Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

GPR87 is an orphan G-protein-coupled receptor (GPCR) that represents a potential molecular target for developing novel drugs aimed at treating squamous cell carcinomas (SCCs) or adenocarcinomas of the lungs and bladder.

Objectives

The present study aims to identify potential LPA analogues as inhibitors of the GPR87 protein through computational screening. To achieve this, the human GPR87 structure was modeled using template-based tools (Phyre2 and SWISS-MODEL), iterative threading (I-TASSER), and neural network-based de novo prediction (AlphaFold2). The modeled structures were then validated by assessing their quality against template structures using Verify-3D, ProSA, and ERRAT servers.

Methods

We conducted a comprehensive structural and functional analysis of the target protein using various computational tools. Several computational techniques were employed to explore the structural and functional characteristics of the target, with LPA selected as the initial pharmacological candidate. A library of 2,605 LPA analogues was screened against orphan GPR87 through in-silico docking analysis to identify higher-affinity and more selective potential drugs.

Results

Molecular dynamics (MD) simulations were performed to track structural changes and convergence during the simulations. Key metrics, including the root mean square fluctuation (RMSF) of Cα-atoms, radius of gyration, and RMSD of backbone atoms, were calculated for both the apo-form and the LPA-GPR87 complex structures. These studies on structure-based drug targeting could pave the way for the development of specific inhibitors for the treatment of squamous cell carcinomas.

Conclusion

These findings may contribute to the design and development of new therapeutic compounds targeting GPR87 for the treatment of SCC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206374428250403103159
2025-04-09
2025-10-22
Loading full text...

Full text loading...

/deliver/fulltext/acamc/25/17/ACAMC-25-17-07.html?itemId=/content/journals/acamc/10.2174/0118715206374428250403103159&mimeType=html&fmt=ahah

References

  1. CivelliO. GPCR deorphanizations: The novel, the known and the unexpected transmitters.Trends Pharmacol. Sci.2005261151910.1016/j.tips.2004.11.005 15629200
    [Google Scholar]
  2. CostanziS. Homology modeling of class a G protein-coupled receptors.Methods Mol. Biol.201185725927910.1007/978‑1‑61779‑588‑6_11 22323225
    [Google Scholar]
  3. Bräuner-OsborneH. WellendorphP. JensenA. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors.Curr. Drug Targets20078116918410.2174/138945007779315614 17266540
    [Google Scholar]
  4. DorsamR.T. GutkindJ.S. G-protein-coupled receptors and cancer.Nat. Rev. Cancer200772799410.1038/nrc2069 17251915
    [Google Scholar]
  5. ShoreD.M. ReggioP.H. The therapeutic potential of orphan GPCRs, GPR35 and GPR55.Front. Pharmacol.201566910.3389/fphar.2015.00069 25926795
    [Google Scholar]
  6. TabataK. BabaK. ShiraishiA. ItoM. FujitaN. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor.Biochem. Biophys. Res. Commun.2007363386186610.1016/j.bbrc.2007.09.063 17905198
    [Google Scholar]
  7. ChungS. FunakoshiT. CivelliO. Orphan GPCR research.Br. J. Pharmacol.2008153S339S34610.1038/sj.bjp.0707606
    [Google Scholar]
  8. AudetM. BouvierM. Restructuring G-protein- coupled receptor activation.Cell20121511142310.1016/j.cell.2012.09.003 23021212
    [Google Scholar]
  9. SadiqS.K. Guixa-GonzalezR. DaineseE. PastorM. De FabritiisG. SelentJ. Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs.Curr. Med. Chem.2012201223810.2174/0929867311320010004 23151000
    [Google Scholar]
  10. NonakaY. HiramotoT. FujitaN. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods.Biochem. Biophys. Res. Commun.2005337128128810.1016/j.bbrc.2005.09.052 16185654
    [Google Scholar]
  11. WittenbergerT. SchallerH.C. HellebrandS. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.J. Mol. Biol.2001307379981310.1006/jmbi.2001.4520 11273702
    [Google Scholar]
  12. SinghR.K. Key Heterocyclic Cores for Smart Anticancer Drug–Design Part I.Bentham Science Publishers202210.2174/97898150400741220101
    [Google Scholar]
  13. GuggerM. WhiteR. SongS. WaserB. CescatoR. RivièreP. ReubiJ.C. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung.Dis. Markers2008241415010.1155/2008/857474 18057535
    [Google Scholar]
  14. ZhangY. QianY. LuW. ChenX. The G protein-coupled receptor 87 is necessary for p53-dependent cell survival in response to genotoxic stress.Cancer Res.20096915604910.1158/0008‑5472.CAN‑09‑0621
    [Google Scholar]
  15. YanM. LiH. ZhuM. ZhaoF. ZhangL. ChenT. G protein-coupled receptor 87 (GPR87) promotes the growth and metastasis of CD133+ cancer stem-like cells in hepatocellular carcinoma.PLoS ONE201384e61056
    [Google Scholar]
  16. Kerley-HamiltonJ.S. PikeA.M. LiN. DiRenzoJ. SpinellaM.J.A. p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embyronal carcinoma.Oncogene200524406090610010.1038/sj.onc.1208755 15940259
    [Google Scholar]
  17. AndradasC. CaffarelM.M. Pérez-GómezE. SalazarM. LorenteM. VelascoG. GuzmánM. SánchezC. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK.Oncogene201130224525210.1038/onc.2010.402 20818416
    [Google Scholar]
  18. SudN. SharmaR. RayR. ChattopadhyayT.K. RalhanR. Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma.Cancer Lett.2006233226527010.1016/j.canlet.2005.03.018 15916848
    [Google Scholar]
  19. CuiX. ShiE. LiJ. LiY. QiaoZ. WangZ. LiuM. TangW. SunY. ZhangY. XieY. ZhenJ. WangX. YiF. GPR87 promotes renal tubulointerstitial fibrosis by accelerating glycolysis and mitochondrial injury.Free Radic. Biol. Med.2022189587010.1016/j.freeradbiomed.2022.07.004 35843477
    [Google Scholar]
  20. OchiaiS. FurutaD. SugitaK. TaniuraH. FujitaN. GPR87 mediates lysophosphatidic acid-induced colony dispersal in A431 cells.Eur. J. Pharmacol.20137151-3152010.1016/j.ejphar.2013.06.029 23831392
    [Google Scholar]
  21. AltschulS.F. GishW. MillerW. MyersE.W. LipmanD.J. Basic local alignment search tool.J. Mol. Biol.1990215340341010.1016/S0022‑2836(05)80360‑2 2231712
    [Google Scholar]
  22. LiB. HanS. WangM. YuY. MaL. ChuX. TanQ. ZhaoQ. WuB. Structural insights into signal transduction of the purinergic receptors P2Y1R and P2Y12R.Protein Cell2022145pwac02510.1093/procel/pwac025 37155313
    [Google Scholar]
  23. LarkinM.A. BlackshieldsG. BrownN.P. ChennaR. McGettiganP.A. McWilliamH. ValentinF. WallaceI.M. WilmA. LopezR. ThompsonJ.D. GibsonT.J. HigginsD.G. Clustal W and Clustal X version 2.0.Bioinformatics200723212947294810.1093/bioinformatics/btm404 17846036
    [Google Scholar]
  24. Martí-RenomM.A. StuartA.C. FiserA. SánchezR. MeloF. ŠaliA. Comparative protein structure modeling of genes and genomes.Annu. Rev. Biophys. Biomol. Struct.200029129132510.1146/annurev.biophys.29.1.291 10940251
    [Google Scholar]
  25. Cerius2 Modeling Environment, Release 4.7Accelrys Software Inc.: San Diego2003
    [Google Scholar]
  26. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174W18110.1093/nar/gkv342 25883148
    [Google Scholar]
  27. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.053 25950237
    [Google Scholar]
  28. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky427 29788355
    [Google Scholar]
  29. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  30. De LanoW.L. The PyMOL molecular graphics system,20024018292Available from: http://www.pymol.org
  31. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  32. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.5560020916 8401235
    [Google Scholar]
  33. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.1853201 1853201
    [Google Scholar]
  34. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735W40710.1093/nar/gkm290
    [Google Scholar]
  35. ShenM. SaliA. Statistical potential for assessment and prediction of protein structures.Protein Sci.200615112507252410.1110/ps.062416606 17075131
    [Google Scholar]
  36. BrysonK. McGuffinL.J. MarsdenR.L. WardJ.J. SodhiJ.S. JonesD.T. Protein structure prediction servers at University College London Nucleic Acid.Research2005332W3610.1093/nar/gki410
    [Google Scholar]
  37. CserzöM. WallinE. SimonI. von HeijneG. ElofssonA. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method.Protein Eng. Des. Sel.199710667367610.1093/protein/10.6.673 9278280
    [Google Scholar]
  38. KroghA. LarssonB. von HeijneG. SonnhammerE.L.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes11Edited by F.Cohen. J. Mol. Biol.2001305356758010.1006/jmbi.2000.4315 11152613
    [Google Scholar]
  39. TusnádyG.E. SimonI. Principles governing amino acid composition of integral membrane proteins: Application to topology prediction.J. Mol. Biol.1998283248950610.1006/jmbi.1998.2107 9769220
    [Google Scholar]
  40. HofmannK. StoffelW. TMbase: A database of membrane spanning proteins segments.Biol. Chem. Hoppe Seyler1993374166170
    [Google Scholar]
  41. ClarosM.G. HeijneG. TopPred II: An improved software for membrane protein structure predictions.Bioinformatics199410668568610.1093/bioinformatics/10.6.685 7704669
    [Google Scholar]
  42. HirokawaT. Boon-ChiengS. MitakuS. SOSUI: Classification and secondary structure prediction system for membrane proteins.Bioinformatics199814437837910.1093/bioinformatics/14.4.378 9632836
    [Google Scholar]
  43. JuretićD. ZoranićL. ZucićD. Basic charge clusters and predictions of membrane protein topology.J. Chem. Inf. Comput. Sci.200242362063210.1021/ci010263s 12086524
    [Google Scholar]
  44. RostB. YachdavG. LiuJ. The predict protein server.Nucleic Acids Res.2004322W32110.1093/nar/gkh377
    [Google Scholar]
  45. JonesD.T. TaylorW.R. ThorntonJ.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology.Biochemistry199433103038304910.1021/bi00176a037 8130217
    [Google Scholar]
  46. BagosP.G. LiakopoulosT.D. HamodrakasS.J. Algorithms for incorporating prior topological information in HMMs: Application to transmembrane proteins.BMC Bioinformatics20067118910.1186/1471‑2105‑7‑189 16597327
    [Google Scholar]
  47. SchultzJ. MilpetzF. BorkP. PontingC.P. SMART, a simple modular architecture research tool: Identification of signaling domains.Proc. Natl. Acad. Sci. USA199895115857586410.1073/pnas.95.11.5857 9600884
    [Google Scholar]
  48. ReynoldsS.M. KällL. RiffleM.E. BilmesJ.A. NobleW.S. Transmembrane topology and signal peptide prediction using dynamic bayesian networks.PLOS Comput. Biol.2008411e100021310.1371/journal.pcbi.1000213 18989393
    [Google Scholar]
  49. GallwitzB. WittM. PaetzoldG. Morys-WortmannC. ZimmermannB. EckartK. FölschU.R. SchmidtW.E. Structure/activity characterization of glucagon-like peptide-1.Eur. J. Biochem.199422531151115610.1111/j.1432‑1033.1994.1151b.x 7957206
    [Google Scholar]
  50. ZhangZ. LiY. LinB. SchroederM. HuangB. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.Bioinformatics201127152083208810.1093/bioinformatics/btr331 21636590
    [Google Scholar]
  51. HuangB. SchroederM. LIGSITEcsc: Predicting ligand binding sites using the Connolly surface and degree of conservation.BMC Struct. Biol.2006611910.1186/1472‑6807‑6‑19 16995956
    [Google Scholar]
  52. BradyG.P.Jr StoutenP.F.W. Fast prediction and visualization of protein binding pockets with PASS.J. Comput. Aided Mol. Des.200014438340110.1023/A:1008124202956 10815774
    [Google Scholar]
  53. LaurieA.T.R. JacksonR.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites.Bioinformatics20052191908191610.1093/bioinformatics/bti315 15701681
    [Google Scholar]
  54. LaskowskiR.A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions.J. Mol. Graph.199513532310.1016/0263‑7855(95)00073‑9
    [Google Scholar]
  55. DundasJ. OuyangZ. TsengJ. BinkowskiA. TurpazY. LiangJ. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues.Nucleic Acids Res.2006342W11610.1093/nar/gkl282
    [Google Scholar]
  56. RaniM. NischalA. SahooG.C. KhattriS. Computational analysis of the 3-D structure of human GPR87 protein: Implications for structure-based drug design.Asian Pac. J. Cancer Prev.201314127473748210.7314/APJCP.2013.14.12.7473 24460321
    [Google Scholar]
  57. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  58. BerendsenH.J.C. GrigeraJ.R. StraatsmaT.P. The missing term in effective pair potentials.J. Phys. Chem.198791246269627110.1021/j100308a038
    [Google Scholar]
  59. HumphreyW. DalkeA. SchultenK. VMD: Visual molecular dynamics.J. Mol. Graph.1996141333810.1016/0263‑7855(96)00018‑5
    [Google Scholar]
  60. XuY. ShenZ. WiperD.W. WuM. MortonR.E. ElsonP. KennedyA.W. BelinsonJ. MarkmanM. CaseyG. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers.JAMA1998280871972310.1001/jama.280.8.719 9728644
    [Google Scholar]
  61. Abu-DiefA.M. El-KhatibR.M. El-DabeaT. AbdouA. AljohaniF.S. Al-FarrajE.S. BarnawiI.O. El-RemailyM.A.E.A.A.A. Fabrication, structural elucidation of some new metal chelates based on N-(1H-Benzoimidazol-2-yl)-guanidine ligand: DNA interaction, pharmaceutical studies and molecular docking approach.J. Mol. Liq.202338612235310.1016/j.molliq.2023.122353
    [Google Scholar]
  62. RareyM. KramerB. LengauerT. KlebeG. A fast flexible docking method using an incremental construction algorithm.J. Mol. Biol.1996261347048910.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  63. RareyM. KramerB. LengauerT. The particle concept: Placing discrete water molecules during protein-ligand docking predictions.Proteins1999341172810.1002/(SICI)1097‑0134(19990101)34:1<17:AID‑PROT3>3.0.CO;2‑1 10336380
    [Google Scholar]
  64. BöhmH.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors.J. Comput. Aided Mol. Des.199261617810.1007/BF00124387 1583540
    [Google Scholar]
  65. RaniM. DikhitM.R. SahooG.C. DasP. Comparative domain modeling of human EGF-like module EMR2 and study of interaction of the fourth domain of EGF with chondroitin 4-sulphate.J. Biomed. Res.201125210011010.1016/S1674‑8301(11)60013‑4 23554678
    [Google Scholar]
  66. SahooG.C. DikhitM.R. RaniM. AnsariM.Y. JhaC. RanaS. DasP. Analysis of sequence, structure of GAPDH of Leishmania donovani and its interactions.J. Biomol. Struct. Dyn.201331325827510.1080/07391102.2012.698189 22830998
    [Google Scholar]
  67. RaniM. SharmaA.K. ChouhanR.S. SurS. MansuriR. SinghR.K. Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2.Curr. Res. Struct. Biol.2024710012010.1016/j.crstbi.2023.100120 38205118
    [Google Scholar]
  68. TéletchéaS. EsqueJ. UrbainA. EtchebestC. de BrevernA.G. Evaluation of transmembrane protein structural models using HPMScore.BioMedInformatics20233230632610.3390/biomedinformatics3020021
    [Google Scholar]
  69. WallM.A. ColemanD.E. LeeE. Iñiguez-LluhiJ.A. PosnerB.A. GilmanA.G. SprangS.R. The structure of the G protein heterotrimer Giα1β1γ2.Cell19958361047105810.1016/0092‑8674(95)90220‑1 8521505
    [Google Scholar]
  70. OtaT. SuzukiY. NishikawaT. OtsukiT. SugiyamaT. IrieR. WakamatsuA. Complete sequencing and characterization of 21,243 full-length human cDNAs.Nat. Genet.2004361404510.1038/ng1285 14702039
    [Google Scholar]
  71. KimK.M. CaronM.G. Complementary roles of the DRY motif and C-terminus tail of GPCRS for G protein coupling and β-arrestin interaction.Biochem. Biophys. Res. Commun.20083661424710.1016/j.bbrc.2007.11.055 18036556
    [Google Scholar]
  72. HeifetzA. BarkerO. MorrisG.B. LawR.J. SlackM. BigginP.C. Toward an understanding of agonist binding to human Orexin-1 and Orexin-2 receptors with G-protein-coupled receptor modeling and site-directed mutagenesis.Biochemistry2013524610.1021/bi401119m
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206374428250403103159
Loading
/content/journals/acamc/10.2174/0118715206374428250403103159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test