Skip to content
2000
image of Unveiling the Vital Role of ACTA2-AS1 in Human Cancers: Molecular Mechanisms and Clinical Applications

Abstract

Background

The smooth muscle α-actin 2-antisense 1 (ACTA2-AS1), also known as ZXF1, is an emerging cancer-associated long non-coding RNA (lncRNA) that has garnered significant attention in recent years. ACTA2-AS1 is situated on human chromosome 10 at location 10q23.31, comprising five exons and a single transcript. The aberrant expression of ACTA2-AS1 has been noted in 10 malignant tumors, correlating significantly with unfavorable clinicopathological characteristics and poor patient prognosis.

Objective

This review encapsulates recent progress in ACTA2-AS1 research, examining its expression profile, biological functions, molecular mechanisms, and anticipated influence on cancer diagnosis, treatment, and prognosis, emphasizing its potential as a novel therapeutic target based on lncRNA and its prognostic utility as a biomarker.

Methods

Based on a comprehensive search of the PubMed database for the biological function of lncRNA ACTA2-AS1 in malignant tumors, the current research is systematically summarized and critically analyzed.

Results

ACTA2-AS1 plays a complex role in various biological processes in tumor cells, encompassing proliferation, apoptosis, and cell cycle arrest. It also contributes to migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. Mechanistically, ACTA2-AS1 influences oncogenic or tumor-suppressive effects a complex regulatory network. It can adsorb specific 5 miRNAs as competitive endogenous RNAs (ceRNAs), thereby mitigating the suppression of downstream mRNA targets implicated in tumorigenesis (., SOX7, KLF9, CXCL2, BCL2L11, .) and modulating their downstream signaling pathways (., Wnt5a/PKC, SMAD3, mTOR, .), demonstrating a broad spectrum of dual roles in carcinogenesis and tumor suppression.

Conclusion

ACTA2-AS1 is a promising biomarker and molecular target for the treatment of cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206381499250607114710
2025-06-19
2025-09-26
Loading full text...

Full text loading...

References

  1. Mattiuzzi C. Lippi G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222 10.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  2. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  3. Liu Z. Shi M. Ren Y. Xu H. Weng S. Ning W. Ge X. Liu L. Guo C. Duo M. Li L. Li J. Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol. Cancer 2023 22 1 35 10.1186/s12943‑023‑01738‑6 36797756
    [Google Scholar]
  4. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: LncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  5. Herman A.B. Tsitsipatis D. Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022 82 12 2252 2266 10.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  6. Tan Y.T. Lin J.F. Li T. Li J.J. Xu R.H. Ju H.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2021 41 2 109 120 10.1002/cac2.12108 33119215
    [Google Scholar]
  7. Zhang Y. LncRNA-encoded peptides in cancer. J. Hematol. Oncol. 2024 17 1 66 10.1186/s13045‑024‑01591‑0 39135098
    [Google Scholar]
  8. Bhan A. Soleimani M. Mandal S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 2017 77 15 3965 3981 10.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  9. Song Y. Guo N.H. Zheng J.F. LncRNA‐MALAT1 regulates proliferation and apoptosis of acute lymphoblastic leukemia cells via miR‐205‐PTK7 pathway. Pathol. Int. 2020 70 10 724 732 10.1111/pin.12993 32754978
    [Google Scholar]
  10. Zhang R. Pan T. Xiang Y. Zhang M. Xie H. Liang Z. Chen B. Xu C. Wang J. Huang X. Zhu Q. Zhao Z. Gao Q. Wen C. Liu W. Ma W. Feng J. Sun X. Duan T. Lai-Han Leung E. Xie T. Wu Q. Sui X. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact. Mater. 2022 13 23 36 10.1016/j.bioactmat.2021.11.013 35224289
    [Google Scholar]
  11. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  12. Kuroki L. Guntupalli S.R. Treatment of epithelial ovarian cancer. BMJ 2020 371 m3773 10.1136/bmj.m3773 33168565
    [Google Scholar]
  13. Morand S. Devanaboyina M. Staats H. Stanbery L. Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int. J. Mol. Sci. 2021 22 12 6532 10.3390/ijms22126532 34207103
    [Google Scholar]
  14. Zhang R. Siu M.K.Y. Ngan H.Y.S. Chan K.K.L. Molecular biomarkers for the early detection of ovarian cancer. Int. J. Mol. Sci. 2022 23 19 12041 10.3390/ijms231912041 36233339
    [Google Scholar]
  15. Lin C. Zheng M. Yang Y. Chen Y. Zhang X. Zhu L. Zhang H. Knockdown of lncRNA ACTA2-AS1 reverses cisplatin resistance of ovarian cancer cells via inhibition of miR-378a-3p-regulated Wnt5a. Bioengineered 2022 13 4 9829 9838 10.1080/21655979.2022.2061181 35412951
    [Google Scholar]
  16. Li Y. Yang Z. Chen J. Mechanism underlying the regulation of lncRNA ACTA2-AS1 on CXCL2 by absorbing miRNA-532-5p as ceRNA in the development of ovarian cancer. Int. J. Clin. Exp. Pathol. 2021 14 5 596 607 34093945
    [Google Scholar]
  17. Joshi S.S. Badgwell B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021 71 3 264 279 10.3322/caac.21657 33592120
    [Google Scholar]
  18. Machlowska J. Baj J. Sitarz M. Maciejewski R. Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 2020 21 11 4012 10.3390/ijms21114012 32512697
    [Google Scholar]
  19. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  20. Röcken C. Predictive biomarkers in gastric cancer. J. Cancer Res. Clin. Oncol. 2023 149 1 467 481 10.1007/s00432‑022‑04408‑0 36260159
    [Google Scholar]
  21. Abdi E. Latifi-Navid S. Latifi-Navid H. Safaralizadeh R. LncRNA polymorphisms and upper gastrointestinal cancer risk. Pathol. Res. Pract. 2021 218 153324 10.1016/j.prp.2020.153324 33360092
    [Google Scholar]
  22. Zhang Q. Wang C. Yang Y. Xu R. Li Z. LncRNA and its role in gastric cancer immunotherapy. Front. Cell Dev. Biol. 2023 11 1052942 10.3389/fcell.2023.1052942 36875764
    [Google Scholar]
  23. Hu Z. Chen Z. Jiang W. Fang D. Peng P. Yao S. Luo M. Wang L. Sun Z. Wang W. Wang X. Mao H. Ai F. Zhou P. Long Noncoding RNA ACTA2-AS1 Inhibits Cell Growth and Facilitates Apoptosis in Gastric Cancer by Binding with miR-6720-5p to Regulate ESRRB. Biochem. Genet. 2023 61 6 2672 2690 10.1007/s10528‑023‑10399‑5 37222961
    [Google Scholar]
  24. Boucai L. Zafereo M. Cabanillas M.E. Thyroid cancer. JAMA 2024 331 5 425 435 10.1001/jama.2023.26348 38319329
    [Google Scholar]
  25. Bauer A.J. Pediatric thyroid cancer. Endocrinol. Metab. Clin. North Am. 2020 49 4 589 611 10.1016/j.ecl.2020.08.001 33153669
    [Google Scholar]
  26. Papaioannou M. Chorti A.G. Chatzikyriakidou A. Giannoulis K. Bakkar S. Papavramidis T.S. MicroRNAs in papillary thyroid cancer: What is new in diagnosis and treatment. Front. Oncol. 2022 11 755097 10.3389/fonc.2021.755097 35186709
    [Google Scholar]
  27. Shao C. Li Z. Zhang C. Zhang W. He R. Xu J. Cai Y. Optical diagnostic imaging and therapy for thyroid cancer. Mater. Today Bio 2022 17 100441 10.1016/j.mtbio.2022.100441 36388462
    [Google Scholar]
  28. Wu S. Zhu J. Jiang T. Cui T. Zuo Q. Zheng G. Li G. Zhou J. Chen X. Long non-coding RNA ACTA2-AS1 suppresses metastasis of papillary thyroid cancer via regulation of miR-4428/KLF9 axis. Clin. Epigenetics 2024 16 1 10 10.1186/s13148‑023‑01622‑6 38195623
    [Google Scholar]
  29. Howard F.M. Olopade O.I. Epidemiology of triple-negative breast cancer. Cancer J. 2021 27 1 8 16 10.1097/PPO.0000000000000500 33475288
    [Google Scholar]
  30. Leon-Ferre R.A. Goetz M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023 381 e071674 10.1136/bmj‑2022‑071674 37253507
    [Google Scholar]
  31. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  32. Li Y. Zhang H. Merkher Y. Chen L. Liu N. Leonov S. Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022 15 1 121 10.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  33. Peng Y. Huang X. Wang H. lncRNA ACTA2-AS1 predicts malignancy and poor prognosis of triple-negative breast cancer and regulates tumor progression via modulating miR-532-5p. BMC Mol. Cell Biol. 2022 23 1 34 10.1186/s12860‑022‑00432‑7 35896973
    [Google Scholar]
  34. Li X. Ramadori P. Pfister D. Seehawer M. Zender L. Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer 2021 21 9 541 557 10.1038/s41568‑021‑00383‑9 34326518
    [Google Scholar]
  35. Maki H. Hasegawa K. Advances in the surgical treatment of liver cancer. Biosci. Trends 2022 16 3 178 188 10.5582/bst.2022.01245 35732434
    [Google Scholar]
  36. Qiu C. Fan H. Tao S. Deng Z. Luo H. Liu F. ST8SIA6-AS1, a novel lncRNA star in liver cancer. Front. Cell Dev. Biol. 2024 12 1435664 10.3389/fcell.2024.1435664 39211393
    [Google Scholar]
  37. Wang X. Kang M. Liu C. Lin T. Han X. Jiang X. Current state and progress of research on the role of lncRNA in HBV-related liver cancer. Front. Cell. Infect. Microbiol. 2021 11 714895 10.3389/fcimb.2021.714895 34869051
    [Google Scholar]
  38. Zhou R.J. Lv H.Z. Knockdown of ACTA2‑AS1 promotes liver cancer cell proliferation, migration and invasion. Mol. Med. Rep. 2019 19 3 2263 2270 10.3892/mmr.2019.9856 30664183
    [Google Scholar]
  39. Hendriks L.E.L. Remon J. Faivre-Finn C. Garassino M.C. Heymach J.V. Kerr K.M. Tan D.S.W. Veronesi G. Reck M. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2024 10 1 71 10.1038/s41572‑024‑00551‑9 39327441
    [Google Scholar]
  40. Miao D. Zhao J. Han Y. Zhou J. Li X. Zhang T. Li W. Xia Y. Management of locally advanced non‐small cell lung cancer: State of the art and future directions. Cancer Commun. 2024 44 1 23 46 10.1002/cac2.12505 37985191
    [Google Scholar]
  41. Zhu H. Sun J. Zhang C. Li P. Tan C. Yang M. Zhao G. Cellular senescence in non-small cell lung cancer. Frontiers in Bioscience-Landmark 2023 28 12 357 10.31083/j.fbl2812357 38179738
    [Google Scholar]
  42. Ginn L. Shi L. La Montagna M. Garofalo M. LncRNAs in non-small-cell lung cancer. Noncoding RNA 2020 6 3 25 10.3390/ncrna6030025 32629922
    [Google Scholar]
  43. Hu Q. Ma H. Chen H. Zhang Z. Xue Q. LncRNA in tumorigenesis of non-small-cell lung cancer: From bench to bedside. Cell Death Discov. 2022 8 1 359 10.1038/s41420‑022‑01157‑4 35963868
    [Google Scholar]
  44. Liu X. Zhang X. Du S. Long non-coding RNA ACTA2-AS1 inhibits the cisplatin resistance of non-small cell lung cancer cells through inhibiting autophagy by suppressing TSC2. Cell Cycle 2022 21 4 368 378 10.1080/15384101.2021.2020433 34985374
    [Google Scholar]
  45. Seguin L. Durandy M. Feral C.C. Lung adenocarcinoma tumor origin: A guide for personalized medicine. Cancers 2022 14 7 1759 10.3390/cancers14071759 35406531
    [Google Scholar]
  46. Spella M. Stathopoulos G.T. Immune resistance in lung adenocarcinoma. Cancers 2021 13 3 384 10.3390/cancers13030384 33494181
    [Google Scholar]
  47. Wei X. Li X. Hu S. Cheng J. Cai R. Regulation of ferroptosis in lung adenocarcinoma. Int. J. Mol. Sci. 2023 24 19 14614 10.3390/ijms241914614 37834062
    [Google Scholar]
  48. Chen Z. Hu Z. Sui Q. Huang Y. Zhao M. Li M. Liang J. Lu T. Zhan C. Lin Z. Sun F. Wang Q. Tan L. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/ glycolysis axis in lung adenocarcinoma. Int. J. Biol. Sci. 2022 18 2 522 535 10.7150/ijbs.67556 35002507
    [Google Scholar]
  49. Zhao M. Xin X.F. Zhang J.Y. Dai W. Lv T.F. Song Y. LncRNA GMDS‐AS1 inhibits lung adenocarcinoma development by regulating miR‐96‐5p/CYLD signaling. Cancer Med. 2020 9 3 1196 1208 10.1002/cam4.2776 31860169
    [Google Scholar]
  50. Ying K. Wang L. Long G. Lian C. Chen Z. Lin W. ACTA2‐AS1 suppresses lung adenocarcinoma progression via sequestering miR‐378a‐3p and miR‐4428 to elevate SOX7 expression. Cell Biol. Int. 2020 44 12 2438 2449 10.1002/cbin.11451 32808728
    [Google Scholar]
  51. Buskwofie A. David-West G. Clare C.A. A review of cervical cancer: Incidence and disparities. J. Natl. Med. Assoc. 2020 112 2 229 232 10.1016/j.jnma.2020.03.002 32278478
    [Google Scholar]
  52. Ferrall L. Lin K.Y. Roden R.B.S. Hung C.F. Wu T.C. Cervical cancer immunotherapy: Facts and hopes. Clin. Cancer Res. 2021 27 18 4953 4973 10.1158/1078‑0432.CCR‑20‑2833 33888488
    [Google Scholar]
  53. Sharma S. Deep A. Sharma A.K. Current treatment for cervical cancer: An update. Anticancer. Agents Med. Chem. 2020 20 15 1768 1779 10.2174/1871520620666200224093301 32091347
    [Google Scholar]
  54. Luo L. Wang M. Li X. Luo C. Tan S. Yin S. Liu L. Zhu X. A novel mechanism by which ACTA2-AS1 promotes cervical cancer progression: Acting as a ceRNA of miR-143-3p to regulate SMAD3 expression. Cancer Cell Int. 2020 20 1 372 10.1186/s12935‑020‑01471‑w 32774166
    [Google Scholar]
  55. Baidoun F. Elshiwy K. Elkeraie Y. Merjaneh Z. Khoudari G. Sarmini M.T. Gad M. Al-Husseini M. Saad A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr. Drug Targets 2021 22 9 998 1009 10.2174/18735592MTEx9NTk2y 33208072
    [Google Scholar]
  56. Biller L.H. Schrag D. Diagnosis and treatment of metastatic colorectal cancer. JAMA 2021 325 7 669 685 10.1001/jama.2021.0106 33591350
    [Google Scholar]
  57. Ionescu V.A. Gheorghe G. Bacalbasa N. Chiotoroiu A.L. Diaconu C. Colorectal cancer: From risk factors to oncogenesis. Medicina 2023 59 9 1646 10.3390/medicina59091646 37763765
    [Google Scholar]
  58. Pan Q. Huang Y. Wang Y. Li D. Lei C. LncRNA ACTA2-AS1 suppress colon adenocarcinoma progression by sponging miR-4428 upregulation BCL2L11. Cancer Cell Int. 2021 21 1 203 10.1186/s12935‑021‑01769‑3 33845844
    [Google Scholar]
  59. Wu X. Pang Q. Zhi F. Mao X. Hu Y. Overexpression of long non-coding RNA ACTA2-AS1 inhibits the viability, proliferation, migration and invasion of colorectal cancer cells. Tissue Cell 2022 76 101769 10.1016/j.tice.2022.101769 35325674
    [Google Scholar]
  60. Bogani G. Ray-Coquard I. Concin N. Ngoi N.Y.L. Morice P. Caruso G. Enomoto T. Takehara K. Denys H. Lorusso D. Coleman R. Vaughan M.M. Takano M. Provencher D.M. Sagae S. Wimberger P. Póka R. Segev Y. Kim S.I. Kim J.W. Candido dos Reis F.J. Ramirez P.T. Mariani A. Leitao M. Makker V. Abu-Rustum N.R. Vergote I. Zannoni G. Tan D. McCormack M. Paolini B. Bini M. Raspagliesi F. Benedetti Panici P. Di Donato V. Muzii L. Colombo N. Pignata S. Scambia G. Monk B.J. Endometrial carcinosarcoma. Int. J. Gynecol. Cancer 2023 33 2 147 174 10.1136/ijgc‑2022‑004073 36585027
    [Google Scholar]
  61. Nees L.K. Heublein S. Steinmacher S. Juhasz-Böss I. Brucker S. Tempfer C.B. Wallwiener M. Endometrial hyperplasia as a risk factor of endometrial cancer. Arch. Gynecol. Obstet. 2022 306 2 407 421 10.1007/s00404‑021‑06380‑5 35001185
    [Google Scholar]
  62. Otsuka I. Therapeutic benefit of systematic lymphadenectomy in node-negative uterine-confined endometrioid endometrial carcinoma: Omission of adjuvant therapy. Cancers 2022 14 18 4516 10.3390/cancers14184516 36139675
    [Google Scholar]
  63. Kong D. Hou Y. Li W. Ma X. Jiang J. LncRNA‐ZXF1 stabilizes P21 expression in endometrioid endometrial carcinoma by inhibiting ubiquitination‐mediated degradation and regulating the miR‐378a‐3p/PCDHA3 axis. Mol. Oncol. 2022 16 3 813 829 10.1002/1878‑0261.12940 33751805
    [Google Scholar]
  64. Yan H. Bu P. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  65. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  66. Li J. Ming Z. Yang L. Wang T. Liu G. Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis. 2022 9 6 1478 1492 10.1016/j.gendis.2022.04.007 36157489
    [Google Scholar]
  67. Ghafouri-Fard S. Khoshbakht T. Hussen B.M. Taheri M. Akbari Dilmaghani N. A review on the role of PTENP1 in human disorders with an especial focus on tumor suppressor role of this lncRNA. Cancer Cell Int. 2022 22 1 207 10.1186/s12935‑022‑02625‑8 35655204
    [Google Scholar]
  68. Zhou W. Feng Y. Lin C. Chao C.K. He Z. Zhao S. Xue J. Zhao X.Y. Cao W. Yin Yang 1‐induced long noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking cdk1‐mediated EZH2 degradation. Adv. Sci. (Weinh.) 2023 10 25 2207549 10.1002/advs.202207549 37401236
    [Google Scholar]
  69. Kuo F.C. Neville M.J. Sabaratnam R. Wesolowska-Andersen A. Phillips D. Wittemans L.B.L. van Dam A.D. Loh N.Y. Todorčević M. Denton N. Kentistou K.A. Joshi P.K. Christodoulides C. Langenberg C. Collas P. Karpe F. Pinnick K.E. HOTAIR interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution. Cell Rep. 2022 40 4 111136 10.1016/j.celrep.2022.111136 35905723
    [Google Scholar]
  70. Mou J. Bolieu E.L. Pflugeisen B.M. Amoroso P.J. Devine B. Baldwin L.M. Frank L.L. Johnson R.H. Delay in treatment after cancer diagnosis in adolescents and young adults: Does facility transfer matter? J. Adolesc. Young Adult Oncol. 2019 8 3 243 253 10.1089/jayao.2018.0128 30785806
    [Google Scholar]
  71. Nguyen S.M. Nguyen Q.T. Nguyen L.M. Pham A.T. Luu H.N. Tran H.T.T. Tran T.V. Shu X.O. Delay in the diagnosis and treatment of breast cancer in Vietnam. Cancer Med. 2021 10 21 7683 7691 10.1002/cam4.4244 34664428
    [Google Scholar]
  72. Javed N. El-Far M. Vittorio T.J. Clinical markers in heart failure: A narrative review. J. Int. Med. Res. 2024 52 5 03000605241254330 10.1177/03000605241254330 38779976
    [Google Scholar]
  73. Xu Z. Chen Y. Ma L. Chen Y. Liu J. Guo Y. Yu T. Zhang L. Zhu L. Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther. 2022 30 10 3133 3154 10.1016/j.ymthe.2022.01.046 35405312
    [Google Scholar]
  74. Kok V.C. Yu C.C. Cancer-derived exosomes: Their role in cancer biology and biomarker development. Int. J. Nanomedicine 2020 15 8019 8036 10.2147/IJN.S272378 33116515
    [Google Scholar]
  75. Zhang S. Wang X. Wang D. Long non-coding RNA LINC01296 promotes progression of oral squamous cell carcinoma through activating the MAPK/ERK signaling pathway via the miR-485-5p/PAK4 axis. Arch. Med. Sci. 2019 18 3 786 799 10.5114/aoms.2019.86805 35591837
    [Google Scholar]
  76. Yang K. Li L. Chen Y. Man S. Yang L. Yang Y. Hei N. Zhao J. The role of long non-coding RNA LINC01296 in oral squamous cell carcinoma: A study based on bioinformatics analysis and in vitro validation. J. Cancer 2022 13 3 775 783 10.7150/jca.60417 35154446
    [Google Scholar]
  77. Chen Y. Li Z. Chen X. Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B 2021 11 2 340 354 10.1016/j.apsb.2020.10.001 33643816
    [Google Scholar]
  78. Tan H. Zhang S. Zhang J. Zhu L. Chen Y. Yang H. Chen Y. An Y. Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics 2020 10 19 8880 8902 10.7150/thno.47548 32754285
    [Google Scholar]
  79. Toden S. Zumwalt T.J. Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188491 10.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  80. Khorkova O. Stahl J. Joji A. Volmar C.H. Zeier Z. Wahlestedt C. Natural antisense transcripts as drug targets. Front. Mol. Biosci. 2022 9 978375 10.3389/fmolb.2022.978375 36250017
    [Google Scholar]
  81. Arun G. Aggarwal D. Spector D.L. MALAT1 long non-coding RNA: Functional implications. Noncoding RNA 2020 6 2 22 10.3390/ncrna6020022 32503170
    [Google Scholar]
  82. Agrawal N. Dasaradhi P.V.N. Mohmmed A. Malhotra P. Bhatnagar R.K. Mukherjee S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003 67 4 657 685 10.1128/MMBR.67.4.657‑685.2003 14665679
    [Google Scholar]
  83. S Zibitt M. Hartford C.C.R. Lal A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 2021 18 12 2097 2106 10.1080/15476286.2021.1899500 33685382
    [Google Scholar]
  84. Bravo-Vázquez L.A. Méndez-García A. Chamu-García V. Rodríguez A.L. Bandyopadhyay A. Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: Shaping the future of plant non-coding RNA research. Planta 2024 259 2 32 10.1007/s00425‑023‑04303‑z 38153530
    [Google Scholar]
  85. Amreddy N. Babu A. Muralidharan R. Panneerselvam J. Srivastava A. Ahmed R. Mehta M. Munshi A. Ramesh R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res. 2018 137 115 170 10.1016/bs.acr.2017.11.003 29405974
    [Google Scholar]
  86. Grimaldi A.M. Incoronato M. Salvatore M. Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine 2017 12 19 2349 2365 10.2217/nnm‑2017‑0208 28868980
    [Google Scholar]
  87. Yoo Y.J. Lee C.H. Park S.H. Lim Y.T. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J. Control. Release 2022 343 564 583 10.1016/j.jconrel.2022.01.047 35124126
    [Google Scholar]
  88. Muskan M. Abeysinghe P. Cecchin R. Branscome H. Morris K.V. Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol. Ther. 2024 32 9 2939 2949 10.1016/j.ymthe.2024.02.025 38414242
    [Google Scholar]
  89. Winkle M. El-Daly S.M. Fabbri M. Calin G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 2021 20 8 629 651 10.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  90. Luo W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics 2023 13 5 1607 1631 10.7150/thno.82690 37056571
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206381499250607114710
Loading
/content/journals/acamc/10.2174/0118715206381499250607114710
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: therapeutic target ; cancer ; ACTA2-AS1 ; clinical applications ; LncRNA ; ZXF1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test