Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Breast cancer (BC) is a common malignancy that poses a serious threat to women's health. The hypoxic tumor microenvironment in BC promotes drug resistance, making hypoxia-targeted therapies crucial. Targeting hypoxia-inducible factors (HIFs), particularly HIF-2α, has emerged as a promising approach to inhibit tumor growth and improve response to chemotherapy and radiotherapy. However, further research is required to fully understand the role of HIF-2α to develop more effective treatments for BC.

Aims

The aim of this study is to identify phytochemicals that target HIF-2α and evaluate their effects on the MCF-7 breast cancer cell line under hypoxic conditions.

Methods

Molecular docking identified phytochemicals targeting HIF-2α, with high-affinity compounds undergoing stability evaluation GROMACS molecular dynamics simulations. ADMET and toxicity assessments were performed using SwissADME and ProTox-3.0. assays on hypoxic MCF-7 cells examined cell viability and gene expression. The expression of HIF-2α-regulated genes () was analyzed by using qRT-PCR.

Results

Molecular docking revealed that naringin (-8.2 Kcal/mol) and morin (-7.1 Kcal/mol) showed better binding affinity than the standard drug, belzutifan (-7.7 Kcal/mol). Dynamic simulations, including RMSD, RMSF, H-bond interactions, Rg, SASA, and PE, confirmed their strong binding potential. Morin, in particular, demonstrated more H-bond interactions and met Lipinski's Rule of Five, making it a promising candidate for studies. It reduced cell viability with an IC of 118 µM and significantly downregulated HIF-2α-associated genes.

Conclusion

Morin demonstrated promising anti-cancer activity under hypoxic conditions by inhibiting HIF-2α in the hypoxia signaling pathway.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206377378250414052656
2025-04-24
2025-09-10
Loading full text...

Full text loading...

References

  1. TanakaT. AokiR. TerasakiM. Potential chemopreventive effects of dietary combination of phytochemicals against cancer development.Pharmaceuticals20231611159110.3390/ph16111591 38004456
    [Google Scholar]
  2. WangJ. WuS.G. Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives.Breast Cancer20231572173010.2147/BCTT.S432526 37881514
    [Google Scholar]
  3. RudzińskaA. JuchaniukP. OberdaJ. WiśniewskaJ. WojdanW. SzklenerK. MańdziukS. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials.Nutrients2023158189610.3390/nu15081896 37111115
    [Google Scholar]
  4. HeJ. ZhangH.P. Research progress on the anti-tumor effect of Naringin.Front. Pharmacol.202314121700110.3389/fphar.2023.1217001 37663256
    [Google Scholar]
  5. LiH. YangB. HuangJ. XiangT. YinX. WanJ. LuoF. ZhangL. LiH. RenG. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway.Toxicol. Lett.2013220321922810.1016/j.toxlet.2013.05.006 23694763
    [Google Scholar]
  6. SolairajaS. AndrabiM.Q. DunnaN.R. VenkatabalasubramanianS. Overview of morin and its complementary role as an adjuvant for anticancer agents.Nutr. Cancer202173692794210.1080/01635581.2020.1778747 32530303
    [Google Scholar]
  7. GorR. SahaL. AgarwalS. KarriU. SohaniA. MadhavanT. PachaiappanR. RamalingamS. Morin inhibits colon cancer stem cells by inhibiting PUM1 expression in vitro.Med. Oncol.2022391225110.1007/s12032‑022‑01851‑4 36224472
    [Google Scholar]
  8. MaharjanS. KwonY.S. LeeM.G. LeeK.S. NamK.S. Cell cycle arrest-mediated cell death by morin in MDA-MB-231 triple-negative breast cancer cells.Pharmacol. Rep.20217351315132710.1007/s43440‑021‑00272‑w 33993438
    [Google Scholar]
  9. Hwang-BoH. LeeW.S. NagappanA. KimH.J. PanchanathanR. ParkC. ChangS.H. KimN.D. LeemS.H. ChangY.C. KwonT.K. CheongJ.H. KimG.S. JungJ.M. ShinS.C. HongS.C. ChoiY.H. Morin enhances auranofin anticancer activity by up‐regulation of DR4 and DR5 and modulation of Bcl‐2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells.Phytother. Res.20193351384139310.1002/ptr.6329 30887612
    [Google Scholar]
  10. SinghS. GuptaP. MeenaA. LuqmanS. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders.Food Chem. Toxicol.202014511170810.1016/j.fct.2020.111708 32866514
    [Google Scholar]
  11. LiJ. ZhongX. ZhaoY. ShenJ. XiaoZ. PilapongC. Acacetin inhibited non-small-cell lung cancer (NSCLC) cell growth via upregulating miR-34a in vitro and in vivo.Sci. Rep.2024141234810.1038/s41598‑024‑52896‑6 38287075
    [Google Scholar]
  12. YunS. LeeY.J. ChoiJ. KimN.D. HanD.C. KwonB.M. Acacetin inhibits the growth of stat3-activated du145 prostate cancer cells by directly binding to signal transducer and activator of transcription 3 (Stat3).Molecules20212620620410.3390/molecules26206204 34684783
    [Google Scholar]
  13. ZhangG. DongJ. LuL. LiuY. HuD. WuY. ZhaoA. XuH. Acacetin exerts antitumor effects on gastric cancer by targeting EGFR.Front. Pharmacol.202314112164310.3389/fphar.2023.1121643 37266143
    [Google Scholar]
  14. KimJ.K. ParkS.U. Letter to the editor: Recent insights into the biological functions of apigenin.EXCLI J20201998499110.17179/excli2020‑2579
    [Google Scholar]
  15. ImranM. AslamG.T. AtifM. ShahbazM. BatoolQ.T. HanifM.M. SalehiB. MartorellM. Sharifi-RadJ. Apigenin as an anticancer agent.Phytother. Res.20203481812182810.1002/ptr.6647 32059077
    [Google Scholar]
  16. ChenY.H. WuJ.X. YangS.F. YangC.K. ChenT.H. HsiaoY.H. Anticancer effects and molecular mechanisms of apigenin in cervical cancer cells.Cancers2022147182410.3390/cancers14071824 35406599
    [Google Scholar]
  17. MotallebiM. BhiaM. RajaniH.F. BhiaI. TabarraeiH. MohammadkhaniN. Pereira-SilvaM. KasaiiM.S. Nouri-MajdS. MuellerA.L. VeigaF.J.B. Paiva-SantosA.C. ShakibaeiM. Naringenin: A potential flavonoid phytochemical for cancer therapy.Life Sci.202230512075210.1016/j.lfs.2022.120752 35779626
    [Google Scholar]
  18. Martínez-RodríguezO.P. Thompson-BonillaM.R. Jaramillo-FloresM.E. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways.Crit. Rev. Food Sci. Nutr.202060223770379210.1080/10408398.2019.1708262 31899947
    [Google Scholar]
  19. ChangT.M. ChiM.C. ChiangY.C. LinC.M. FangM.L. LeeC.W. LiuJ.F. KouY.R. Promotion of ROS-mediated apoptosis, G2/M arrest, and autophagy by naringenin in non-small cell lung cancer.Int. J. Biol. Sci.20242031093110910.7150/ijbs.85443 38322119
    [Google Scholar]
  20. ChenZ. HanF. DuY. ShiH. ZhouW. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817010.1038/s41392‑023‑01332‑8 36797231
    [Google Scholar]
  21. RenX. DiaoX. ZhuangJ. WuD. Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan.Mol. Pharmacol.2022102624024710.1124/molpharm.122.000525 36167425
    [Google Scholar]
  22. SravyaG. JeyarajG. VadiveluA. MohideenH.S. GeetanjaliA.S. Molecular characterization of chilli leaf curl Ahmedabad virus: Homology modelling and evaluation of viral proteins interacting with host protein SnRK1 and docking against flavonoids—an in silico approach.Theory Biosci.20231421476010.1007/s12064‑022‑00383‑9 36607541
    [Google Scholar]
  23. MoulishankarA. SundarrajanT. Pharmacophore, QSAR, molecular docking, molecular dynamics and ADMET study of trisubstituted benzimidazole derivatives as potent anti-tubercular agents.Chemical Physics Impact2024810051210.1016/j.chphi.2024.100512
    [Google Scholar]
  24. MaoY. LiY. HaoM. ZhangS. AiC. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.J. Mol. Model.20121852185219810.1007/s00894‑011‑1236‑8 21947448
    [Google Scholar]
  25. MoulishankarA. SundarrajanT. QSAR modeling, molecular docking, dynamic simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent antitubercular agents.Beni. Suef Univ. J. Basic Appl. Sci.202312111110.1186/s43088‑023‑00451‑z
    [Google Scholar]
  26. SaravananV. ChagaletiB.K. PackiapalavesamS.D. KathiravanM. Ligand based pharmacophore modelling and integrated computational approaches in the quest for small molecule inhibitors against hCA IX.RSC Advances20241453346335810.1039/D3RA08618F 38259989
    [Google Scholar]
  27. Muñoz-SánchezJ. Chánez-CárdenasM.E. The use of cobalt chloride as a chemical hypoxia model.J. Appl. Toxicol.201939455657010.1002/jat.3749 30484873
    [Google Scholar]
  28. RanaN.K. SinghP. KochB. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis.Biol. Res.20195211210.1186/s40659‑019‑0221‑z 30876462
    [Google Scholar]
  29. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  30. BaiJ. ChenW.B. ZhangX.Y. KangX.N. JinL.J. ZhangH. WangZ.Y. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling.World J. Stem Cells2020121879910.4252/wjsc.v12.i1.87 32110277
    [Google Scholar]
  31. ChenS. LiuY. WangZ. QiC. YuY. XuL. HouT. ShengR. Identification of 3-aryl-5-methyl-isoxazole-4-carboxamide derivatives and analogs as novel HIF-2α agonists through docking-based virtual screening and structural modification.Eur. J. Med. Chem.202426811622710.1016/j.ejmech.2024.116227 38387335
    [Google Scholar]
  32. BalkrishnaA. SharmaD. ThapliyalM. AryaV. DabasA. Unraveling the therapeutic potential of Senna singueana phytochemicals to attenuate pancreatic cancer using protein-protein interactions, molecular docking, and MD simulation.In Silico Pharmacol.2023121310.1007/s40203‑023‑00179‑9
    [Google Scholar]
  33. WallaceE.M. RizziJ.P. HanG. WehnP.M. CaoZ. DuX. ChengT. CzerwinskiR.M. DixonD.D. GogginB.S. GrinaJ.A. HalfmannM.M. MaddieM.A. OliveS.R. SchlachterS.T. TanH. WangB. WangK. XieS. XuR. YangH. JoseyJ.A. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma.Cancer Res.201676185491550010.1158/0008‑5472.CAN‑16‑0473 27635045
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206377378250414052656
Loading
/content/journals/acamc/10.2174/0118715206377378250414052656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test