. ValletN. PolomskiM. JuenL. HéraultO. MazurierF. Viaud-MassuardM.C. PriéG. GouilleuxF. A novel inhibitor of STAT5 signaling overcomes chemotherapy resistance in myeloid leukemia cells.Cancers (Basel)20191112204310.3390/cancers11122043 31861239
    [Google Scholar]
  41. CumaraswamyA.A. LewisA.M. GeletuM. TodicA. DiazD.B. ChengX.R. BrownC.E. LaisterR.C. MuenchD. KermanK. GrimesH.L. MindenM.D. GunningP.T. Nanomolar-potency small molecule inhibitor of STAT5 Protein.ACS Med. Chem. Lett.20145111202120610.1021/ml500165r 25419444
    [Google Scholar]
  42. WingelhoferB. MaurerB. HeyesE.C. CumaraswamyA.A. Berger-BecvarA. de AraujoE.D. OrlovaA. FreundP. RugeF. ParkJ. TinG. AhmarS. LardeauC.H. SadovnikI. BajuszD. KeserűG.M. GrebienF. KubicekS. ValentP. GunningP.T. MorigglR. Pharmacologic inhibition of STAT5 in acute myeloid leukemia.Leukemia20183251135114610.1038/s41375‑017‑0005‑9 29472718
    [Google Scholar]
  43. SuL. DavidM. Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol.J. Biol. Chem.200027517126611266610.1074/jbc.275.17.12661 10777558
    [Google Scholar]
  44. MistryH. HsiehG. BuhrlageS.J. HuangM. ParkE. CunyG.D. GalinskyI. StoneR.M. GrayN.S. D’AndreaA.D. ParmarK. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells.Mol. Cancer Ther.201312122651266210.1158/1535‑7163.MCT‑13‑0103‑T 24130053
    [Google Scholar]
  45. ElumalaiN. BergA. RubnerS. BlechschmidtL. SongC. NatarajanK. MatysikJ. BergT. Rational development of Stafib-2: a selective, nanomolar inhibitor of the transcription factor STAT5b.Sci. Rep.20177181910.1038/s41598‑017‑00920‑3 28400581
    [Google Scholar]
  46. PinzS. UnserS. RascleA. The natural chemopreventive agent sulforaphane inhibits STAT5 activity.PLoS One201496e9939110.1371/journal.pone.0099391 24910998
    [Google Scholar]
  47. BIOVIA Discovery Studio.2021Available from: https://www.3ds.com/products/biovia/discovery-studio (accessed on 12-11-2024).
  48. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  49. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  50. KaveshM. MohebnasabM. AngelM.R. XieW. RaessP.W. CuiW. PressR.D. YangG. LiP. Distinguishing STAT3/STAT5B -mutated large granular lymphocyte leukemia from myeloid neoplasms by genetic profiling.Blood Adv.202371404510.1182/bloodadvances.2022008192 35939786
    [Google Scholar]
  51. QuS. JiaY. WangH. AiX. XuZ. QinT. PanL. LiB. HuangG. GaleR.P. XiaoZ. STAT3 and STAT5B mutations have unique distribution in T-cell large granular lymphocyte proliferations and advanced myeloid neoplasms.Leuk. Lymphoma20216261506150910.1080/10428194.2020.1869964 33410350
    [Google Scholar]
  52. AnderssonE.I. TanahashiT. SekiguchiN. GaspariniV.R. BortoluzziS. KawakamiT. MatsudaK. MitsuiT. EldforsS. BortoluzziS. CoppeA. BinattiA. LagströmS. EllonenP. FukushimaN. NishinaS. SenooN. SakaiH. NakazawaH. KwongY.L. LoughranT.P. MaciejewskiJ.P. MustjokiS. IshidaF. High incidence of activating STAT5B mutations in CD4-positive T-cell large granular lymphocyte leukemia.Blood2016128202465246810.1182/blood‑2016‑06‑724856 27697773
    [Google Scholar]
  53. UmrauK. NaganumaK. GaoQ. DoganA. KizakiM. RoshalM. LiuY. YabeM. Activating STAT5B mutations can cause both primary hypereosinophilia and lymphocyte-variant hypereosinophilia.Leuk. Lymphoma202364123824110.1080/10428194.2022.2131413 36308018
    [Google Scholar]
  54. BourgeaisJ. IshacN. MedrzyckiM. Brachet-BotineauM. DesbourdesL. Gouilleux-GruartV. PecnardE. Rouleux-BonninF. GyanE. DomenechJ. MazurierF. MorigglR. BuntingK.D. HeraultO. GouilleuxF. Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses.Oncotarget2017826418764188910.18632/oncotarget.11480 27566554
    [Google Scholar]
  55. HuZ. MedeirosL.J. XuM. YuanJ. PekerD. ShaoL. TangZ. MaiB. ThakralB. RiosA. HuS. WangW. T-cell prolymphocytic leukemia with t(X;14)(q28;q11.2): A clinicopathologic study of 15 cases.Am. J. Clin. Pathol.2023159432533610.1093/ajcp/aqac166 36883805
    [Google Scholar]
  56. SuskeT. SorgerH. ManhartG. RugeF. PrutschN. ZimmermanM.W. EderT. AbdallahD.I. MaurerB. WagnerC. SchönefeldtS. SpirkK. PichlerA. PemovskaT. SchweickerC. PölöskeD. HubanicE. JungherzD. MüllerT.A. AungM.M.K. OrlovaA. PhamH.T.T. ZimmelK. KrausgruberT. BockC. MüllerM. DahlhoffM. BoersmaA. RülickeT. FleckR. de AraujoE.D. GunningP.T. AittokallioT. MustjokiS. SandaT. HartmannS. GrebienF. HoermannG. HaferlachT. StaberP.B. NeubauerH.A. LookA.T. HerlingM. MorigglR. Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia.J. Clin. Invest.20241348e16853610.1172/JCI168536 38618957
    [Google Scholar]
  57. NeubauerH.A. SuskeT. SchönefeldtS. TangermannS. BoersmaA. RülickeT. BekiarisV. KennerL. MorigglR. Abstract 2752: The gain-of-function STAT5BN642H mutation as a driver of mature T cell leukemia/lymphoma.Cancer Res.20208016Suppl.2752275210.1158/1538‑7445.AM2020‑2752
    [Google Scholar]
  58. UllahF. MarkouliM. OrlandM. OgbueO. DimaD. OmarN. Mustafa AliM.K. Large granular lymphocytic leukemia: Clinical features, molecular pathogenesis, diagnosis and treatment.Cancers (Basel)2024167130710.3390/cancers16071307 38610985
    [Google Scholar]
  59. KleinK. KollmannS. HiesingerA. ListJ. KendlerJ. KlampflT. RhandawaM. TrifinopoulosJ. MaurerB. GrausenburgerR. BetramC.A. MorigglR. RülickeT. MullighanC.G. Witalisz-SieprackaA. WalterW. HoermannG. SexlV. GotthardtD. A lineage-specific STAT5B N642H mouse model to study NK-cell leukemia.Blood2024143242474248910.1182/blood.2023022655 38498036
    [Google Scholar]
  60. YinC.C. TamW. WalkerS.M. KaurA. OusephM.M. XieW. WeinbergK. O.; Li, P.; Zuo, Z.; Routbort, M.J.; Chen, S.; Medeiros, L.J.; George, T.I.; Orazi, A.; Arber, D.A.; Bagg, A.; Hasserjian, R.P.; Wang, S.A. STAT5B mutations in myeloid neoplasms differ by disease subtypes but characterize a subset of chronic myeloid neoplasms with eosinophilia and/or basophilia.Haematologica2024109618251835 37981812
    [Google Scholar]
  61. UllahS. TonksA. A HalawiM. A M, A.; Alkuwaykibi, M.; Halawi, A.; Hayat, A.; Alkoumi, H.A.H.; Alanzi, M.; Wadood, A. Whole exome sequence of Pakistani acute lymphocytic leukemia patient from Pakhtuns ancestry reveal the novel genetic variant characterization in the GLDC gene.J. Biotechnol. Biomed.20236340942010.26502/jbb.2642‑91280103
    [Google Scholar]
  62. AhmedZ.A. NasirA. SheikhM.S. RizviA.Q. MoatterT. Characteristics of BCR-ABL rearrangement variants in Pakistani patients with chronic myeloid leukemia and acute lymphocytic leukemia.Ann. Oncol.201930ix9410.1093/annonc/mdz427.011
    [Google Scholar]
  63. ShahidS. ShakeelM. SiddiquiS. AhmedS. SohailM. KhanI.A. AbidA. ShamsiT. Novel genetic variations in acute myeloid leukemia in Pakistani population.Front. Genet.20201156010.3389/fgene.2020.00560 32655615
    [Google Scholar]
  64. ShabihH. MahmoodA. AKhtar, F.; Mahmood, R.; Muzafar, S.; Batool, M. BCR-ABL1 Gene mutation in acute lymphoblastic leukemia. Annal. PIMS-Shaheed Zulfiqar Ali Bhutto Med.Uni.202218318118510.48036/apims.v18i3.629
    [Google Scholar]
  65. AzadA.K. KhanM.R. HabibA.B.M.H. MiahM.A.W. BegumM. Aberrant expression of CD markers in acute myeloid leukaemia.Haematol. J. Bangladesh202021141610.37545/haematoljbd201812
    [Google Scholar]
  66. FaizM. AzeemM. QureshiA. Incidence of flt3-itd gene mutations among Pakistani patients with acute lymphoblastic leukemia patients: A preliminary study.Int. J. Med. Lab Res.20183216
    [Google Scholar]
  67. CorselloS.M. BittkerJ.A. LiuZ. GouldJ. McCarrenP. HirschmanJ.E. JohnstonS.E. VrcicA. WongB. KhanM. AsieduJ. NarayanR. MaderC.C. SubramanianA. GolubT.R. The Drug Repurposing Hub: A next-generation drug library and information resource.Nat. Med.201723440540810.1038/nm.4306 28388612
    [Google Scholar]
  68. GhanemA. EmaraH.A. MuawiaS. Abd El MaksoudA.I. Al-KarmalawyA.A. ElshalM.F. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies.New J. Chem.20204440173741738110.1039/D0NJ04088F
    [Google Scholar]
  69. EliaaS.G. Al-KarmalawyA.A. SalehR.M. ElshalM.F. Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mtor pathway and inhibition of calmodulin: In vitro and molecular docking studies.ACS Pharmacol. Transl. Sci.2020361330133810.1021/acsptsci.0c00144 33344906
    [Google Scholar]
  70. BarrowsN. CamposR. PowellS. PrasanthK. Schott-LernerG. Soto-AcostaR. A screen of FDA-approved drugs for inhibitors of zika virus infection.Cell Host Microbe2016202259270
    [Google Scholar]
  71. TremblayC.S. SawJ. BoyleJ.A. HaighK. LitalienV. McCalmontH.R. EvansK. LockR.B. JaneS.M. HaighJ.J. CurtisD.J. STAT5 activation promotes progression and chemotherapy- resistance in early T-cell precursor acute lymphoblastic leukemia.Blood20231423blood.202201632210.1182/blood.2022016322369894892
    [Google Scholar]
  72. NelsonE.A. WalkerS.R. WeisbergE. Bar-NatanM. BarrettR. GashinL.B. TerrellS. KlitgaardJ.L. SantoL. AddorioM.R. EbertB.L. GriffinJ.D. FrankD.A. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors.Blood2011117123421342910.1182/blood‑2009‑11‑255232 21233313
    [Google Scholar]
  73. WalkerS.R. XiangM. FrankD.A. Distinct roles of STAT3 and STAT5 in the pathogenesis and targeted therapy of breast cancer.Mol. Cell. Endocrinol.2014382161662110.1016/j.mce.2013.03.010 23531638
    [Google Scholar]
  74. SimpsonH.M. FurusawaA. SadashivaiahK. CivinC.I. BanerjeeA. STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma.Oncotarget2018924167921680610.18632/oncotarget.24698 29682185
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206350463241226032324
Loading
/content/journals/acamc/10.2174/0118715206350463241226032324
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test