Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Colorectal cancer (CRC) is a type of cancer that develops due to abnormal cell growth in the colon and rectum. Existing conventional CRC treatment strategies have side effects. Hence, exploring new and advanced techniques for bacterial CRC therapy is crucial. Bacteriocins are peptides produced by bacteria, including lactic acid bacteria (LAB), that have bactericidal effects. In the present study, we have focused on searching for effective and safe bacteriocins from LAB as alternatives to clinical therapeutics for treating CRC, leaving healthy cells unaffected.

Methods

We selected nine bacteriocin-like peptides that are effective in the human gut microbiome. These peptides were derived from LAB species using online database resources. We then conducted an phylogenetic analysis of other LAB species present in the gut microbiome using the KEGG Genome database. We established the phylogenetic relationship of these LAB species with others observed in the database to determine their closeness and similarity. Further, the bacteriocin-like peptides were modeled and refined to interact with the plausible target. The systematic network analysis was performed to find the highly interconnected targets involved in the Wnt target genes of CRC.

Results

The network analysis observed that the genes CTNNB1 and LRP5 were found as hub genes to upregulate CRC. protein-peptide docking between the target bacteriocins like peptides and the therapeutic targets of CRC was performed, significantly our findings revealed that the peptide PE4 and PE9 (Lactacin F and Lactacin B) exhibited better binding affinity with CTNNB1. In contrast, the peptides PE7 and PE9 (Doderlin and Lactacin B) revealed better binding affinity with LRP5. Furthermore, we conducted molecular dynamics (MD) simulations to confirm the stability and bonding interactions of the bacteriocins derived from the LAB species.

Conclusion

Our findings indicate that bacteriocins (Lactacin B, Lactacin F and Doderlin) may have significant potential as therapeutics for CRC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206367950250228100833
2025-03-12
2025-08-16
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  3. BrennerH. KloorM. PoxC.P. Colorectal cancer.Lancet201438399271490150210.1016/S0140‑6736(13)61649‑924225001
    [Google Scholar]
  4. BultmanS.J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer.Mol. Nutr. Food Res.2017611150090210.1002/mnfr.20150090227138454
    [Google Scholar]
  5. LouisP. HoldG.L. FlintH.J. The gut microbiota, bacterial metabolites and colorectal cancer.Nat. Rev. Microbiol.2014121066167210.1038/nrmicro334425198138
    [Google Scholar]
  6. KohoutovaD. ForstlovaM. MoravkovaP. CyranyJ. BosakJ. SmajsD. RejchrtS. BuresJ. Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia.BMC Cancer20202013910.1186/s12885‑020‑6512‑531948419
    [Google Scholar]
  7. SausE. Iraola-GuzmánS. WillisJ.R. Brunet-VegaA. GabaldónT. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential.Mol. Aspects Med.2019699310610.1016/j.mam.2019.05.00131082399
    [Google Scholar]
  8. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  9. DragoL. Probiotics, and colon cancer.Microorganisms2019736610.3390/microorganisms703006630823471
    [Google Scholar]
  10. Trejo-GonzálezL. Gutiérrez-CarrilloA.E. Rodríguez-HernándezA.I. del Rocío López-CuellarM. Chavarría-HernándezN. Bacteriocins produced by LAB isolated from cheeses within the period 2009-2021: A review.Probiotics Antimicrob. Proteins202214223825110.1007/s12602‑021‑09825‑034342858
    [Google Scholar]
  11. LahiriD. NagM. DuttaB. SarkarT. PatiS. BasuD. Abdul KariZ. WeiL.S. SmaouiS. WenG. K. RayR.R. Bacteriocin: A natural approach for food safety and food security.Front. Bioeng. Biotechnol.202210100591810.3389/fbioe.2022.100591836353741
    [Google Scholar]
  12. Grande BM. PulidoR. Del Carmen L.AM. GálvezA. LucasR. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications.Int. J. Mol. Sci.20141512227062272710.3390/ijms15122270625493478
    [Google Scholar]
  13. Alvarez-SieiroP. Montalbán-LópezM. MuD. KuipersO.P. Bacteriocins of lactic acid bacteria: Extending the family.Appl. Microbiol. Biotechnol.201610072939295110.1007/s00253‑016‑7343‑926860942
    [Google Scholar]
  14. PiperC. HillC. CotterP.D. RossR.P. Bioengineering of a Nisin A‐producing Lactococcus lactis to create isogenic strains producing the natural variants Nisin F, Q and Z.Microb. Biotechnol.20114337538210.1111/j.1751‑7915.2010.00207.x21375711
    [Google Scholar]
  15. WangH. JinJ. PangX. BianZ. ZhuJ. HaoY. ZhangH. XieY. Plantaricin BM-1 decreases viability of SW480 human colorectal cancer cells by inducing caspase-dependent apoptosis.Front. Microbiol.202313110360010.3389/fmicb.2022.110360036687624
    [Google Scholar]
  16. Al-MadbolyL.A. El-DeebN.M. KabbashA. NaelM.A. KenawyA.M. RagabA.E. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front. Bioeng. Biotechnol.2020845010.3389/fbioe.2020.0045032656185
    [Google Scholar]
  17. BaindaraP. KorpoleS. GroverV. Bacteriocins: Perspective for the development of novel anticancer drugs.Appl. Microbiol. Biotechnol.201810224103931040810.1007/s00253‑018‑9420‑830338356
    [Google Scholar]
  18. PatraS. SahuN. SaxenaS. PradhanB. NayakS.K. RoychowdhuryA. Effects of probiotics at the interface of metabolism and immunity to prevent colorectal cancer-associated gut inflammation: A systematic network and meta-analysis with molecular docking studies.Front. Microbiol.20221387829710.3389/fmicb.2022.87829735711771
    [Google Scholar]
  19. BianJ. DannappelM. WanC. FiresteinR. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer.Cells202099212510.3390/cells909212532961708
    [Google Scholar]
  20. MacDonaldB.T. HeX. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling.Cold Spring Harb. Perspect. Biol.2012412a00788010.1101/cshperspect.a00788023209147
    [Google Scholar]
  21. ChenY. ChenM. DengK. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review).Int. J. Oncol.20226222410.3892/ijo.2022.547236579676
    [Google Scholar]
  22. RaischJ. Côté-BironA. LangloisM.J. LeblancC. RivardN. Unveiling the roles of low-density lipoprotein receptor-related protein 6 in intestinal homeostasis, regeneration and oncogenesis.Cells2021107179210.3390/cells1007179234359960
    [Google Scholar]
  23. WangG. LiX. WangZ. APD3: The antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv127826602694
    [Google Scholar]
  24. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac96336300620
    [Google Scholar]
  25. Meier-KolthoffJ.P. CarbasseJ.S. Peinado-OlarteR.L. GökerM. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes.Nucleic Acids Res.202250D1D801D80710.1093/nar/gkab90234634793
    [Google Scholar]
  26. HenzS.R. HusonD.H. AuchA.F. Nieselt-StruweK. SchusterS.C. Whole-genome prokaryotic phylogeny.Bioinformatics200521102329233510.1093/bioinformatics/bth32415166018
    [Google Scholar]
  27. Meier-KolthoffJ.P. AuchA.F. KlenkH.P. GökerM. Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics20131416010.1186/1471‑2105‑14‑6023432962
    [Google Scholar]
  28. KumarS. StecherG. LiM. KnyazC. TamuraK. MEGA X: Molecular evolutionary genetics analysis across computing platforms.Mol. Biol. Evol.20183561547154910.1093/molbev/msy09629722887
    [Google Scholar]
  29. DempseyE. CorrS.C. Lactobacillus spp. for gastrointestinal health: Current and future perspectives.Front. Immunol.20221384024510.3389/fimmu.2022.84024535464397
    [Google Scholar]
  30. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  31. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.531680165
    [Google Scholar]
  32. MasudaM. SawaM. YamadaT. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer.Pharmacol. Ther.20151561910.1016/j.pharmthera.2015.10.00926542362
    [Google Scholar]
  33. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  34. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  35. DonchevaN.T. AssenovY. DominguesF.S. AlbrechtM. Topological analysis and interactive visualization of biological networks and protein structures.Nat. Protoc.20127467068510.1038/nprot.2012.00422422314
    [Google Scholar]
  36. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst Biol.20148Suppl 4S1110.1186/1752‑0509‑8‑S4‑S1125521941
    [Google Scholar]
  37. JananiB. VijayakumarM. PriyaK. KimJ.H. GeddawyA. ShahidM. El-BidawyM.H. Al-GhamdiS. AlsaidanM. AbdelzaherM.H. MohideenA.P. RameshT. A network-based pharmacological investigation to identify the mechanistic regulatory pathway of andrographolide against colorectal cancer.Front. Pharmacol.20221396726210.3389/fphar.2022.96726236110531
    [Google Scholar]
  38. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  39. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt Consortium UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa110033237286
    [Google Scholar]
  40. AbramsonJ. AdlerJ. DungerJ. EvansR. GreenT. PritzelA. RonnebergerO. WillmoreL. BallardA.J. BambrickJ. BodensteinS.W. EvansD.A. HungC.C. O’NeillM. ReimanD. TunyasuvunakoolK. WuZ. ŽemgulytėA. ArvanitiE. BeattieC. BertolliO. BridglandA. CherepanovA. CongreveM. Cowen-RiversA.I. CowieA. FigurnovM. FuchsF.B. GladmanH. JainR. KhanY.A. LowC.M.R. PerlinK. PotapenkoA. SavyP. SinghS. SteculaA. ThillaisundaramA. TongC. YakneenS. ZhongE.D. ZielinskiM. ŽídekA. BapstV. KohliP. JaderbergM. HassabisD. JumperJ.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3.Nature2024630801649350010.1038/s41586‑024‑07487‑w38718835
    [Google Scholar]
  41. LaskowskiR. RullmannJ.A.C. MacArthurM. KapteinR. ThorntonJ. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR19968447748610.1007/BF002281489008363
    [Google Scholar]
  42. SahayA. ShakyaM. In silico analysis and homology modelling of antioxidant proteins of spinach.J. Proteomics Bioinform.20103514815410.4172/jpb.1000134
    [Google Scholar]
  43. AmbrosettiF. JandovaZ. BonvinA.M.J.J. Information-driven antibody–antigen modelling with HADDOCK.Methods Mol. Biol.2023255226728210.1007/978‑1‑0716‑2609‑2_1436346597
    [Google Scholar]
  44. van ZundertG.C.P. RodriguesJ.P.G.L.M. TrelletM. SchmitzC. KastritisP.L. KaracaE. MelquiondA.S.J. van DijkM. de VriesS.J. BonvinA.M.J.J. The HADDOCK2. 2 web server: User-friendly integrative modeling of biomolecular complexes.J. Mol. Biol.2016428472072510.1016/j.jmb.2015.09.01426410586
    [Google Scholar]
  45. StroetM. CaronB. VisscherK.M. GeerkeD.P. MaldeA.K. MarkA.E. Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane.J. Chem. Theory Comput.201814115834584510.1021/acs.jctc.8b0076830289710
    [Google Scholar]
  46. BerendsenH.J.C. PostmaJ.P.M. van GunsterenW.F. DiNolaA. HaakJ.R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.19848183684369010.1063/1.448118
    [Google Scholar]
  47. JayarajJ.M. KrishnasamyG. LeeJ.K. MuthusamyK. In silico identification and screening of CYP24A1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis.J. Biomol. Struct. Dyn.20193771700171410.1080/07391102.2018.146495829658431
    [Google Scholar]
  48. ChatterjeeS. DebenedettiP.G. StillingerF.H. Lynden-BellR.M. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models.J. Chem. Phys.20081281212451110.1063/1.284112718376947
    [Google Scholar]
  49. ArmstrongJ.A. BresmeF. Water polarization induced by thermal gradients: The extended simple point charge model (SPC/E).J. Chem. Phys.2013139101450410.1063/1.481129123822311
    [Google Scholar]
  50. HuangW. LinZ. van GunsterenW.F. Validation of the GROMOS 54A7 force field with respect to β-peptide folding.J. Chem. Theory Comput.2011751237124310.1021/ct100747y26610119
    [Google Scholar]
  51. GangadharappaB.S. SharathR. RevanasiddappaP.D. ChandramohanV. BalasubramaniamM. VardhineniT.P. Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors.J. Biomol. Struct. Dyn.202038133757377110.1080/07391102.2019.166726531514687
    [Google Scholar]
  52. KumariR. KumarR. LynnA. Open-source drug discovery consortium, & Lynn, A. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  53. ThodaC. TourakiM. Probiotic-derived bioactive compounds in colorectal cancer treatment.Microorganisms2023118189810.3390/microorganisms1108189837630458
    [Google Scholar]
  54. HuangF. LiS. ChenW. HanY. YaoY. YangL. LiQ. XiaoQ. WeiJ. LiuZ. ChenT. DengX. Postoperative probiotics administration attenuates gastrointestinal complications and gut microbiota dysbiosis caused by chemotherapy in colorectal cancer patients.Nutrients202315235610.3390/nu1502035636678227
    [Google Scholar]
  55. SharafL.K ShuklaG. Probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus Gg) in conjunction with celecoxib (selective cox-2 inhibitor) modulated DMH-induced early experimental colon carcinogenesis.Nutr. Cancer201870694695510.1080/01635581.2018.149078330183370
    [Google Scholar]
  56. WaliaS. KamalR. DhawanD.K. KanwarS.S. Chemoprevention by probiotics during 1,2-dimethylhydrazine-induced colon carcinogenesis in rats.Dig. Dis. Sci.201863490090910.1007/s10620‑018‑4949‑z29427224
    [Google Scholar]
  57. BajramagicS. HodzicE. MulabdicA. HoljanS. SmajlovicS. RovcaninA. Usage of probiotics and its clinical significance at surgically treated patients sufferig from colorectal carcinoma.Med. Arh.201973531632010.5455/medarh.2019.73.316‑32031819304
    [Google Scholar]
  58. PolakowskiC.B. KatoM. PretiV.B. SchieferdeckerM.E.M. Ligocki CamposA.C. Impact of the preoperative use of synbiotics in colorectal cancer patients: A prospective, randomized, double-blind, placebo-controlled study.Nutrition201958404610.1016/j.nut.2018.06.00430278428
    [Google Scholar]
  59. OhN.S. JoungJ.Y. LeeJ.Y. KimY.J. KimY. KimS.H. A synbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract prevents hepatic toxicity induced by colorectal cancer in mice.J. Dairy Sci.202010342947295510.3168/jds.2019‑1741132008775
    [Google Scholar]
  60. DubeyV. GhoshA.R. Probiotics cross-talk with multi-cell signaling in colon carcinogenesis.J. Probiotics Health2013132510.4172/2329‑8901.1000109
    [Google Scholar]
  61. KahouliI. Tomaro-DuchesneauC. PrakashS. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives.J. Med. Microbiol.20136281107112310.1099/jmm.0.048975‑023558140
    [Google Scholar]
  62. LeeH.A. KimH. LeeK.W. ParkK.Y. Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice.J. Med. Food201518121400140510.1089/jmf.2015.357726595186
    [Google Scholar]
  63. ChangJ.H. ShimY.Y. ChaS.K. ReaneyM.J.T. CheeK.M. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon.J. Med. Microbiol.201261336136810.1099/jmm.0.035154‑022034161
    [Google Scholar]
  64. ZhuJ. ZhuC. GeS. ZhangM. JiangL. CuiJ. RenF. Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model.J. Appl. Microbiol.2014117120821610.1111/jam.1249924754742
    [Google Scholar]
  65. DronkersT.M.G. OuwehandA.C. RijkersG.T. Global analysis of clinical trials with probiotics.Heliyon202067e0446710.1016/j.heliyon.2020.e0446732715136
    [Google Scholar]
  66. SurachatK. SangketU. DeachamagP. ChotigeatW. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases.PLoS One2017128e018354810.1371/journal.pone.018354828837656
    [Google Scholar]
  67. OndovB.D. TreangenT.J. MelstedP. MalloneeA.B. BergmanN.H. KorenS. PhillippyA.M. Mash: Fast genome and metagenome distance estimation using MinHash.Genome Biol.201617113210.1186/s13059‑016‑0997‑x27323842
    [Google Scholar]
  68. SureshN.T. AshokS. Comparative strategy for the statistical & network-based analysis of biological networks.Procedia Comput. Sci.201814316518010.1016/j.procs.2018.10.373
    [Google Scholar]
  69. ChenB.S. LiC.W. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.BMC Syst. Biol.20161011810.1186/s12918‑016‑0256‑526897165
    [Google Scholar]
  70. BibalanM.H EshaghiM. RohaniM. EsghaeiM. Darban-SarokhalilD. PourshafieM.R. TalebiM. Corrigendum: Isolates of Lactobacillus plantarum and L. reuteri display greater antiproliferative and antipathogenic activity than other Lactobacillus isolates.J Med Microbiol20176611170310.1099/jmm.0.00061429106349
    [Google Scholar]
  71. ZhanT. RindtorffN. BoutrosM. Wnt signaling in cancer.Oncogene201736111461147310.1038/onc.2016.30427617575
    [Google Scholar]
  72. GhanavatiR. AkbariA. MohammadiF. AsadollahiP. JavadiA. TalebiM. RohaniM. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway.Mol. Cell. Biochem.20204701-211310.1007/s11010‑020‑03740‑832419125
    [Google Scholar]
  73. ManoharanM. RagothamanP. BalasubramanianT.S. Initiation of apoptotic pathway by the cell-free supernatant synthesized from Weissella cibaria through in-silico and in-vitro methods.Appl. Biochem. Biotechnol.2024196747002410.1007/s12010‑023‑04688‑337751008
    [Google Scholar]
  74. HeK. GanW.J. Wnt/β-catenin signaling pathway in the development and progression of colorectal cancer.Cancer Manag. Res.20231543544810.2147/CMAR.S41116837250384
    [Google Scholar]
  75. NieX. LiuH. YeW. WeiX. FanL. MaH. LiL. XueW. QiW. WangY.D. ChenW.D. LRP5 promotes cancer stem cell traits and chemoresistance in colorectal cancer.J. Cell. Mol. Med.20222641095111210.1111/jcmm.1716434997691
    [Google Scholar]
  76. MacDonaldB.T. TamaiK. HeX. Wnt/beta-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.01619619488
    [Google Scholar]
  77. LiV.S.W. NgS.S. BoersemaP.J. LowT.Y. KarthausW.R. GerlachJ.P. MohammedS. HeckA.J.R. MauriceM.M. MahmoudiT. CleversH. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex.Cell201214961245125610.1016/j.cell.2012.05.00222682247
    [Google Scholar]
  78. ErfanianN. NasseriS. Miraki FerizA. SafarpourH. NamaeiM.H. Characterization of Wnt signaling pathway under treatment of Lactobacillus acidophilus postbiotic in colorectal cancer using an integrated in silico and in vitro analysis.Sci. Rep.20231312298810.1038/s41598‑023‑50047‑x38151510
    [Google Scholar]
  79. HanafiahA. Abd AzizS.N.A. Md NesranZ.N. WezenX.C. AhmadM.F. Molecular investigation of antimicrobial peptides against Helicobacter pylori proteins using a peptide-protein docking approach.Heliyon2024106e2812810.1016/j.heliyon.2024.e2812838533069
    [Google Scholar]
  80. AierI. VaradwajP.K. RajU. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor.Sci. Rep.2016613498410.1038/srep3498427713574
    [Google Scholar]
  81. OyewusiH.A. WahabR.A. AkinyedeK.A. AlbadraniG.M. Al-GhadiM.Q. Abdel-DaimM.M. AjiboyeB.O. HuyopF. Bioinformatics analysis and molecular dynamics simulations of azoreductases (AzrBmH2) from Bacillus megaterium H2 for the decolorization of commercial dyes.Environ. Sci. Eur.2024a3613110.1186/s12302‑024‑00853‑5
    [Google Scholar]
  82. ZakaryS. MashalH. OsmaniA. OyewusH. HuyopF. NasimM. In silico molecular characterization of a putative haloacid dehalogenase type II from genomic of Mesorhizobium loti strain TONO.J. Trop. Life Sci.202212224125210.11594/jtls.12.02.10
    [Google Scholar]
  83. WahhabB.H. OyewusiH.A. WahabR.A. M HoodM.H. Abdul HamidA.A. Al-NimerM.S. EdbeibM.F. KayaY. HuyopF. Comparative modeling and enzymatic affinity of novel haloacid dehalogenase from Bacillus megaterium strain BHS1 isolated from alkaline Blue Lake in Turkey.J. Biomol. Struct. Dyn.20244231429144210.1080/07391102.2023.219987037038649
    [Google Scholar]
  84. OyewusiH.A. HuyopF. WahabR.A. HamidA.A.A. In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation.J. Biomol. Struct. Dyn.202240199332934610.1080/07391102.2021.192784634014147
    [Google Scholar]
  85. OyewusiH.A. AkinyedeK.A WahabR.A. SusantiE. Syed YaacobS.N. HuyopF. Biological and molecular approaches of the degradation or decolorization potential of the hypersaline Lake Tuz Bacillus megaterium H2 isolate.J. Biomol. Struct. Dyn.2024b42126228624410.1080/07391102.2023.223404037455463
    [Google Scholar]
  86. Borjian BoroujeniM. Shahbazi DastjerdehM. ShokrgozarM. RahimiH. OmidiniaE. Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions.Inform. Med. Unlocked20212310051410.1016/j.imu.2021.100514
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206367950250228100833
Loading
/content/journals/acamc/10.2174/0118715206367950250228100833
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test