Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Natural products, such as propolis, are an important source of biologically active compounds with the potential to treat health disorders. Propolis is a well-known waxy resin recognized for its antimicrobial, immunomodulatory, and cytotoxic effects.

Objective

In this study, we aimed to clarify the formation mechanism of propolis nanoparticles from the perspective of their stability and chemical composition. By evaluating the light absorption behaviour of the nanoparticles formed in different media and quantifying the polyphenols, we show that they are superficially hydrophobic nanoparticles with the capacity to encapsulate some polar compounds.

Methods

Biological activity was evaluated by cell viability performed on NIH/3T3 fibroblasts incubated with 10, 100, and 1000 μg/mL of propolis nanoparticles for 48 hours.

Results

The results show that nanoparticles are cytocompatible, with a proliferation effect. In contrast, the results of the viability of metastatic murine B16F10 cells indicate that a dose with a concentration of 5 µg/mL in the cell culture media is sufficient to stop the abnormal cell growth, having an antitumor effect. This effect might be related to the flavonoids present in the propolis nanoparticles. dermal irritability tests on New Zealand rabbits show that propolis nanoparticles' aqueous dissolution was non-irritant.

Conclusion

According to the results obtained from this study, reducing the size of raw propolis down to nanoparticles and dispersing them in water solvents enhance its positive effects. The superficially hydrophobic propolis nanoparticles encapsulate active compounds such as polyphenols and flavonoids, which also confirms their ability to generate selective effects on the cells, depending on their nature.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206316231250218063957
2025-02-26
2025-10-22
Loading full text...

Full text loading...

References

  1. ProestosC. The benefits of plant extracts for human health.Foods2020911165310.3390/foods9111653 33198209
    [Google Scholar]
  2. VeigaM. CostaE.M. SilvaS. PintadoM. Impact of plant extracts upon human health: A review.Crit. Rev. Food Sci. Nutr.202060587388610.1080/10408398.2018.1540969 30501504
    [Google Scholar]
  3. ShakeriM. TayerA.H. ShakeriH. JahromiA.S. MoradzadehM. Hojjat-FarsangiM. Toxicity of saffron extracts on cancer and normal cells: A review article.Asian Pac. J. Cancer Prev.20202171867187510.31557/APJCP.2020.21.7.1867
    [Google Scholar]
  4. CheimonidiC. SamaraP. PolychronopoulosP. TsakiriE.N. NikouT. MyrianthopoulosV. SakellaropoulosT. ZoumpourlisV. MikrosE. PapassideriI. ArgyropoulouA. HalabalakiM. AlexopoulosL.G. SkaltsounisA.L. TsitsilonisO.E. AligiannisN.N. TrougakosI.P. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights.Redox Biol.20181616917810.1016/j.redox.2018.02.015 29505920
    [Google Scholar]
  5. WignerP. BijakM. Saluk-BijakJ. The green anti-cancer weapon. The role of natural compounds in bladder cancer treatment.Int. J. Mol. Sci.20212215778710.3390/ijms22157787 34360552
    [Google Scholar]
  6. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  7. TrisciuoglioD. UranchimegB. CardellinaJ.H. MeragelmanT.L. MatsunagaS. FusetaniN. Del BufaloD. ShoemakerR.H. MelilloG. Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide.J. Natl. Cancer Inst.2008100171233124610.1093/jnci/djn239 18728285
    [Google Scholar]
  8. BhavanaV. SudharshanS. MadhuD. Natural anticancer compounds and their derivatives in clinical trials, de anticancer plants: Clinical trials and nanotechnology.SingaporeSpringer201751104
    [Google Scholar]
  9. RuffaM.J. FerraroG. WagnerM.L. CalcagnoM.L. CamposR.H. CavallaroL. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line.J. Ethnopharmacol.200279333533910.1016/S0378‑8741(01)00400‑7 11849838
    [Google Scholar]
  10. DiazC. QuesadaS. BrenesO. AguilarG. CiccioJ.F. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.Nat. Prod. Res.200822171521153410.1080/14786410701848154 19023816
    [Google Scholar]
  11. M.E.S.; El-SherbinyG.M. SharafM.H. KalabaM.H. ShabanA.S. Phytochemical analysis, antimicrobial, antioxidant, and cytotoxicity activities of Schinus molle (L.) extracts.Biomass Conv. Bioref20241810.1007/s13399‑024‑05301‑1
    [Google Scholar]
  12. AdebayoI.A. ArsadH. SamianM.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts.Afr. J. Tradit. Complement. Altern. Med.201714228228710.21010/ajtcam.v14i2.30 28573245
    [Google Scholar]
  13. MoremaneM.M. AbrahamsB. TilokeC. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells.Curr. Issues Mol. Biol.2023XLV86880690210.3390/cimb45080434 37623253
    [Google Scholar]
  14. AlwhibiM.S. KhalilM.I.M. IbrahimM.M. El-GaalyG.A. SultanA.S. Potential antitumor activity and apoptosis induction of Glossostemon bruguieri root extract against hepatocellular carcinoma cells.Evid. Based Complement. Alternat. Med.201720171721856210.1155/2017/7218562 28421122
    [Google Scholar]
  15. Al-SnafiA. Medical importance of Glossostemon bruguieri – A review.IOSR J. Pharm.2019953439
    [Google Scholar]
  16. SulaimanG.M. SammarraeK.W.A. Ad’hiahA.H. ZucchettiM. FrapolliR. BelloE. ErbaE. D’IncalciM. BagnatiR. Chemical characterization of Iraqi propolis samples and assessing their antioxidant potentials.Food Chem. Toxicol.20114992415242110.1016/j.fct.2011.06.060 21723909
    [Google Scholar]
  17. PrzybyłekI. KarpińskiT.M. Antibacterial properties of propolis.Molecules20192411204710.3390/molecules24112047 31146392
    [Google Scholar]
  18. SilvaJ.C. RodriguesS. FeásX. EstevinhoL.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis.Food Chem. Toxicol.20125051790179510.1016/j.fct.2012.02.097 22425940
    [Google Scholar]
  19. OżarowskiM. KarpińskiT.M. AlamR. ŁochyńskaM. Antifungal properties of chemically defined propolis from various geographical regions.Microorganisms202210236410.3390/microorganisms10020364 35208818
    [Google Scholar]
  20. MagnavaccaA. SangiovanniE. RacagniG. Dell’AgliM. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases.Med. Res. Rev.202242289794510.1002/med.21866 34725836
    [Google Scholar]
  21. AthikomkulchaiS. AwaleS. RuangrungsiN. RuchirawatS. KadotaS. Chemical constituents of Thai propolis.Fitoterapia2013889610010.1016/j.fitote.2013.04.008 23660244
    [Google Scholar]
  22. AltabbalS. AthamnahK. RahmaA. WaliA.F. EidA.H. IratniR. Al DhaheriY. Propolis: A detailed insight of its anticancer molecular mechanisms.Pharmaceuticals202316345010.3390/ph16030450 36986549
    [Google Scholar]
  23. AlvearM. SantosE. CabezasF. Pérez-SanMartínA. LespinasseM. VelozJ. Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of chilean propolis.Plants2021108154310.3390/plants10081543 34451588
    [Google Scholar]
  24. Al-WailiN. Al-GhamdiA. AnsariM.J. Al-AttalY. SalomK. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures.Int. J. Med. Sci.20129979380010.7150/ijms.4722 23136543
    [Google Scholar]
  25. MarcucciM.C. Propolis: Chemical composition, biological properties and therapeutic activity.Apidologie1995262839910.1051/apido:19950202
    [Google Scholar]
  26. MarcucciM.C. FerreresF. García-VigueraC. BankovaV.S. De CastroS.L. DantasA.P. ValenteP.H.M. PaulinoN. Phenolic compounds from Brazilian propolis with pharmacological activities.J. Ethnopharmacol.200174210511210.1016/S0378‑8741(00)00326‑3 11167028
    [Google Scholar]
  27. TranT.D. OgbourneS.M. BrooksP.R. Sánchez-CruzN. Medina-FrancoJ.L. QuinnR.J. Lessons from exploring chemical space and chemical diversity of propolis components.Int. J. Mol. Sci.20202114498810.3390/ijms21144988 32679731
    [Google Scholar]
  28. Viuda-MartosM. Ruiz-NavajasY. Fernández-LópezJ. Pérez-ÁlvarezJ.A. Functional properties of honey, propolis, and royal jelly.J. Food Sci.2008739R117R12410.1111/j.1750‑3841.2008.00966.x 19021816
    [Google Scholar]
  29. FrozzaC.O. GarciaC.S. GambatoG. de SouzaM.D. SalvadorM. MouraS. PadilhaF.F. SeixasF.K. CollaresT. BorsukS. DellagostinO.A. HenriquesJ.A. Roesch-ElyM. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis.Food Chem. Toxicol.20135213714210.1016/j.fct.2012.11.013
    [Google Scholar]
  30. OliveiraR.N. ManciniM.C. OliveiraF.C. PassosT.M. QuiltyB. ThiréR.M. McGuinnessG.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing.Materia2016XXI376777910.1590/S1517‑707620160003.0072
    [Google Scholar]
  31. ChanG.C.F. CheungK.W. SzeD.M.Y. The immunomodulatory and anticancer properties of propolis.Clin. Rev. Allergy Immunol.201344326227310.1007/s12016‑012‑8322‑2 22707327
    [Google Scholar]
  32. HayatJ. AkodadM. MoumenA. BaghourM. SkalliA. EzrariS. BelmalhaS. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco.Heliyon2020611e0560910.1016/j.heliyon.2020.e05609
    [Google Scholar]
  33. KumazawaS. HamasakaT. NakayamaT. Antioxidant activity of propolis of various geographic origins.Food Chem.200484332933910.1016/S0308‑8146(03)00216‑4
    [Google Scholar]
  34. LiF. AwaleS. TezukaY. KadotaS. Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship.Bioorg. Med. Chem.200816105434544010.1016/j.bmc.2008.04.016 18440233
    [Google Scholar]
  35. CheungK.W. SzeD.M.Y. ChanW.K. DengR.X. TuW. ChanG.C.F. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation.J. Ethnopharmacol.2011138246347110.1016/j.jep.2011.09.031 21964192
    [Google Scholar]
  36. KimotoT. AraiS. KohguchiM. AgaM. NomuraY. MicallefM.J. KurimotoM. MitoK. Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis.Cancer Detect. Prev.199822650651510.1046/j.1525‑1500.1998.00020.x 9824373
    [Google Scholar]
  37. ChenM.J. ChangW.H. LinC.C. LiuC.Y. WangT.E. ChuC.H. ShihS.C. ChenY.J. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction.Pancreatology20088655856510.1159/000159214 18824880
    [Google Scholar]
  38. ChangH. WangY. YinX. LiuX. XuanH. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy.BMC Complement. Altern. Med.201717147110.1186/s12906‑017‑1984‑9 28950845
    [Google Scholar]
  39. CaetanoA.R. OliveiraR.D. CeleiroS.P. FreitasA.S. CardosoS.M. GonçalvesM.S.T. BaltazarF. Almeida-AguiarC. Phenolic compounds contribution to portuguese propolis anti-melanoma activity.Molecules2023287310710.3390/molecules28073107
    [Google Scholar]
  40. OzturkG. GinisZ. AkyolS. ErdenG. GurelA. AkyolO. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers.Eur. Rev. Med. Pharmacol. Sci.2012161520642068 23280020
    [Google Scholar]
  41. WatkinsR. WuL. ZhangC. DavisR.M. XuB. Natural product-based nanomedicine: Recent advances and issues.Int. J. Nanomedicine20151060556074 26451111
    [Google Scholar]
  42. JayakumarR. RamyaC. KumarP. SnimaK. LakshmananV. ShantikumarN. In vitro anti-cancerous and anti-microbial activity of propolis nanoparticles.J. Nanopharm. Drug Deliv.20121117
    [Google Scholar]
  43. González-MasísJ. Cubero-SesinJ.M. Corrales-UreñaY.R. González-CamachoS. Mora-UgaldeN. Baizán-RojasM. LoaizaR. Vega-BaudritJ.R. González-PazR.J. Increased fibroblast metabolic activity of collagen scaffolds via the addition of propolis nanoparticles.Materials20201314311810.3390/ma13143118 32668654
    [Google Scholar]
  44. González-MasísJ. Cubero-SesinJ.M. Corrales-UreñaY.R. González-CamachoS. Mora-UgaldeN. Vega-BaudritJ.R. RischkaK. VermaV. Gonzalez-PazR.J. Nonirritant and cytocompatible Tinospora cordifolia nanoparticles for topical antioxidant treatments.Int. J. Biomater.20202020363709810.1155/2020/3637098
    [Google Scholar]
  45. ChithraniB.D. GhazaniA.A. ChanW.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett.20066466266810.1021/nl052396o
    [Google Scholar]
  46. WuM. GuoH. LiuL. LiuY. XieL. Size-dependent cellular uptake and localization profiles of silver nanoparticles.Int. J. Nanomed.2019144247425910.2147/IJN.S201107
    [Google Scholar]
  47. SalahN. MillerN.J. PagangaG. TijburgL. BolwellG.P. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants.Arch. Biochem. Biophys.1995322233934610.1006/abbi.1995.1473 7574706
    [Google Scholar]
  48. KubilieneL. LaugalieneV. PavilonisA. MaruskaA. MajieneD. BarcauskaiteK. KubiliusR. KasparavicieneG. SavickasA. Alternative preparation of propolis extracts: Comparison of their composition and biological activities.BMC Complement. Altern. Med.20151515610.1186/s12906‑015‑0677‑5
    [Google Scholar]
  49. Correa-PachecoZ.N. Bautista-BañosS. Ramos-García, M.de L.; Martínez-González, M.del C.; Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films.Prog. Org. Coat.201913710532610.1016/j.porgcoat.2019.105326
    [Google Scholar]
  50. SharafS. HigazyA. HebeishA. Propolis induced antibacterial activity and other technical properties of cotton textiles.Int. J. Biol. Macromol.20135940841610.1016/j.ijbiomac.2013.04.030
    [Google Scholar]
  51. MoussaA. MokhtarA. AissatS. AissaM.A. KhiatiB. FTIR characterization of Sahara honey and propolis and evaluation of its anticandidal potentials.Acta Scientifica Naturalis202073465710.2478/asn‑2020‑0032
    [Google Scholar]
  52. HegaziA.G. El-HoussinyA.S. FouadE.A. Egyptian propolis 14: Potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains.Adv. Nat. Sci: Nanosci. Nanotechnol.201910404501910.1088/2043‑6254/ab52f4
    [Google Scholar]
  53. BasyirahN. AzeminA. RodiM.M. RashidZ.M. MohdK. Application of FTIR fingerprints coupled with chemometric for comparison of stingless bee propolis from different extraction methods.Malays. J. Fundam. Appl. Sci.2019152-135035510.11113/mjfas.v15n2‑1.1553
    [Google Scholar]
  54. CaoJ. PengL.Q. DuL.J. ZhangQ.D. XuJ.J. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.Analytica Chimica Acta2017963243210.1016/j.aca.2017.01.063
    [Google Scholar]
  55. SvečnjakL. MarijanovićZ. OkińczycP. Kuś, Marek; Jerković, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay.Antioxidants20209433710.3390/antiox9040337 32326085
    [Google Scholar]
  56. da SilvaC. PrasniewskiA. CalegariM.A. de LimaV.A. OldoniT.L. Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of propolis using ATR–FT-IR spectroscopy and chemometrics.Food Anal. Methods2018112013202110.1007/s12161‑018‑1161‑x
    [Google Scholar]
  57. YulianaN.D. WijayaC.H. NasrullahN. Classification of Trigona spp bee propolis from four regions in Indonesia using FTIR metabolomics approach.13th Asian Food Conference 2013, Singapore2013911
    [Google Scholar]
  58. IbrahimN. ZakariaA.J. IsmailZ. Application of GCMS and FTIR fingerprinting in discriminating two species of malaysian stingless bees propolis.Int. J. Eng. Technol.201874.4310611210.14419/ijet.v7i4.43.25828
    [Google Scholar]
  59. LimJ.R. ChuaL.S. SooJ. Study of stingless bee (Heterotrigona itama) propolis using LC-MS/MS and TGA-FTIR.Applied Food Research20233110025210.1016/j.afres.2022.100252
    [Google Scholar]
  60. Fabris, S.; Bertelle, M.; Astafyeva, O.; Gregoris, E.; Zangrando, R.; Gambaro, A.; P.P Lima, G.; Stevanato, R.Antioxidant properties and chemical composition relationship of Europeans and Brazilians propolis.Pharmacol. Pharm.201341465110.4236/pp.2013.41006
    [Google Scholar]
  61. ChenH.J. InbarajB.S. ChenB.H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique.Int. J. Mol. Sci.201113126028510.3390/ijms13010260 22312251
    [Google Scholar]
  62. HalakeK. LeeJ. Functional hyaluronic acid conjugates based on natural polyphenols exhibit antioxidant, adhesive, gelation, and self-healing properties.J. Ind. Eng. Chem.201754445110.1016/j.jiec.2017.04.018
    [Google Scholar]
  63. MasekA. ChrzescijanskaE. LatosM. KosmalskaA. Electrochemical and spectrophotometric characterization of the propolis antioxidants properties.Int. J. Electrochem. Sci.20191421231124710.20964/2019.02.66
    [Google Scholar]
  64. ErdoğanÜ. Ultrasonic assisted propolis extraction: Characterization by ATR-FTIR and determination of its total antioxidant capacity and radical scavenging ability.Int. J. Sec. Metabolite.202310223123910.21448/ijsm.1167773
    [Google Scholar]
  65. González-PazR. CádizV. KiaraR. Vega-BaudritJ. Isomerization of fatty acids: A cellular barrier mechanism in nanotechnology?J. Nanosci. Nanotechnol.20171785436544410.1166/jnn.2017.13791
    [Google Scholar]
  66. O’BrienJ. WilsonI. OrtonT. PognanF. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.Eur. J. Biochem.2000267175421542610.1046/j.1432‑1327.2000.01606.x 10951200
    [Google Scholar]
  67. MunshiS. TwiningR.C. DahlR. Alamar blue reagent interacts with cell-culture media giving different fluorescence over time: Potential for false positives.J. Pharmacol. Toxicol. Methods201470219519810.1016/j.vascn.2014.06.005 24933394
    [Google Scholar]
  68. RampersadS.N. Multiple applications of Alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays.Sensors2012129123471236010.3390/s120912347 23112716
    [Google Scholar]
  69. JacobA. ParoliaA. PauA. D AmalrajF. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process.BMC Complement. Altern. Med.201515129410.1186/s12906‑015‑0814‑1 26303848
    [Google Scholar]
  70. OlczykP. WisowskiG. Komosinska-VassevK. StojkoJ. KlimekK. OlczykM. KozmaE.M. Propolis modifies collagen types I and III accumulation in the matrix of burnt tissue.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/423809 23781260
    [Google Scholar]
  71. ElkhenanyH. El-BadriN. DharM. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells.Biomed. Pharmacother.201911510886110.1016/j.biopha.2019.108861 31005795
    [Google Scholar]
  72. GjertsenA.W. StothzK.A. NeivaK.G. PileggiR. Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts, Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology.Endodontology20111126843848
    [Google Scholar]
  73. DieterA.C. TrueA.B. GilbertsonE.A. SnyderG. Lacy-HulbertA. Traylor-KnowlesN. BrowneW.E. VandepasL.E. Flow cytometry methods for targeted isolation of ctenophore cells.Front. Mar. Sci.202310127604110.3389/fmars.2023.1276041
    [Google Scholar]
  74. OršolićN. JembrekJ.M. Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer.Int. J. Mol. Sci.202223181047910.3390/ijms231810479
    [Google Scholar]
  75. SungS.H. ChoiG.H. LeeN.W. ShinB.C. External use of propolis for oral, skin, and genital diseases: A systematic review and meta‐analysis.Evid. Based Complement. Alternat. Med.201720171802575210.1155/2017/8025752 28265293
    [Google Scholar]
  76. Valero da SilvaM. Gomes de Moura JrN. B MotoyamaA. M FerreiraV. A review of the potential therapeutic and cosmetic use of propolis in topical formulations.J. Appl. Pharm. Sci.2019001011
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206316231250218063957
Loading
/content/journals/acamc/10.2174/0118715206316231250218063957
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cancer cells; erythema; fibroblasts; flavonoids; nanoparticles; Propolis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test