Skip to content
2000
image of Determination of PD-L1 Expression in Circulating Tumor Cells of Hypopharyngeal and Laryngeal Cancers and Correlation with Tissue Detection

Abstract

Background

PD-L1 plays a pivotal role as an immunoregulatory checkpoint within the immune system, exerting a critical influence on the internal functioning and survival mechanisms of cancer cells. Our study aimed to elucidate the clinical significance of PD-L1 expression in circulating tumor cells (CTCs) derived from individuals afflicted with Hypopharyngeal and Laryngeal Cancers (HLC).

Objective

To verify the relationship between the expression of PD-L1 in CTCs in HLC and the consistency in tissue and the preliminary clinical application.

Methods

A laboratory-based experimental study was carried out at Fujian Medical University Union Hospital. CTCs were identified using an immunomagnetic positive sorting methodology. Simultaneous detection was conducted on the CTC levels among PD-L1 positive patients, aiming to ascertain the dynamic relationship between real-time CTC fluctuations and the clinicopathological indices of the patients. This investigation encompassed a cohort of 38 individuals, wherein PD-L1 expression analysis was executed to delineate CTC variations in PD-L1-positive patients.

Results

The constructed immunolipid magnetic nano-beads demonstrated pronounced efficacy in capturing CTCs, and the lipid nanoparticles exhibited noteworthy capture efficiency coupled with minimal cytotoxic effects. The assessment of PD-L1 expression consistency between CTCs and tissue specimens revealed a substantial agreement surpassing 70%. Furthermore, inhibition of PD-L1 yielded a significant elevation in the cytokine TNF-α levels, accompanied by a concomitant reduction in IL-10 levels.

Conclusion

The CTC sorting system devised in this investigation boasts attributes of remarkable specificity and sensitivity. By virtue of PD-L1 expression analysis, it holds the potential to offer instructive implications for tailoring individualized treatments in clinical scenarios.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206340244250605061005
2025-06-12
2025-09-27
Loading full text...

Full text loading...

References

  1. Chai R.C. Lambie D. Verma M. Punyadeera C. Current trends in the etiology and diagnosis of HPV ‐related head and neck cancers. Cancer Med. 2015 4 4 596 607 10.1002/cam4.424 25644715
    [Google Scholar]
  2. Prasetyanti P.R. Medema J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 2017 16 1 41 10.1186/s12943‑017‑0600‑4 28209166
    [Google Scholar]
  3. de Sousa V.M.L. Carvalho L. Heterogeneity in lung cancer. Pathobiology 2018 85 1-2 96 107 10.1159/000487440 29635240
    [Google Scholar]
  4. Chen W. Zheng R. Baade P.D. Zhang S. Zeng H. Bray F. Jemal A. Yu X.Q. He J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016 66 2 115 132 10.3322/caac.21338 26808342
    [Google Scholar]
  5. Pantel K. Brakenhoff R.H. Dissecting the metastatic cascade. Nat. Rev. Cancer 2004 4 6 448 456 10.1038/nrc1370 15170447
    [Google Scholar]
  6. Pantel K. Speicher M.R. The biology of circulating tumor cells. Oncogene 2016 35 10 1216 1224 10.1038/onc.2015.192 26050619
    [Google Scholar]
  7. Woo D. Yu M. Circulating tumor cells as “liquid biopsies” to understand cancer metastasis. Transl. Res. 2018 201 128 135 10.1016/j.trsl.2018.07.003 30075099
    [Google Scholar]
  8. Habli Z. AlChamaa W. Saab R. Kadara H. Khraiche M.L. Circulating tumor cell detection technologies and clinical utility: Challenges and opportunities. Cancers 2020 12 7 1930 10.3390/cancers12071930 32708837
    [Google Scholar]
  9. Sharma S. Zhuang R. Long M. Pavlovic M. Kang Y. Ilyas A. Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 2018 36 4 1063 1078 10.1016/j.biotechadv.2018.03.007 29559380
    [Google Scholar]
  10. Park H. Hwang M.P. Lee K.H. Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int. J. Nanomed 2013 8 4543 4552 24285924
    [Google Scholar]
  11. Hatami Giklou Jajan L. Hosseini S.N. Abolhassani M. Ghorbani M. Progress in affinity ligand-functionalized bacterial magnetosome nanoparticles for bio-immunomagnetic separation of HBsAg protein. PLoS One 2022 17 7 e0267206 10.1371/journal.pone.0267206 35877673
    [Google Scholar]
  12. Bidard F.C. Peeters D.J. Fehm T. Nolé F. Gisbert-Criado R. Mavroudis D. Grisanti S. Generali D. Garcia-Saenz J.A. Stebbing J. Caldas C. Gazzaniga P. Manso L. Zamarchi R. de Lascoiti A.F. De Mattos-Arruda L. Ignatiadis M. Lebofsky R. van Laere S.J. Meier-Stiegen F. Sandri M.T. Vidal-Martinez J. Politaki E. Consoli F. Bottini A. Diaz-Rubio E. Krell J. Dawson S.J. Raimondi C. Rutten A. Janni W. Munzone E. Carañana V. Agelaki S. Almici C. Dirix L. Solomayer E.F. Zorzino L. Johannes H. Reis-Filho J.S. Pantel K. Pierga J.Y. Michiels S. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data. Lancet Oncol. 2014 15 4 406 414 10.1016/S1470‑2045(14)70069‑5 24636208
    [Google Scholar]
  13. de Bono J.S. Scher H.I. Montgomery R.B. Parker C. Miller M.C. Tissing H. Doyle G.V. Terstappen L.W.W.M. Pienta K.J. Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2008 14 19 6302 6309 10.1158/1078‑0432.CCR‑08‑0872 18829513
    [Google Scholar]
  14. Krebs M.G. Sloane R. Priest L. Lancashire L. Hou J.M. Greystoke A. Ward T.H. Ferraldeschi R. Hughes A. Clack G. Ranson M. Dive C. Blackhall F.H. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 2011 29 12 1556 1563 10.1200/JCO.2010.28.7045 21422424
    [Google Scholar]
  15. Cohen S.J. Punt C.J.A. Iannotti N. Saidman B.H. Sabbath K.D. Gabrail N.Y. Picus J. Morse M. Mitchell E. Miller M.C. Doyle G.V. Tissing H. Terstappen L.W.M.M. Meropol N.J. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008 26 19 3213 3221 10.1200/JCO.2007.15.8923 18591556
    [Google Scholar]
  16. André T. Shiu K.K. Kim T.W. Jensen B.V. Jensen L.H. Punt C. Smith D. Garcia-Carbonero R. Benavides M. Gibbs P. de la Fouchardiere C. Rivera F. Elez E. Bendell J. Le D.T. Yoshino T. Van Cutsem E. Yang P. Farooqui M.Z.H. Marinello P. Diaz L.A. Jr. KEYNOTE-177 investigators N. Engl. J. Med. 2020 383 23 2207 2218 33264544
    [Google Scholar]
  17. Eckstein M. Cimadamore A. Hartmann A. Lopez-Beltran A. Cheng L. Scarpelli M. Montironi R. Gevaert T. PD-L1 assessment in urothelial carcinoma: A practical approach. Ann. Transl. Med. 2019 7 22 690 10.21037/atm.2019.10.24 31930091
    [Google Scholar]
  18. Rotman J. Otter L.A.S. Bleeker M.C.G. Samuels S.S. Heeren A.M. Roemer M.G.M. Kenter G.G. Zijlmans H.J.M.A.A. van Trommel N.E. de Gruijl T.D. Jordanova E.S. PD-L1 and PD-L2 expression in cervical cancer: Regulation and biomarker potential. Front. Immunol. 2020 11 596825 10.3389/fimmu.2020.596825 33424844
    [Google Scholar]
  19. Nduom E.K. Wei J. Yaghi N.K. Huang N. Kong L.Y. Gabrusiewicz K. Ling X. Zhou S. Ivan C. Chen J.Q. Burks J.K. Fuller G.N. Calin G.A. Conrad C.A. Creasy C. Ritthipichai K. Radvanyi L. Heimberger A.B. PD-L1 expression and prognostic impact in glioblastoma. Neuro-oncol. 2016 18 2 195 205 10.1093/neuonc/nov172 26323609
    [Google Scholar]
  20. Ghebeh H. Mohammed S. Al-Omair A. Qattant A. Lehe C. Al-Qudaihi G. Elkum N. Alshabanah M. Bin Amer S. Tulbah A. Ajarim D. Al-Tweigeri T. Dermime S. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: Correlation with important high-risk prognostic factors. Neoplasia 2006 8 3 190 198 10.1593/neo.05733 16611412
    [Google Scholar]
  21. Nakanishi J. Wada Y. Matsumoto K. Azuma M. Kikuchi K. Ueda S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 2007 56 8 1173 1182 10.1007/s00262‑006‑0266‑z 17186290
    [Google Scholar]
  22. Dan Z. Daxiang C. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol. Med. 2018 15 4 335 353 10.20892/j.issn.2095‑3941.2018.0256 30766747
    [Google Scholar]
  23. Wennenhuis J.F. Van Dalum G. Zeune L.L. Terstappen L.W. Improving the CellSearch® system. Expert Rev. Mol. Diagn. 2016 16 12 1291 1305 10.1080/14737159.2016.1255144 27797592
    [Google Scholar]
  24. Wang L. Balasubramanian P. Chen A.P. Kummar S. Evrard Y.A. Kinders R.J. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 2016 43 4 464 475 10.1053/j.seminoncol.2016.06.004 27663478
    [Google Scholar]
  25. Yi B. Wu T. Zhu N. Huang Y. Yang X. Yuan L. Wu Y. Liang X. Jiang X. The clinical significance of CTC enrichment by GPC3-IML and its genetic analysis in hepatocellular carcinoma. J. Nanobiotechnology 2021 19 1 74 10.1186/s12951‑021‑00818‑3 33726759
    [Google Scholar]
  26. Brody R. Zhang Y. Ballas M. Siddiqui M.K. Gupta P. Barker C. Midha A. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. J. Lung Cancer 2017 112 200 215 10.1016/j.lungcan.2017.08.005
    [Google Scholar]
  27. Luchini C. Bibeau F. Ligtenberg M.J.L. Singh N. Nottegar A. Bosse T. Miller R. Riaz N. Douillard J.Y. Andre F. Scarpa A. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019 30 8 1232 1243 10.1093/annonc/mdz116 31056702
    [Google Scholar]
  28. Šmahel M. PD-1/PD-L1 blockade therapy for tumors with downregulated MHC class I expression. Int. J. Mol. Sci. 2017 18 6 1331 10.3390/ijms18061331 28635644
    [Google Scholar]
  29. Mazel M. Jacot W. Pantel K. Bartkowiak K. Topart D. Cayrefourcq L. Rossille D. Maudelonde T. Fest T. Alix-Panabières C. Frequent expression of PD‐L1 on circulating breast cancer cells. Mol. Oncol. 2015 9 9 1773 1782 10.1016/j.molonc.2015.05.009 26093818
    [Google Scholar]
  30. Jilaveanu L.B. Shuch B. Zito C.R. Parisi F. Barr M. Kluger Y. Chen L. Kluger H.M. PD-L1 expression in clear cell renal cell carcinoma: An analysis of nephrectomy and sites of metastases. J. Cancer 2014 5 3 166 172 10.7150/jca.8167 24563671
    [Google Scholar]
  31. Allard W.J. Matera J. Miller M.C. Repollet M. Connelly M.C. Rao C. Tibbe A.G.J. Uhr J.W. Terstappen L.W.M.M. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004 10 20 6897 6904 10.1158/1078‑0432.CCR‑04‑0378 15501967
    [Google Scholar]
  32. Warkiani M.E. Guan G. Luan K.B. Lee W.C. Bhagat A.A.S. Kant Chaudhuri P. Tan D.S.W. Lim W.T. Lee S.C. Chen P.C.Y. Lim C.T. Han J. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 2014 14 1 128 137 10.1039/C3LC50617G 23949794
    [Google Scholar]
  33. Khoo B.L. Warkiani M.E. Tan D.S.W. Bhagat A.A.S. Irwin D. Lau D.P. Lim A.S.T. Lim K.H. Krisna S.S. Lim W.T. Yap Y.S. Lee S.C. Soo R.A. Han J. Lim C.T. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS One 2014 9 7 e99409 10.1371/journal.pone.0099409 24999991
    [Google Scholar]
  34. Chen S. Crabill G.A. Pritchard T.S. McMiller T.L. Wei P. Pardoll D.M. Pan F. Topalian S.L. Mechanisms regulating PD-L1 expression on tumor and immune cells. J. Immunother. Cancer 2019 7 1 305 10.1186/s40425‑019‑0770‑2 31730010
    [Google Scholar]
  35. Peng S. Wang R. Zhang X. Ma Y. Zhong L. Li K. Nishiyama A. Arai S. Yano S. Wang W. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol. Cancer 2019 18 1 165 10.1186/s12943‑019‑1073‑4 31747941
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206340244250605061005
Loading
/content/journals/acamc/10.2174/0118715206340244250605061005
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test