Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Breast cancer is a leading cause of mortality among women, emphasizing the need for novel therapeutic strategies. Targeting key receptors such as ERα, EGFR, and HER2 is critical for improving breast cancer treatments.

Objective

This study aimed to identify potent Baloxavir derivatives with inhibitory potential against ERα, EGFR, and HER2 and evaluate their pharmacokinetic properties and stability through computational methods.

Methods

A library of 72 Baloxavir derivatives was screened using molecular docking with AutoDock Vina. The top 32 compounds, ranked by binding affinity, were further assessed for ADMET properties. AutoDock 4.2 refined the docking analysis to identify potential inhibitors. The stability of the lead compound was validated through a 100 ns molecular dynamics simulation, evaluating RMSD, RMSF, Radius of Gyration, MolSA, SASA, and protein-ligand interactions.

Results

Seven compounds exhibited favorable ADMET profiles. Of these, six demonstrated strong inhibitory potential against ERα and HER2, while three showed promising activity against EGFR. Molecular dynamics simulations confirmed the stability of the lead compound, supporting its potential as a candidate for further development.

Conclusion

This computational study highlights Baloxavir derivatives as promising candidates for breast cancer therapy, providing a foundation for future preclinical investigations.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206361014250307084057
2025-03-18
2025-08-16
Loading full text...

Full text loading...

References

  1. ShahS.M. KhanR.A. ArifS. SajidU. Artificial intelligence for breast cancer analysis: Trends & directions.Comput. Biol. Med.202214210522110.1016/j.compbiomed.2022.10522135016100
    [Google Scholar]
  2. DasS.K. DekaS.J. PaulD. GuptaD.D. DasT.J. MaraviD.K. TagH. HuiP.K. In-silico based identification of phytochemicals from Houttuynia cordata Thunb. as potential inhibitors for overexpressed HER2 and VEGFR2 cancer genes.J. Biomol. Struct. Dyn.202240156857686710.1080/07391102.2021.189113633625319
    [Google Scholar]
  3. ElkhalifaA.E.O. Al-ShammariE. AlamM.J. AlcantaraJ.C. KhanM.A. EltoumN.E. AshrafS.A. Okra-derived dietary carotenoid lutein against breast cancer, with an approach towards developing a nutraceutical product: A meta-analysis study.J. Pharm. Res. Int.2021334013514210.9734/jpri/2021/v33i40A32230
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. AsmaS.T. AcarozU. ImreK. MorarA. ShahS.R.A. HussainS.Z. Arslan-AcarozD. DemirbasH. Hajrulai-MusliuZ. IstanbullugilF.R. SoleimanzadehA. MorozovD. ZhuK. HermanV. AyadA. AthanassiouC. InceS. Natural products/bioactive compounds as a source of anticancer drugs.Cancers (Basel)20221424620310.3390/cancers1424620336551687
    [Google Scholar]
  6. MuhammadS. SabaA. KheraR.A. Al-SehemiA.G. AlgarniH. IqbalJ. AlshahraniM.Y. ChaudhryA.R. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): Molecular docking and dynamic simulations.Mol. Simul.202248131163117410.1080/08927022.2022.2072840
    [Google Scholar]
  7. SarkarD. MaitiA.K. Virtual screening and molecular docking studies with organosulfur and flavonoid compounds of garlic targeting the estrogen receptor protein for the therapy of breast cancer.Biointerface Res. Appl. Chem.20221314910.33263/BRIAC131.049
    [Google Scholar]
  8. Rocha-RoaC. CortesE. CuestaS.A. MoraJ.R. PazJ.L. Flores-SumozaM. MárquezE.A. Study of potential inhibition of the estrogen receptor α by cannabinoids using an in silico approach: Agonist vs antagonist mechanism.Comput. Biol. Med.202315210640310.1016/j.compbiomed.2022.10640336543006
    [Google Scholar]
  9. SahayarayanJ.J. RajanK.S. VidhyavathiR. NachiappanM. PrabhuD. AlfarrajS. ArokiyarajS. DanielA.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches.Saudi J. Biol. Sci.202128140040710.1016/j.sjbs.2020.10.02333424323
    [Google Scholar]
  10. MondalA. BanerjeeS. BoseS. MazumderS. HaberR.A. FarzaeiM.H. BishayeeA. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations.Pharmacol. Res.202217510583710.1016/j.phrs.2021.10583734450316
    [Google Scholar]
  11. YuE. XuY. ShiY. YuQ. LiuJ. XuL. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy.J. Mol. Model.201925927810.1007/s00894‑019‑4156‑731463793
    [Google Scholar]
  12. PengJ. SenguptaS. JordanV.C. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer.Anticancer. Agents Med. Chem.20099548149910.2174/18715200978845183319519291
    [Google Scholar]
  13. ElkhalifaA.E.O. Al-ShammariE. KuddusM. AdnanM. SachidanandanM. AwadelkareemA.M. QattanM.Y. KhanM.I. AbduljabbarS.I. Sarwar BaigM. AshrafS.A. Structure-based multi-targeted molecular docking and dynamic simulation of soybean-derived isoflavone genistin as a potential breast cancer signaling proteins inhibitor.Life (Basel)2023138173910.3390/life1308173937629596
    [Google Scholar]
  14. SlamonD. J. ClarkG. M. WongS. G. Human breast cancer: Correlation of relapse and survival with amplification.Science.1987235478517718210.1126/science.37981063798106
    [Google Scholar]
  15. AshtekarS.S. BhatiaN.M. BhatiaM.S. Exploration of leads from natural domain targeting HER2 in breast cancer: An in-silico approach.Int. J. Pept. Res. Ther.201925265966710.1007/s10989‑018‑9712‑y
    [Google Scholar]
  16. WieduwiltM.J. MoasserM.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics.Cell. Mol. Life Sci.200865101566158410.1007/s00018‑008‑7440‑818259690
    [Google Scholar]
  17. SchaeferG. ShaoL. TotpalK. AkitaR.W. Erlotinib directly inhibits HER2 kinase activation and downstream signaling events in intact cells lacking epidermal growth factor receptor expression.Cancer Res.20076731228123810.1158/0008‑5472.CAN‑06‑349317283159
    [Google Scholar]
  18. IqbalN. IqbalN. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications.Mol. Biol. Int.201420141910.1155/2014/85274825276427
    [Google Scholar]
  19. BursteinH.J. The distinctive nature of HER2-positive breast cancers.N. Engl. J. Med.2005353161652165410.1056/NEJMp05819716236735
    [Google Scholar]
  20. PrabhavathiH. DasegowdaK.R. RenukanandaK.H. KarunakarP. LingarajuK. NaikaR.H. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents.J. Biomol. Struct. Dyn.202240104713472410.1080/07391102.2020.186198233345701
    [Google Scholar]
  21. WiraswatiH.L. BashariM.H. AlfarafisaN.M. Ma’rufI.F. SholikhahE.N. WahyuningsihT.D. SatriyoP.B. MustofaM. SatriaD. DamayantiE. Virtual screening of anticancer activity of chalcones and pyrazolines as potential EGFR, VEGFR, and cytochrome P450 inhibitors.J. Pharm. Pharmacogn. Res.202311469971310.56499/jppres23.1591_11.4.699
    [Google Scholar]
  22. Mustofa SatriyoP.B. SumaA.A.T. WaskithaS.S.W. WahyuningsihT.D. SholikhahE.N. A potent EGFR inhibitor, n-phenyl pyrazoline derivative suppresses aggressiveness and cancer stem cell-like phenotype of cervical cancer cells.Drug Des. Devel. Ther.2022162325233910.2147/DDDT.S35091335899233
    [Google Scholar]
  23. TobitaK. KijimaH. DowakiS. KashiwagiH. OhtaniY. OidaY. YamazakiH. NakamuraM. UeyamaY. TanakaM. InokuchiS. MakuuchiH. Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis.Int. J. Mol. Med.200311330530910.3892/ijmm.11.3.30512579331
    [Google Scholar]
  24. CiardielloF. TortoraG. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor.Clin. Canc. Res.20017102958297011595683
    [Google Scholar]
  25. MatadaP.G.S DhiwarP.S. AbbasN. SinghE. GharaA. DasA. BhargavaS.V. Molecular docking and molecular dynamic studies: Screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer.J. Biomol. Struct. Dyn.202240136183619210.1080/07391102.2021.187782333525984
    [Google Scholar]
  26. AcharyaR. ChackoS. BoseP. LapennaA. PattanayakS.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer.Sci. Rep.2019911574310.1038/s41598‑019‑52162‑031673107
    [Google Scholar]
  27. RasoolN. QaddirI. HussainW. MahmoodS. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies.J. Vector Borne Dis.201754325526210.4103/0972‑9062.21761729097641
    [Google Scholar]
  28. WadoodA. AhmedN. ShahL. AhmadA. HassanH. ShamsS. In-silico drug design: An approach which revolutionarised the drug discovery process.OA Drug Desi. Deliv.201311111910.13172/2054‑4057‑1‑1‑1119
    [Google Scholar]
  29. GayathiriE. PrakashP. KumaravelP. JayaprakashJ. RagunathanM.G. SankarS. PandiarajS. ThirumalaivasanN. ThiruvengadamM. GovindasamyR. Computational approaches for modeling and structural design of biological systems: A comprehensive review.Prog. Biophys. Mol. Biol.2023185173210.1016/j.pbiomolbio.2023.08.00237821048
    [Google Scholar]
  30. JhaR.K. KhanR.J. AmeraG.M. SinghE. PathakA. JainM. MuthukumaranJ. SinghA.K. Identification of promising molecules against MurD ligase from Acinetobacter baumannii: Insights from comparative protein modelling, virtual screening, molecular dynamics simulations and MM/PBSA analysis.J. Mol. Model.2020261130410.1007/s00894‑020‑04557‑433068184
    [Google Scholar]
  31. MuhammedM.T. Aki-YalcinE. Molecular docking: Principles, advances, and its applications in drug discovery.Lett. Drug Des. Discov.202421348049510.2174/1570180819666220922103109
    [Google Scholar]
  32. ScarpinoA. PetriL. KnezD. ImreT. Ábrányi-BaloghP. FerenczyG.G. GobecS. KeserűG.M. WIDOCK: A reactive docking protocol for virtual screening of covalent inhibitors.J. Comput. Aided Mol. Des.202135222324410.1007/s10822‑020‑00371‑533458809
    [Google Scholar]
  33. HuiT.X. LeL.J. GauravA. Pharmacophore modelling and virtual screening studies for the discovery of natural product-based PDE 3/4 dual inhibitors for COPD.Lett. Drug Des. Discov.2022191090592410.2174/1570180819666220209150035
    [Google Scholar]
  34. En-nahliF. BaammiS. HajjiH. AlaqarbehM. LakhlifiT. BouachrineM. High-throughput virtual screening approach of natural compounds as target inhibitors of plasmepsin-II.J. Biomol. Struct. Dyn.20222111110.1080/07391102.2022.215287136469727
    [Google Scholar]
  35. SiniprasadP. NairB. BalasubramaniamV. SadanandanP. NambooriP.K. NathL.R. Evaluation of kaempferol as AKT dependent mTOR regulator via targeting FKBP-12 in hepatocellular carcinoma: An in silico approach.Lett. Drug Des. Discov.202017111401140810.2174/1570180817999200623115703
    [Google Scholar]
  36. ElseginyS.A. Identifying and characterising promising small molecule inhibitors of kinesin spindle protein using ligand-based virtual screening, molecular docking, molecular dynamics and MM‑GBSA calculations.J. Comput. Aided Mol. Des.20243811610.1007/s10822‑024‑00553‑538556596
    [Google Scholar]
  37. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  38. Shams ul HassanS. AbbasS.Q. HassanM. JinH-Z. Computational exploration of anti-cancer potential of guaiane dimers from xylopia vielana by targeting B-Raf kinase using chemo-informatics, molecular docking, and MD simulation studies.Anticancer. Agents Med. Chem.202222473174610.2174/1871520621666211013115500
    [Google Scholar]
  39. Unni PA. SudhakaranS.L. PillaiG.G. Review on druggable targets of key age‐associated properties regulated by therapeutic agents.Chem. Biol. Drug Des.20209641069108310.1111/cbdd.1375932679616
    [Google Scholar]
  40. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChaoH. ChenL. CraigP.A. CrichlowG.V. DalenbergK. DuarteJ.M. DuttaS. FayaziM. FengZ. FlattJ.W. GanesanS. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. HenryJ. HudsonB.P. KhokhriakovI. LawsonC.L. LiangY. LoweR. PeisachE. PersikovaI. PiehlD.W. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. VallatB. VoigtM. WebbB. WestbrookJ.D. WhetstoneS. YoungJ.Y. ZalevskyA. ZardeckiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac107736420884
    [Google Scholar]
  41. RajuS.K. KumarS. SekarP. SundhararajanN. NagalingamY. Ligand based multi-targeted molecular docking analysis of terpenoid phytoconstituents as potential chemotherapeutic agents against breast cancer: An in silico approach.J. Pharm. Res.2023222556210.18579/jopcr/v22.2.23.5
    [Google Scholar]
  42. SohrabS.S. KamalM.A. Screening, docking, and molecular dynamics study of natural compounds as an anti-HER2 for the management of breast cancer.Life (Basel)20221211172910.3390/life1211172936362883
    [Google Scholar]
  43. DeganuttiG. PrischiF. ReynoldsC.A. Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein.J. Comput. Aided Mol. Des.202135219520710.1007/s10822‑020‑00356‑433103220
    [Google Scholar]
  44. JáafaruS.C. UzairuA. SallauM.S. NdukweG.I. IbrahimM.T. TabtiK. KandpalP. KumarV. In-silico exploration and structure-based design of praziquantel derivatives as potential inhibitors of schistosoma mansoni glutathione S-transferase (SmGST).Sci. Afr.202424e0216910.1016/j.sciaf.2024.e02169
    [Google Scholar]
  45. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Meth. Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_1925618350
    [Google Scholar]
  46. ZrinejJ. ElmchichiL. AlaqarbehM. LakhlifiT. BouachrineM. Computational approach: 3D-QSAR, molecular docking, ADMET, molecular dynamics simulation investigations, and retrosynthesis of some curcumin analogues as PARP-1 inhibitors targeting colon cancer.New J. Chem.20234745209872100910.1039/D3NJ03981A
    [Google Scholar]
  47. BelghaliaE. BahiS. OuabaneM. 4-Phenoxypyridine derivatives containing imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide moieties as powerful antitumor agents.RHAZES Green Appl. Chem.202216334510.48419/IMIST.PRSM/RHAZES‑V16.35251
    [Google Scholar]
  48. YamariI. AbchirO. MaliS.N. ErrouguiA. TalbiM. KoualiM.E. ChtitaS. The anti-SARS-CoV-2 activity of novel 9, 10-dihydrophenanthrene derivatives: An insight into molecular docking, ADMET analysis, and molecular dynamics simulation.Sci. Afr.202321e0175410.1016/j.sciaf.2023.e0175437332393
    [Google Scholar]
  49. ZeghebN. BoubekriC. LanezT. LanezE. KüçükkılınçT.T. ÖzE. KhennoufaA. KhamouliS. BelaidiS. In vitro and in silico determination of some n-ferrocenylmethylaniline derivatives as anti-proliferative agents against MCF-7 human breast cancer cell lines.Anticancer. Agents Med. Chem.20222271426143710.2174/187152062166621062414171234170810
    [Google Scholar]
  50. DhawaleS.A. DabhadeP.S. MokaleS.N. Discovery of new quinazoline derivatives as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative studies.Anticancer. Agents Med. Chem.202323182042205510.2174/187152062366623071415245537455449
    [Google Scholar]
  51. BowersK.J. ChowD.E. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters.SC '06: Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA, 11-17 2006, pp. 43-43.10.1109/SC.2006.54
    [Google Scholar]
  52. KumarS. BhadaneR. ShandilyaS. Salo-AhenO.M.H. KapilaS. Identification of HPr kinase/phosphorylase inhibitors: Novel antimicrobials against resistant Enterococcus faecalis.J. Comput. Aided Mol. Des.202236750752010.1007/s10822‑022‑00461‑635809194
    [Google Scholar]
  53. OuabaneM. ZakiK. TabtiK. AlaqarbehM. SbaiA. SekkateC. BouachrineM. LakhlifiT. Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations.Comput. Biol. Med.202416910788010.1016/j.compbiomed.2023.10788038211383
    [Google Scholar]
  54. BelghaliaE. OuabaneM. El BahiS. RehmanH.M. SbaiA. LakhlifiT. BouachrineM. In silico research on new sulfonamide derivatives as BRD4 inhibitors targeting acute myeloid leukemia using various computational techniques including 3D-QSAR, HQSAR, molecular docking, ADME/TOX, and molecular dynamics.J. Biomol. Struct. Dyn.20232211910.1080/07391102.2023.225046037656159
    [Google Scholar]
  55. AbchirO. DaouiO. NourH. YamariI. ElkhattabiS. ErrouguiA. ChtitaS. Exploration of Cannabis constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics simulations and ADMET investigations.Sci. Afr.202321e0174510.1016/j.sciaf.2023.e01745
    [Google Scholar]
  56. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  57. ElbouhiM. OuabaneM. TabtiK. BadaouiH. AbdessadakO. El AlaouyM.A. ElkamelK. LakhlifiT. SbaiA. AjanaM.A. BouachrineM. Computational evaluation of 1,2,3-triazole-based VEGFR-2 inhibitors: Anti-angiogenesis potential and pharmacokinetic assessment.J. Biomol. Struct. Dyn.202543525495910.1080/07391102.2023.230168638193897
    [Google Scholar]
  58. El BahiS. BoutalakaM. El AlaouyM.A. BouamraneS. AlaqarbehM. ChoukradM. SbaiA. BouachrineM. LakhlifiT. Computational investigation of novel pyrimidine derivatives as potent FAK inhibitors via 3D-QSAR, molecular docking, molecular dynamics simulation and retrosynthesis.New J. Chem.20234727128161282910.1039/D3NJ02471G
    [Google Scholar]
  59. SinghS. RaiG. Structural insights into the IL12:IL12 receptor complex assembly by molecular modeling, docking, and molecular dynamics simulation.Comb. Chem. High Throughput Screen.202225467768810.2174/138620732366620120711374533292129
    [Google Scholar]
  60. BanerjeeS. BaidyaS.K. GhoshB. NandiS. MandalM. JhaT. AdhikariN. Quantitative structural assessments of potential meprin β inhibitors by non-linear QSAR approaches and validation by binding mode of interaction analysis.New J. Chem.202347157051706910.1039/D2NJ04753E
    [Google Scholar]
  61. BanerjeeS. JanaS. JhaT. GhoshB. AdhikariN. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches.Comput. Biol. Chem.202411010805110.1016/j.compbiolchem.2024.10805138520883
    [Google Scholar]
  62. LankaG. BegumD. BanerjeeS. AdhikariN. PY. GhoshB. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors.Comput. Biol. Med.202316610748110.1016/j.compbiomed.2023.10748137741229
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206361014250307084057
Loading
/content/journals/acamc/10.2174/0118715206361014250307084057
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test