Skip to content
2000
image of Unraveling the Resistance: Challenges and Advances in PARP Inhibitor Therapy for BRCA1/2 Breast Cancer

Abstract

Breast cancer is the most prevalent malignant tumor among women globally, with breast cancer susceptibility genes (BRCA1 and BRCA2, BRCA1/2) mutations significantly increasing the risk of developing aggressive forms of the disease. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have shown promise in treating BRCA1/2-mutated breast cancer by exploiting deficiencies in homologous recombination (HR) repair. However, the emergence of acquired resistance poses a significant challenge. Our study examines the mechanisms of PARPi resistance in BRCA1/2-mutated breast cancer, synthesizing recent clinical advancements and identifying key resistance pathways, including HR recovery, DNA replication fork stability, and epigenetic modifications. We also highlight potential strategies to overcome these challenges to PARPi resistance, such as combination therapies and novel targets. Our comprehensive analysis aims to inform future clinical practices and guide the development of more effective treatment strategies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206381898250428064533
2025-05-06
2025-12-09
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. The cancer genome atlas network. Comprehensive molecular portraits of human breast tumours. Nature 2012 490 7418 61 70 10.1038/nature11412 23000897
    [Google Scholar]
  3. Kuchenbaecker K.B. Hopper J.L. Barnes D.R. Phillips K.A. Mooij T.M. Roos-Blom M.J. Jervis S. van Leeuwen F.E. Milne R.L. Andrieu N. Goldgar D.E. Terry M.B. Rookus M.A. Easton D.F. Antoniou A.C. McGuffog L. Evans D.G. Barrowdale D. Frost D. Adlard J. Ong K. Izatt L. Tischkowitz M. Eeles R. Davidson R. Hodgson S. Ellis S. Nogues C. Lasset C. Stoppa-Lyonnet D. Fricker J.P. Faivre L. Berthet P. Hooning M.J. van der Kolk L.E. Kets C.M. Adank M.A. John E.M. Chung W.K. Andrulis I.L. Southey M. Daly M.B. Buys S.S. Osorio A. Engel C. Kast K. Schmutzler R.K. Caldes T. Jakubowska A. Simard J. Friedlander M.L. McLachlan S.A. Machackova E. Foretova L. Tan Y.Y. Singer C.F. Olah E. Gerdes A.M. Arver B. Olsson H. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017 317 23 2402 2416 10.1001/jama.2017.7112 28632866
    [Google Scholar]
  4. Evers B. Helleday T. Jonkers J. Targeting homologous recombination repair defects in cancer. Trends Pharmacol. Sci. 2010 31 8 372 380 10.1016/j.tips.2010.06.001 20598756
    [Google Scholar]
  5. Remon J. Besse B. Leary A. Bièche I. Job B. Lacroix L. Auguste A. Mauduit M. Audigier-Valette C. Raimbourg J. Madroszyk A. Michels S. Bayar M.A. Jimenez M. Soria J.C. Rouleau E. Barlesi F. Somatic and germline BRCA 1 and 2 mutations in advanced NSCLC from the SAFIR02-lung trial. JTO Clin. Res. Rep. 2020 1 3 100068 10.1016/j.jtocrr.2020.100068 34589950
    [Google Scholar]
  6. Ohmoto A. Yachida S. Current status of poly(ADP-ribose) polymerase inhibitors and future directions. OncoTargets Ther. 2017 10 5195 5208 10.2147/OTT.S139336 29138572
    [Google Scholar]
  7. Sánchez-Olea R. Calera M.R. Degterev A. Molecular pathways involved in cell death after chemically induced DNA damage. EXS 2009 99 209 230 10.1007/978‑3‑7643‑8336‑7_8 19157063
    [Google Scholar]
  8. D’Andrea A.D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair 2018 71 172 176 10.1016/j.dnarep.2018.08.021 30177437
    [Google Scholar]
  9. Guleria M. Kumar P. Thareja S. Synthetic PARP-1 inhibitors reported during the last decade. Lett. Drug Des. Discov. 2022 19 10.2174/1570180819666220615090709
    [Google Scholar]
  10. Verma S. Pathania A.S. Baranwal S. Kumar P. Synthesis and in silico studies of quinazolinone derivatives as PARP-1 inhibitors. Lett. Drug Des. Discov. 2020 17 12 1552 1565 10.2174/1570180817999200719152959
    [Google Scholar]
  11. Robson M. Im S.A. Senkus E. Xu B. Domchek S.M. Masuda N. Delaloge S. Li W. Tung N. Armstrong A. Wu W. Goessl C. Runswick S. Conte P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 2017 377 6 523 533 10.1056/NEJMoa1706450 28578601
    [Google Scholar]
  12. Robson M.E. Tung N. Conte P. Im S.A. Senkus E. Xu B. Masuda N. Delaloge S. Li W. Armstrong A. Wu W. Goessl C. Runswick S. Domchek S.M. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019 30 4 558 566 10.1093/annonc/mdz012 30689707
    [Google Scholar]
  13. Eustermann S. Wu W.F. Langelier M.F. Yang J.C. Easton L.E. Riccio A.A. Pascal J.M. Neuhaus D. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol. Cell 2015 60 5 742 754 10.1016/j.molcel.2015.10.032 26626479
    [Google Scholar]
  14. Schreiber V. Dantzer F. Ame J.C. de Murcia G. Poly(ADP-ribose): Novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 2006 7 7 517 528 10.1038/nrm1963 16829982
    [Google Scholar]
  15. Zielińska Z. Ołdak Ł. Gorodkiewicz E. Methods of PARP-1 determination and its importance in living organisms. Protein Pept. Lett. 2022 29 6 496 504 10.2174/0929866529666220405160715 35382713
    [Google Scholar]
  16. De Vos M. Schreiber V. Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochem. Pharmacol. 2012 84 2 137 146 10.1016/j.bcp.2012.03.018 22469522
    [Google Scholar]
  17. Curtin N.J. Szabo C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov. 2020 19 10 711 736 10.1038/s41573‑020‑0076‑6 32884152
    [Google Scholar]
  18. Ray Chaudhuri A. Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017 18 10 610 621 10.1038/nrm.2017.53 28676700
    [Google Scholar]
  19. Alemasova E.E. Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019 47 8 3811 3827 10.1093/nar/gkz120 30799503
    [Google Scholar]
  20. Keung M. Wu Y. Vadgama J. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J. Clin. Med. 2019 8 4 435 10.3390/jcm8040435 30934991
    [Google Scholar]
  21. Sadakierska-Chudy A. Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 2015 27 2 172 197 10.1007/s12640‑014‑9508‑6 25516120
    [Google Scholar]
  22. Brown J.S. O’Carrigan B. Jackson S.P. Yap T.A. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 2017 7 1 20 37 10.1158/2159‑8290.CD‑16‑0860 28003236
    [Google Scholar]
  23. Watanabe K. Seki N. Biology and development of DNA-targeted drugs, focusing on synthetic lethality, DNA repair, and epigenetic modifications for cancer: A review. Int. J. Mol. Sci. 2024 25 2 752 10.3390/ijms25020752 38255825
    [Google Scholar]
  24. Ashworth A. Lord C.J. Synthetic lethal therapies for cancer: What’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 2018 15 9 564 576 10.1038/s41571‑018‑0055‑6 29955114
    [Google Scholar]
  25. Tutt A.N.J. Garber J.E. Kaufman B. Viale G. Fumagalli D. Rastogi P. Gelber R.D. de Azambuja E. Fielding A. Balmaña J. Domchek S.M. Gelmon K.A. Hollingsworth S.J. Korde L.A. Linderholm B. Bandos H. Senkus E. Suga J.M. Shao Z. Pippas A.W. Nowecki Z. Huzarski T. Ganz P.A. Lucas P.C. Baker N. Loibl S. McConnell R. Piccart M. Schmutzler R. Steger G.G. Costantino J.P. Arahmani A. Wolmark N. McFadden E. Karantza V. Lakhani S.R. Yothers G. Campbell C. Geyer C.E. Adjuvant olaparib for patients with BRCA1 - or BRCA2 -Mutated breast cancer. N. Engl. J. Med. 2021 384 25 2394 2405 10.1056/NEJMoa2105215 34081848
    [Google Scholar]
  26. Gradishar W.J. Moran M.S. Abraham J. Aft R. Agnese D. Allison K.H. Blair S.L. Burstein H.J. Dang C. Elias A.D. Giordano S.H. Goetz M.P. Goldstein L.J. Hurvitz S.A. Isakoff S.J. Jankowitz R.C. Javid S.H. Krishnamurthy J. Leitch M. Lyons J. Matro J. Mayer I.A. Mortimer J. O’Regan R.M. Patel S.A. Pierce L.J. Rugo H.S. Sitapati A. Smith K.L. Smith M.L. Soliman H. Stringer-Reasor E.M. Telli M.L. Ward J.H. Wisinski K.B. Young J.S. Burns J.L. Kumar R. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021. J. Natl. Compr. Canc. Netw. 2021 19 5 484 493 10.6004/jnccn.2021.0023 34794122
    [Google Scholar]
  27. Nader-Marta G. Molinelli C. Debien V. Martins-Branco D. Aftimos P. de Azambuja E. Awada A. Antibody–drug conjugates: The evolving field of targeted chemotherapy for breast cancer treatment. Ther. Adv. Med. Oncol. 2023 15 17588359231183679 10.1177/17588359231183679 37435563
    [Google Scholar]
  28. Popovic L.S. Matovina-Brko G. Popovic M. Punie K. Cvetanovic A. Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol. Res. 2023 31 3 221 238 10.32604/or.2023.028525 37305385
    [Google Scholar]
  29. Sciarra A. Santarelli V. Santodirocco L. Frisenda M. Salciccia S. Casale P. Forte F. Mariotti G. Moriconi M. Cattarino S. Sciarra B. Bevilacqua G. Gentilucci A. Is it time to anticipate the use of PARP inhibition in prostate cancer patients? Curr. Oncol. 2023 30 9 8054 8067 10.3390/curroncol30090584 37754499
    [Google Scholar]
  30. Jerez Y. Márquez-Rodas I. Aparicio I. Alva M. Martín M. López-Tarruella S. Poly (ADP-ribose) polymerase inhibition in patients with breast cancer and BRCA 1 and 2 mutations. Drugs 2020 80 2 131 146 10.1007/s40265‑019‑01235‑5 31823331
    [Google Scholar]
  31. Gelmon K. A. Fasching P. A. Couch F. J. Balmaña J. Delaloge S. Labidi-Galy I. Bennett J. McCutcheon S. Walker G. O'Shaughnessy J. Clinical effectiveness of olaparib monotherapy in germline BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: Phase IIIb LUCY interim analysis. Eur. J. Cancer 2021 152 68 77 10.1016/j.ejca.2021.03.029 34087573
    [Google Scholar]
  32. Ettl J. Quek R.G.W. Lee K.H. Rugo H.S. Hurvitz S. Gonçalves A. Fehrenbacher L. Yerushalmi R. Mina L.A. Martin M. Roché H. Im Y.H. Markova D. Bhattacharyya H. Hannah A.L. Eiermann W. Blum J.L. Litton J.K. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: Patient-reported outcomes from the EMBRACA phase III trial. Ann. Oncol. 2018 29 9 1939 1947 10.1093/annonc/mdy257 30124753
    [Google Scholar]
  33. Turner N.C. Balmaña J. Poncet C. Goulioti T. Tryfonidis K. Honkoop A.H. Zoppoli G. Razis E. Johannsson O.T. Colleoni M. Tutt A.N. Audeh W. Ignatiadis M. Mailliez A. Trédan O. Musolino A. Vuylsteke P. Juan-Fita M.J. Macpherson I.R.J. Kaufman B. Manso L. Goldstein L.J. Ellard S.L. Láng I. Jen K.Y. Adam V. Litière S. Erban J. Cameron D.A. Niraparib for advanced breast cancer with germline BRCA1 and BRCA2 Mutations: The EORTC 1307-BCG/BIG5–13/TESARO PR-30–50–10-C BRAVO study. Clin. Cancer Res. 2021 27 20 5482 5491 10.1158/1078‑0432.CCR‑21‑0310 34301749
    [Google Scholar]
  34. Sun T. Shi Y. Cui J. Yin Y. Ouyang Q. Liu Q. Zhang Q. Chen Y. Zhimin S. Wang S. Wang X. Tong Z. Zhong Y. Yan M. Yan X. Wang C. Yang H. Li M. Xiang X. Xu B. A phase 2 study of pamiparib in the treatment of patients with locally advanced or metastatic HER2-negative breast cancer with germline BRCA mutation. J. Clin. Oncol. 2021 39 15_suppl Suppl. 1087 1087 10.1200/JCO.2021.39.15_suppl.1087
    [Google Scholar]
  35. Diéras V. Han H.S. Kaufman B. Wildiers H. Friedlander M. Ayoub J.P. Puhalla S.L. Bondarenko I. Campone M. Jakobsen E.H. Jalving M. Oprean C. Palácová M. Park Y.H. Shparyk Y. Yañez E. Khandelwal N. Kundu M.G. Dudley M. Ratajczak C.K. Maag D. Arun B.K. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020 21 10 1269 1282 10.1016/S1470‑2045(20)30447‑2 32861273
    [Google Scholar]
  36. Mouw K.W. D’Andrea A.D. DNA repair deficiency and immunotherapy response. J. Clin. Oncol. 2018 36 17 1710 1713 10.1200/JCO.2018.78.2425 29683789
    [Google Scholar]
  37. Vinayak S. Tolaney S.M. Schwartzberg L. Mita M. McCann G. Tan A.R. Wahner-Hendrickson A.E. Forero A. Anders C. Wulf G.M. Dillon P. Lynce F. Zarwan C. Erban J.K. Zhou Y. Buerstatte N. Graham J.R. Arora S. Dezube B.J. Telli M.L. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019 5 8 1132 1140 10.1001/jamaoncol.2019.1029 31194225
    [Google Scholar]
  38. Waks A.G. Cohen O. Kochupurakkal B. Kim D. Dunn C.E. Buendia Buendia J. Wander S. Helvie K. Lloyd M.R. Marini L. Hughes M.E. Freeman S.S. Ivy S.P. Geradts J. Isakoff S. LoRusso P. Adalsteinsson V.A. Tolaney S.M. Matulonis U. Krop I.E. D’Andrea A.D. Winer E.P. Lin N.U. Shapiro G.I. Wagle N. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann. Oncol. 2020 31 5 590 598 10.1016/j.annonc.2020.02.008 32245699
    [Google Scholar]
  39. Fong P.C. Boss D.S. Yap T.A. Tutt A. Wu P. Mergui-Roelvink M. Mortimer P. Swaisland H. Lau A. O’Connor M.J. Ashworth A. Carmichael J. Kaye S.B. Schellens J.H.M. de Bono J.S. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009 361 2 123 134 10.1056/NEJMoa0900212 19553641
    [Google Scholar]
  40. Fong P.C. Yap T.A. Boss D.S. Carden C.P. Mergui-Roelvink M. Gourley C. De Greve J. Lubinski J. Shanley S. Messiou C. A’Hern R. Tutt A. Ashworth A. Stone J. Carmichael J. Schellens J.H.M. de Bono J.S. Kaye S.B. Poly(ADP)-ribose polymerase inhibition: Frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 2010 28 15 2512 2519 10.1200/JCO.2009.26.9589 20406929
    [Google Scholar]
  41. Dias M.P. Moser S.C. Ganesan S. Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2021 18 12 773 791 10.1038/s41571‑021‑00532‑x 34285417
    [Google Scholar]
  42. Rottenberg S. Jaspers J.E. Kersbergen A. van der Burg E. Nygren A.O.H. Zander S.A.L. Derksen P.W.B. de Bruin M. Zevenhoven J. Lau A. Boulter R. Cranston A. O’Connor M.J. Martin N.M.B. Borst P. Jonkers J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 2008 105 44 17079 17084 10.1073/pnas.0806092105 18971340
    [Google Scholar]
  43. Chen Z. Ling K. Zhu Y. Deng L. Li Y. Liang Z. Rucaparib antagonize multidrug resistance in cervical cancer cells through blocking the function of ABC transporters. Gene 2020 759 145000 10.1016/j.gene.2020.145000 32717310
    [Google Scholar]
  44. van Hoppe S. Sparidans R.W. Wagenaar E. Beijnen J.H. Schinkel A.H. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation. Pharmacol. Res. 2017 120 43 50 10.1016/j.phrs.2017.01.035 28288939
    [Google Scholar]
  45. Christie E.L. Pattnaik S. Beach J. Copeland A. Rashoo N. Fereday S. Hendley J. Alsop K. Brady S.L. Lamb G. Pandey A. deFazio A. Thorne H. Bild A. Bowtell D.D.L. Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer. Nat. Commun. 2019 10 1 1295 10.1038/s41467‑019‑09312‑9 30894541
    [Google Scholar]
  46. Turk A.A. Wisinski K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer 2018 124 12 2498 2506 10.1002/cncr.31307 29660759
    [Google Scholar]
  47. Wang Y.Q. Wang P.Y. Wang Y.T. Yang G.F. Zhang A. Miao Z.H. An update on poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors: Opportunities and challenges in cancer therapy. J. Med. Chem. 2016 59 21 9575 9598 10.1021/acs.jmedchem.6b00055 27416328
    [Google Scholar]
  48. Shen Y. Aoyagi-Scharber M. Wang B. Trapping Poly(ADP-Ribose) Polymerase. J. Pharmacol. Exp. Ther. 2015 353 3 446 457 10.1124/jpet.114.222448 25758918
    [Google Scholar]
  49. Murai J. Huang S.Y.N. Renaud A. Zhang Y. Ji J. Takeda S. Morris J. Teicher B. Doroshow J.H. Pommier Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 2014 13 2 433 443 10.1158/1535‑7163.MCT‑13‑0803 24356813
    [Google Scholar]
  50. Noordermeer S.M. van Attikum H. PARP inhibitor resistance: A tug-of-war in BRCA-mutated cells. Trends Cell Biol. 2019 29 10 820 834 10.1016/j.tcb.2019.07.008 31421928
    [Google Scholar]
  51. Min A. Im S.A. PARP inhibitors as therapeutics: Beyond modulation of PARylation. Cancers 2020 12 2 394 10.3390/cancers12020394 32046300
    [Google Scholar]
  52. Gogola E. Duarte A.A. de Ruiter J.R. Wiegant W.W. Schmid J.A. de Bruijn R. James D.I. Guerrero Llobet S. Vis D.J. Annunziato S. van den Broek B. Barazas M. Kersbergen A. van de Ven M. Tarsounas M. Ogilvie D.J. van Vugt M. Wessels L.F.A. Bartkova J. Gromova I. Andújar-Sánchez M. Bartek J. Lopes M. van Attikum H. Borst P. Jonkers J. Rottenberg S. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 2018 33 6 1078 1093.e12 10.1016/j.ccell.2018.05.008 29894693
    [Google Scholar]
  53. Anagho H.A. Mullari M. Prósz A.G. Buch-Larsen S.C. Cho H. Locard-Paulet M. Szallasi Z. Nielsen M.L. ADP-ribosylome analysis reveals homogeneous DNA-damage-induced serine ADP-ribosylation across wild-type and BRCA-mutant breast cancer cell lines. Cell Rep. 2024 43 7 114433 10.1016/j.celrep.2024.114433 38985679
    [Google Scholar]
  54. Gornstein E.L. Sandefur S. Chung J.H. Gay L.M. Holmes O. Erlich R.L. Soman S. Martin L.K. Rose A.V. Stephens P.J. Ross J.S. Miller V.A. Ali S.M. Blau S. BRCA2 reversion mutation associated with acquired resistance to olaparib in estrogen receptor-positive breast cancer detected by genomic profiling of tissue and liquid biopsy. Clin. Breast Cancer 2018 18 2 184 188 10.1016/j.clbc.2017.12.010 29325860
    [Google Scholar]
  55. Goodall J. Mateo J. Yuan W. Mossop H. Porta N. Miranda S. Perez-Lopez R. Dolling D. Robinson D.R. Sandhu S. Fowler G. Ebbs B. Flohr P. Seed G. Rodrigues D.N. Boysen G. Bertan C. Atkin M. Clarke M. Crespo M. Figueiredo I. Riisnaes R. Sumanasuriya S. Rescigno P. Zafeiriou Z. Sharp A. Tunariu N. Bianchini D. Gillman A. Lord C.J. Hall E. Chinnaiyan A.M. Carreira S. de Bono J.S. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017 7 9 1006 1017 10.1158/2159‑8290.CD‑17‑0261 28450425
    [Google Scholar]
  56. Zheng F. Zhang Y. Chen S. Weng X. Rao Y. Fang H. Mechanism and current progress of Poly ADP-ribose polymerase (PARP) inhibitors in the treatment of ovarian cancer. Biomed. Pharmacother. 2020 123 109661 10.1016/j.biopha.2019.109661 31931287
    [Google Scholar]
  57. Francica P. Rottenberg S. Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response. Genome Med. 2018 10 1 101 10.1186/s13073‑018‑0612‑8 30593284
    [Google Scholar]
  58. Escribano-Díaz C. Orthwein A. Fradet-Turcotte A. Xing M. Young J.T.F. Tkáč J. Cook M.A. Rosebrock A.P. Munro M. Canny M.D. Xu D. Durocher D. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 2013 49 5 872 883 10.1016/j.molcel.2013.01.001 23333306
    [Google Scholar]
  59. Noordermeer S.M. Adam S. Setiaputra D. Barazas M. Pettitt S.J. Ling A.K. Olivieri M. Álvarez-Quilón A. Moatti N. Zimmermann M. Annunziato S. Krastev D.B. Song F. Brandsma I. Frankum J. Brough R. Sherker A. Landry S. Szilard R.K. Munro M.M. McEwan A. Goullet de Rugy T. Lin Z.Y. Hart T. Moffat J. Gingras A.C. Martin A. van Attikum H. Jonkers J. Lord C.J. Rottenberg S. Durocher D. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 2018 560 7716 117 121 10.1038/s41586‑018‑0340‑7 30022168
    [Google Scholar]
  60. Xu G. Chapman J.R. Brandsma I. Yuan J. Mistrik M. Bouwman P. Bartkova J. Gogola E. Warmerdam D. Barazas M. Jaspers J.E. Watanabe K. Pieterse M. Kersbergen A. Sol W. Celie P.H.N. Schouten P.C. van den Broek B. Salman A. Nieuwland M. de Rink I. de Ronde J. Jalink K. Boulton S.J. Chen J. van Gent D.C. Bartek J. Jonkers J. Borst P. Rottenberg S. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 2015 521 7553 541 544 10.1038/nature14328 25799992
    [Google Scholar]
  61. Ghezraoui H. Oliveira C. Becker J.R. Bilham K. Moralli D. Anzilotti C. Fischer R. Deobagkar-Lele M. Sanchiz-Calvo M. Fueyo-Marcos E. Bonham S. Kessler B.M. Rottenberg S. Cornall R.J. Green C.M. Chapman J.R. 53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature 2018 560 7716 122 127 10.1038/s41586‑018‑0362‑1 30046110
    [Google Scholar]
  62. Ray Chaudhuri A. Callen E. Ding X. Gogola E. Duarte A.A. Lee J.E. Wong N. Lafarga V. Calvo J.A. Panzarino N.J. John S. Day A. Crespo A.V. Shen B. Starnes L.M. Ruiter J.R. Daniel J.A. Konstantinopoulos P.A. Cortez D. Cantor S.B. Fernandez-Capetillo O. Ge K. Jonkers J. Rottenberg S. Sharan S.K. Nussenzweig A. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 2016 535 7612 382 387 10.1038/nature18325 27443740
    [Google Scholar]
  63. He Y.J. Meghani K. Caron M.C. Yang C. Ronato D.A. Bian J. Sharma A. Moore J. Niraj J. Detappe A. Doench J.G. Legube G. Root D.E. D’Andrea A.D. Drané P. De S. Konstantinopoulos P.A. Masson J.Y. Chowdhury D. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature 2018 563 7732 522 526 10.1038/s41586‑018‑0670‑5 30464262
    [Google Scholar]
  64. Parmar K. Kochupurakkal B.S. Lazaro J.B. Wang Z.C. Palakurthi S. Kirschmeier P.T. Yang C. Sambel L.A. Färkkilä A. Reznichenko E. Reavis H.D. Dunn C.E. Zou L. Do K.T. Konstantinopoulos P.A. Matulonis U.A. Liu J.F. D’Andrea A.D. Shapiro G.I. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 2019 25 20 6127 6140 10.1158/1078‑0432.CCR‑19‑0448 31409614
    [Google Scholar]
  65. Taglialatela A. Alvarez S. Leuzzi G. Sannino V. Ranjha L. Huang J.W. Madubata C. Anand R. Levy B. Rabadan R. Cejka P. Costanzo V. Ciccia A. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol. Cell 2017 68 2 414 430.e8 10.1016/j.molcel.2017.09.036 29053959
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206381898250428064533
Loading
/content/journals/acamc/10.2174/0118715206381898250428064533
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: PARP inhibitor ; drug resistance ; Breast cancer ; BRCA2 ; treatment ; BRCA1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test