Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Heterocyclic compounds are prevalent in nature and essential to life. The synthesis and application of medium-sized ring heterocyclic compounds have gained prominence. Pyranopyrazole is one such compound that has a significant impact on biological and medicinal chemistry. It has attracted interest in agrochemical research due to its fungicidal, bactericidal, and herbicidal properties. Additionally, it exhibits various biological activities, including anti-inflammatory, analgesic, antidiabetic, antimicrobial, anticancer, and antimalarial effects. Furthermore, it has been explored for its potential in treating SARS-CoV-2.

Objective

The study synthesized novel pyranopyrazole compounds and evaluated their anticancer efficacy against certain tumor cell lines (MCF-7, HeLa, and PC-3) and antimicrobial activities as deduced through molecular docking studies.

Methods

A one-pot, four-component reaction involving ethyl acetoacetate (), hydrazine hydrate (), malononitrile or ethyl cyanoacetate (), and aromatic aldehydes () in an ethanolic/piperidine solution was conducted, yielding pyranopyrazoles () in moderate to good yields.

Results

This study involved the synthesis of novel pyranopyrazole derivatives and the evaluation of their anticancer and antimicrobial activities. These findings indicate that compound is extremely active. It is more potent than 5-fluorourcail and ofloxacin, and it may also have new modes of action that are worth more research, while compound has the highest antimicrobial activity. Molecular docking studies help us learn more about how these chemicals interact with biological targets like the TGF-βI receptor and the choline-binding domain, both of which play a key role in the growth of cancer.

Conclusion

A series of novel pyranopyrazole derivatives were synthesized and analyzed using spectral data. Compound stands out as a lead molecule for more study and improvement due to its low IC value and high binding affinity. Based on how stable it is in molecular dynamics (MD) simulations and how its anticancer properties are linked to its binding affinities, it may be a strong TGF-βI receptor inhibitor.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206376210250319053528
2025-03-24
2025-10-24
Loading full text...

Full text loading...

References

  1. CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  2. GuY. Multicomponent reactions in unconventional solvents: State of the art.Green Chem.20121482091212810.1039/c2gc35635j
    [Google Scholar]
  3. ElwahyA.H.M. ShaabanM.R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials.RSC Advances2015592756597571010.1039/C5RA11421G
    [Google Scholar]
  4. LeviL. MüllerT.J.J. Multicomponent syntheses of functional chromophores.Chem. Soc. Rev.201645102825284610.1039/C5CS00805K26898222
    [Google Scholar]
  5. KerruN. GummidiL.M. GanguK.K. MaddilaS. JonnalagaddaS.B. Synthesis of novel furo[3,2-c]coumarin derivatives through multicomponent [4+1] cycloaddition reaction using ZnO/FAp as a sustainable catalyst.ChemistrySelect20205134104411010.1002/slct.202000796
    [Google Scholar]
  6. KerruN. GummidiL. MaddilaS. JonnalagaddaS.B. Polyethylene glycol (PEG-400) mediated one-pot green synthesis of 4,7-dihydro-2H-pyrazolo[3,4-b]pyridines under catalyst-free conditions.ChemistrySelect2020540124071241010.1002/slct.202002538
    [Google Scholar]
  7. KerruN. GummidiL. MaddilaS. JonnalagaddaS.B. Efficient synthesis of novel functionalized dihydro‑pyrazolo[3,4-d]pyridines via the three-component reaction using MgO/HAp as a sustainable catalyst.Inorg. Chem. Commun.202112310832110.1016/j.inoche.2020.108321
    [Google Scholar]
  8. KerruN. GummidiL. BhaskaruniS.V.H.S. MaddilaS.N. JonnalagaddaS.B. Green synthesis and characterization of novel 1,2,4,5-tetrasubstituted imidazole derivatives with eco-friendly red brick clay as efficacious catalyst.Mol. Divers.202024488990110.1007/s11030‑019‑10000‑531598820
    [Google Scholar]
  9. KerruN. GummidiL. MaddilaS. JonnalagaddaS.B. Gadolinium oxide loaded zirconia and multi-component synthesis of novel dihydro-pyrazolo[3,4-d]pyridines under green conditions.Sustain. Chem. Pharm.20201810031610.1016/j.scp.2020.100316
    [Google Scholar]
  10. KerruN. GummidiL. MaddilaS.N. BhaskaruniS.V.H.S. JonnalagaddaS.B. Bi 2 O 3 /FAp, a sustainable catalyst for synthesis of dihydro‐[1,2,4]triazolo[1,5‐a]pyrimidine derivatives through green strategy.Appl. Organomet. Chem.2020345e559010.1002/aoc.5590
    [Google Scholar]
  11. KerruN. BhaskaruniS.V.H.S. GummidiL. MaddilaS.N. RanaS. SinghP. JonnalagaddaS.B. Synthesis of novel pyrazole‐based triazolidin‐3‐one derivatives by using ZnO/ZrO 2 as a reusable catalyst under green conditions.Appl. Organomet. Chem.2019335e472210.1002/aoc.4722
    [Google Scholar]
  12. KerruN. GummidiL. MaddilaS.N. BhaskaruniS.V.H.S. MaddilaS. JonnalagaddaS.B. Green synthesis and characterisation of novel [1,3,4]thiadiazolo/benzo[4,5]thiazolo[3,2- a ]pyrimidines via multicomponent reaction using vanadium oxide loaded on fluorapatite as a robust and sustainable catalyst.RSC Advances20201034198031981010.1039/D0RA02298E35520453
    [Google Scholar]
  13. KerruN. GummidiL. BhaskaruniS.V.H.S. MaddilaS.N. JonnalagaddaS.B. One-pot green synthesis of novel 5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine derivatives with eco-friendly biodegradable eggshell powder as efficacious catalyst.Res. Chem. Intermed.20204663067308310.1007/s11164‑020‑04135‑6
    [Google Scholar]
  14. TriloknadhS. Venkata RC. NagarajuK. HariK.N. VenkataR.C. RajendraW. TrinathD. SuneethaY. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids.Bioorg. Med. Chem. Lett.20182891663166910.1016/j.bmcl.2018.03.03029602681
    [Google Scholar]
  15. GummidiL. KerruN. AwoladeP. IbejiC.U. KarpoormathR. SinghP. N-Phenyl substituent controlled diastereoselective synthesis of β-lactam-isatin conjugates.Tetrahedron Lett.2020611115160210.1016/j.tetlet.2020.151602
    [Google Scholar]
  16. GummidiL. KerruN. AwoladeP. RazaA. SharmaA.K. SinghP. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents.Bioorg. Med. Chem. Lett.2020302212754410.1016/j.bmcl.2020.12754432920143
    [Google Scholar]
  17. SlobbeP. RuijterE. OrruR.V.A. Recent applications of multicomponent reactions in medicinal chemistry.MedChemComm20123101189121810.1039/c2md20089a
    [Google Scholar]
  18. RotsteinB.H. ZaretskyS. RaiV. YudinA.K. Small heterocycles in multicomponent reactions.Chem. Rev.2014114168323835910.1021/cr400615v25032909
    [Google Scholar]
  19. AfshariR. ShaabaniA. Materials functionalisation with multicomponent reactions: State of the art.ACS Comb. Sci.201820949952810.1021/acscombsci.8b0007230106275
    [Google Scholar]
  20. BhaskaruniS.V.H.S. GanguK.K. MaddilaS. JonnalagaddaS.B. Our contributions in synthesis of diverse heterocyclic scaffolds by using mixed oxides as heterogeneous catalysts.Chem. Rec.20191991793181210.1002/tcr.20180007730238597
    [Google Scholar]
  21. KerruN. GummidiL. MaddilaS.N. GanguK.K. JonnalagaddaS.B. Four-component rapid protocol with nickel oxide loaded on fluorapatite as a sustainable catalyst for the synthesis of novel imidazole analogs.Inorg. Chem. Commun.202011610793510.1016/j.inoche.2020.107935
    [Google Scholar]
  22. KerruN. BhaskaruniS.V.H.S. GummidiL. MaddilaS.N. SinghP. JonnalagaddaS.B. Efficient synthesis of novel pyrazole-linked 1,2,4-triazolidine-3-thiones using bismuth on zirconium oxide as a recyclable catalyst in aqueous medium.Mol. Divers.202024234535410.1007/s11030‑019‑09957‑031098860
    [Google Scholar]
  23. DömlingA. WangW. WangK. Chemistry and biology of multicomponent reactions.Chem. Rev.201211263083313510.1021/cr100233r22435608
    [Google Scholar]
  24. ConstableD.J.C. DunnP.J. HaylerJ.D. HumphreyG.R. LeazerJ.L. Key green chemistry research areas-a perspective from pharmaceutical manufacturers.Green Chem.2007941142010.1039/B703488C
    [Google Scholar]
  25. DeVierno KreuderA. House-KnightT. WhitfordJ. PonnusamyE. MillerP. JesseN. RodenbornR. SayagS. GebelM. ApedI. SharfsteinI. ManasterE. ErgazI. HarrisA. Nelowet GriceL. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry.ACS Sustain. Chem.& Eng.2017542927293510.1021/acssuschemeng.6b02399
    [Google Scholar]
  26. KerruN. MaddilaS. JonnalagaddaS.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions.Curr. Org. Chem.20192331563192
    [Google Scholar]
  27. KerruN. SinghP. KoorbanallyN. RajR. KumarV. Recent advances (2015–2016) in anticancer hybrids.Eur. J. Med. Chem.201714217921210.1016/j.ejmech.2017.07.03328760313
    [Google Scholar]
  28. GomtsyanA. Heterocycles in drugs and drug discovery.Chem. Heterocycl. Compd.201248171010.1007/s10593‑012‑0960‑z
    [Google Scholar]
  29. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  30. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen- containing molecules and their biological applications.Molecules2020258190910.3390/molecules2508190932326131
    [Google Scholar]
  31. KerruN. Singh-PillayA. AwoladeP. SinghP. Current anti-diabetic agents and their molecular targets: A review.Eur. J. Med. Chem.201815243648810.1016/j.ejmech.2018.04.06129751237
    [Google Scholar]
  32. LiM. ZhaoB.X. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013).Eur. J. Med. Chem.20148531134010.1016/j.ejmech.2014.07.10225104650
    [Google Scholar]
  33. MamaghaniM. Hossein N.R. A review on the recent multicomponent synthesis of pyranopyrazoles.Polycycl. Aromat. Compd.202141222329110.1080/10406638.2019.1584576
    [Google Scholar]
  34. BekhitA.A. NasrallaS.N. El-AgroudyE.J. HamoudaN. El-FattahA.A. BekhitS.A. AmagaseK. IbrahimT.M. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative.Eur. J. Pharm. Sci.202216810608010.1016/j.ejps.2021.10608034818572
    [Google Scholar]
  35. AlamA.M. Antibacterial pyrazoles: Tackling resistant bacteria.Future Med. Chem.202214534336210.4155/fmc‑2021‑027535050719
    [Google Scholar]
  36. GaoM. QuK. ZhangW. WangX. Pharmacological activity of pyrazole derivatives as an anticonvulsant for benefit against Epilepsy.Neuroimmunomodulation2021282909810.1159/00051329733774633
    [Google Scholar]
  37. SauM.C. RajeshY. MandalM. BhattacharjeeM. Copper catalyzed regioselective N-alkynylation of pyrazoles and evaluation of the anticancer activity of ethynyl-pyrazoles.ChemistrySelect20183123511351510.1002/slct.201800177
    [Google Scholar]
  38. KumarG. KrishnaS.V. SriramD. JachakS.M. Pyrazole–coumarin and pyrazole–quinoline chalcones as potential antitubercular agents.Arch. Pharm.20203538200007710.1002/ardp.20200007732484273
    [Google Scholar]
  39. ZhangY. WuC. ZhangN. FanR. YeY. XuJ. Recent advances in the development of pyrazole derivatives as anticancer agents.Int. J. Mol. Sci.202324161272410.3390/ijms24161272437628906
    [Google Scholar]
  40. AslamN. WhiteJ.M. ZafarA.M. JabeenM. GhafoorA. SajjidN. NoreenS. KhanM.A. 4H-Pyrano[2,3-c]pyrazoles: A review.ARKIVOC20182018613920310.24820/ark.5550190.p010.622
    [Google Scholar]
  41. KumarA. LohanP. AnejaD.K. GuptaG.K. KaushikD. PrakashO. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles.Eur. J. Med. Chem.201250818910.1016/j.ejmech.2012.01.04222357113
    [Google Scholar]
  42. KashtohH. MuhammadM.T. KhanJ.J.A. RasheedS. KhanA. PerveenS. JavaidK. Atia-tul-Wahab KhalidM.K.. ChoudharyM.I. Dihydropyrano [2,3-c] pyrazole: Novel in vitro inhibitors of yeast α-glucosidase.Bioorg. Chem.201665617210.1016/j.bioorg.2016.01.00826874344
    [Google Scholar]
  43. ReddyG.M. KumariA.K. ReddyV.H. GarciaJ.R. Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: Design, synthesis, microbial resistance and machine aided results.Bioorg. Chem.202010010390810.1016/j.bioorg.2020.10390832413632
    [Google Scholar]
  44. DerabliC. BoualiaI. AbdelwahabA.B. BoulcinaR. BensouiciC. KirschG. DebacheA. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives.Bioorg. Med. Chem. Lett.201828142481248410.1016/j.bmcl.2018.05.06329887354
    [Google Scholar]
  45. MandhaS.R. SiliveriS. AllaM. BommenaV.R. BommineniM.R. BalasubramanianS. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles.Bioorg. Med. Chem. Lett.201222165272527810.1016/j.bmcl.2012.06.05522818081
    [Google Scholar]
  46. AllayehA.K. El-boghdadyA.H. SaidM.A. SalehM.G.A. Abdel-AalM.T. AboueleneinM.G. Discovery of Pyrano[2,3-c]pyrazole derivatives as novel potential human coronavirus inhibitors: Design, synthesis, in silico, in vitro, and ADME studies.Pharmaceuticals202417219810.3390/ph1702019838399412
    [Google Scholar]
  47. ShamsuddinM.A. AliA.H. ZakariaN.H. MohammatM.F. HamzahA.S. ShaameriZ. LamK.W. Mark-LeeW.F. AgustarH.K. Mohd Abd RazakM.R. LatipJ. HassanN.I. Synthesis, molecular docking, and antimalarial activity of Hybrid 4-Aminoquinoline-pyrano[2,3-c]pyrazole derivatives.Pharmaceuticals20211411117410.3390/ph1411117434832956
    [Google Scholar]
  48. DebasisD. ReenaB. AtanuM. Bioactive and pharmacologically important pyrano[2,3-c]pyrazoles.J. Chem. Pharm. Res.2014611108116
    [Google Scholar]
  49. El-WahabA.H.F.A. MohamedH.M. El-AgrodyA.M. El-NassagM.A. BedairA.H. Synthesis and biological screening of 4-benzyl-2H-phthalazine derivatives.Pharmaceuticals2011481158117010.3390/ph4081158
    [Google Scholar]
  50. Abd El-WahabA.H.F. Synthesis, reactions and evaluation of the antimicrobial activity of Some 4-(p-Halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives.Pharmaceuticals20125774575710.3390/ph507074524281710
    [Google Scholar]
  51. RadiniI.A. Abd El-WahabA.H.F. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part I: Synthesis of some new naphthopyrans and naphthopyranopyrimidines.Eur. J. Chem.20167223023710.5155/eurjchem.7.2.230‑237.1432
    [Google Scholar]
  52. El-WahabA.H.F.A. MohamedH.M. Synthesis and DFT Study of 7-Bromophenylnaphthopyran moieties.Asian J. Chem.20233581819182610.14233/ajchem.2023.28032
    [Google Scholar]
  53. MohamedH.M. Abd El-WahabA.H.F. Heteroaromatization with 4-Phenyldiazenyl-1-naphthol. Part IV: Synthesis of some new heterocyclic compounds with potential biological activity.Curr. Org. Synth.201916693193810.2174/157017941666619071910172731984914
    [Google Scholar]
  54. Abd El-WahabA.H.F. MosaH.M.K. AliH.H.A. MohammadY.M.A. Synthesis, antimicrobial, and antitumor activity of some new chromene compounds.Indian J. Heterocycl. Chem.202030369379
    [Google Scholar]
  55. AbdelwahabA.H.F. FekryS.A.H. Anti-cancerous properties of the synthesized substituted chromene compounds and their pharmacological activities.Lett. Drug Des. Discov.20232081098110610.2174/1570180819666220811102040
    [Google Scholar]
  56. RadiniI.A. HamedH.M. KharirM.A.Y. ElwahabA.H.F.A. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part II: Synthesis of some new benzochromens, benzochromenopyrimidines, benzochromenotriazolopyrimidines, benzochromenopyrimidotriazepine and antimicrobial activities.Eur. J. Chem.20178324024710.5155/eurjchem.8.3.240‑247.1599
    [Google Scholar]
  57. Ahmed B.R.M. AmriN.J.H. MukhrishY.E. Abd El-WahabA.H.F. MohamedH.M. IbrahimD.A.E-S. DeebA.D.H. Design, synthesis, reactions, molecular docking, antitumor activities of novel naphthopyran, naphthopyranopyrimidines, and naphthoyranotriazolopyrimidine derivatives.Curr. Org. Chem.202327191717172710.2174/0113852728264994231018063921
    [Google Scholar]
  58. Ahmed B.R.M. El-WahabA.H.F.A. Heteroaromatization of coumarin part I: Design, synthesis, reactions, antitumor activities of novel pyridine and naphthyridine derivatives.Curr. Org. Synth.202421457158110.2174/011570179426592423092006122238174438
    [Google Scholar]
  59. Abd El-WahabA.H.F. BorikR.M.A. Al-DiesA.A.M. FoudaA.M. MohamedH.M. El-EisawyR.A. MoraA. El-NassagM.A.A. Abd elhadyA.M. ElhenawyA.A. El-AgrodyA.M. Design, synthesis and bioactivity study on oxygen-heterocyclic-based pyran analogues as effective P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell.Sci. Rep.2024141758910.1038/s41598‑024‑56197‑w38555345
    [Google Scholar]
  60. El-WahabA.H.F.A. BorikR.M. Al-DiesA.A.M. FoudaA.M. MohamedH.M. El-EisawyR.A. SharafM.H. AlzahraniA.Y.A. ElhenawyA.A. El-AgrodyA.M. Targeted potent antimicrobial and antitumor oxygen-heterocyclic-based pyran analogues: Synthesis and computational studies.Sci. Rep.2024141986210.1038/s41598‑024‑59193‑238684707
    [Google Scholar]
  61. AbdelsalamE.A. Abd El-HafeezA.A. EldehnaW.M. El HassabM.A. MarzoukH.M.M. ElaasserM.M. Abou TalebN.A. AminK.M. Abdel-AzizH.A. GhoshP. HammadS.F. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer.J. Enzyme Inhib. Med. Chem.20223712265228210.1080/14756366.2022.210484136000167
    [Google Scholar]
  62. GomhaS.M. RiyadhS.M. MahmmoudE.A. ElaasserM.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic cata-lyst.Heterocycles2015911227124310.3987/COM‑15‑13210
    [Google Scholar]
  63. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution.Clin. Microbiol. Infect.20006950951510.1046/j.1469‑0691.2000.00142.x11168187
    [Google Scholar]
  64. Weinstein, M.P. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Clinical and laboratory standards institute:2018
    [Google Scholar]
  65. PedreiraA. VázquezJ.A. GarcíaM.R. Kinetics of bacterial adaptation, growth, and death at didecyldimethylammonium chloride sub-MIC concentrations.Front. Microbiol.20221375823710.3389/fmicb.2022.75823735464917
    [Google Scholar]
  66. JhanjiR. SinghA. KumarA. Antibacterial potential of selected phytomolecules: An experimental study.Microbiol. Immunol.202165832533210.1111/1348‑0421.1289033930208
    [Google Scholar]
  67. SinglaN. SinghG. BhatiaR. KumarA. KaurR. KaurS. Design, synthesis and antimicrobial evaluation of 1,3,4‐Oxadiazole/1,2,4‐triazole‐substituted Thiophenes.ChemistrySelect20205133835384210.1002/slct.202000191
    [Google Scholar]
  68. BochevarovA.D. HarderE. HughesT.F. GreenwoodJ.R. BradenD.A. PhilippD.M. RinaldoD. HallsM.D. ZhangJ. FriesnerR.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences.Int. J. Quantum Chem.2013113182110214210.1002/qua.24481
    [Google Scholar]
  69. GellibertF. WoolvenJ. FouchetM.H. MathewsN. GoodlandH. LovegroveV. LarozeA. NguyenV.L. SautetS. WangR. JansonC. SmithW. KrysaG. BoullayV. de GouvilleA.C. HuetS. HartleyD. Identification of 1,5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors.J. Med. Chem.200447184494450610.1021/jm040024715317461
    [Google Scholar]
  70. Fernández-TorneroC. GarcíaE. de Pascual-TeresaB. LópezR. Giménez-GallegoG. RomeroA. Ofloxacin-like antibiotics inhibit pneumococcal cell wall-degrading virulence factors.J. Biol. Chem.200528020199481995710.1074/jbc.M50123620015769740
    [Google Scholar]
  71. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  72. López-BlancoJ.R. AliagaJ.I. Quintana-OrtíE.S. ChacónP. iMODS: internal coordinates normal mode analysis server.Nucleic Acids Res.201442W1W271W27610.1093/nar/gku33924771341
    [Google Scholar]
  73. AlmaghrabiM. MusaA. AljohaniA.K.B. AhmedH.E.A. AlsulaimanyM. MiskiS.F. MostafaE.M. HusseinS. ParambiD.G.T. GhoneimM.M. ElgammalW.E. HalawaA.H. HammadA. El-AgrodyA.M. Introducing of novel class of pyrano[2,3- c ]pyrazole-5-carbonitrile analogs with potent antimicrobial activity, DNA gyrase inhibition, and prominent pharmacokinetic and CNS toxicity profiles supported by molecular dynamic simulation.J. Biomol. Struct. Dyn.202442189529954610.1080/07391102.2023.225208837661733
    [Google Scholar]
  74. HuangL.J. HourM.J. TengC.M. KuoS.C. Synthesis and antiplatelet activities of N-Arylmethyl-3,4-dimethylpyrano(2,3-c)pyrazol-6-one derivatives.Chem. Pharm. Bull.19924092547255110.1248/cpb.40.25471446375
    [Google Scholar]
  75. FarooqS. NgainiZ. Recent synthesis of Mono‐ & Bis‐Pyranopyrazole derivatives.ChemistrySelect202498e20240002810.1002/slct.202400028
    [Google Scholar]
  76. ZhangB. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids.Eur. J. Med. Chem.201916835737210.1016/j.ejmech.2019.02.05530826511
    [Google Scholar]
  77. MustafaG. Zia-ur-RehmanM. SumrraS.H. AshfaqM. ZafarW. AshfaqM. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives.J. Mol. Struct.2022126213304410.1016/j.molstruc.2022.133044
    [Google Scholar]
  78. HooperD.C. JacobyG.A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance.Cold Spring Harb. Perspect. Med.201669a02532010.1101/cshperspect.a02532027449972
    [Google Scholar]
  79. BushK. BradfordP.A. β-lactams and β-lactamase inhibitors: An overview.Cold Spring Harb. Perspect. Med.201668a02524710.1101/cshperspect.a02524727329032
    [Google Scholar]
  80. HandayaniD. PutriR. A. IsmedF. HertianiA. N.P. ProkschP. Bioactive metabolite from marine spongederived fungus Cochliobolus geniculatus WR12.rasayan J. Chem.202013141742210.31788/RJC.2020.1315517
    [Google Scholar]
  81. ShahT.A. AlamA. Zainab KhanM. ElhenawyA.A. AyazM. AliM. LatifA. ShahS.A.A. AhmadM. Experimental and computational profiling of novel bis-Schiff base derivatives bearing α-naphthalene moiety as potential tyrosinase inhibitors.J. Mol. Struct.20251321313991910.1016/j.molstruc.2024.139919
    [Google Scholar]
  82. ShakoorA. FareedG. AhmadI. ElhenawyA.A. KhanM. FareedN. Al-OlayanE. AbukhadraM.R. AlamA. IbrahimM. Exploring the anti-diabetic activity of benzimidazole containing Schiff base derivatives: In vitro α-amylase, α-glucosidase inhibitions and in silico studies.J. Mol. Struct.20251321514013610.1016/j.molstruc.2024.140136
    [Google Scholar]
  83. Al-DiesA.A.M. El-WahabA.H.F.A. AlamriA.A. BorikR.M.A. MohamedH.M. AssireyE.A. AlsehliM.H. MoussaZ. AlzamlyA. MehanyA.B.M. ElhenawyA.A. El-AgrodyA.M. Synthesis, crystal structure, DFT studies, molecular docking, of 2-amino-6-methoxy-4-(4-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile as tyrosinase inhibitor.J. Mol. Struct.20251322214028910.1016/j.molstruc.2024.140289
    [Google Scholar]
  84. ZhaoH. WeiJ. SunJ. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy.Int. Immunopharmacol.202089Pt B10710110.1016/j.intimp.2020.10710133099067
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206376210250319053528
Loading
/content/journals/acamc/10.2174/0118715206376210250319053528
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anticancer; antimicrobial; DFT; docking study; molecular dynamic; Pyranopyrazoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test