Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Glioblastoma (GB) remains a formidable challenge in oncology, with current treatment approaches providing only marginal improvements in patient outcomes. Despite significant advances in understanding its molecular and genetic characteristics, median survival for untreated patients remains distressingly low, emphasizing the urgent need for novel therapeutic strategies. This review comprehensively examines the standard first-line treatments for GB, including surgery, concomitant radio-chemotherapy, and maintenance chemotherapy, while highlighting the limitations of these approaches. Consequently, we explore emerging novel therapeutic modalities such as Oncolytic Viral Therapy with genetically modified oncolytic viruses that enhance the capabilities of antigen-presenting cells. These cells migrate to lymph nodes to recruit cytotoxic CD8+ T lymphocytes, directing them to the site of infection where they eradicate cells that promote tumour growth. Aptamer-based therapies, such as GMT-3, AS1411, GS24, GMT8, and Gint4.T, which exhibit specificity for their biological targets and can act as drug transporters by facilitating receptor-mediated transcytosis within the endothelial cells of the blood-brain barrier, thus improving drug delivery. Tumour-treating fields (TTFields) that have shown increased overall survival rates in patients. Personalized genomic medicine, driven by biomarkers, which provokes immune responses tailored to the tumour’s specific antigens, thereby customizing patient-specific treatments to improve effectiveness. By synthesizing current evidence and recent breakthroughs, we underscore the potential use of advancing novel therapies to address the unmet clinical needs of GB patients and ultimately enhance their overall survival and quality of life.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206364677250401190214
2025-04-10
2025-12-30
Loading full text...

Full text loading...

References

  1. GrochansS. CybulskaA.M. SimińskaD. KorbeckiJ. KojderK. ChlubekD. Baranowska-BosiackaI. Epidemiology of glioblastoma multiforme–literature review.Cancers 20221410241210.3390/cancers14102412 35626018
    [Google Scholar]
  2. RončevićA. KorugaN. SoldoK.A. RončevićR. RotimT. ŠimundićT. KretićD. PerićM. TurkT. ŠtimacD. Personalized treatment of glioblastoma: Current state and future perspective.Biomedicines2023116157910.3390/biomedicines11061579 37371674
    [Google Scholar]
  3. GilardV. TebaniA. DabajI. LaquerrièreA. FontanillesM. DerreyS. MarretS. BekriS. Diagnosis and management of glioblastoma: A comprehensive perspective.J. Pers. Med.202111425810.3390/jpm11040258 33915852
    [Google Scholar]
  4. KimM. LadomerskyE. MoznyA. KocherginskyM. O’SheaK. ReinsteinZ.Z. ZhaiL. BellA. LauingK.L. BolluL. RabinE. DixitK. KumthekarP. PlataniasL.C. HouL. ZhengY. WuJ. ZhangB. HrachovaM. MerrillS.A. MrugalaM.M. PrabhuV.C. HorbinskiC. JamesC.D. YaminiB. OstromQ.T. JohnsonM.O. ReardonD.A. LukasR.V. WainwrightD.A. Glioblastoma as an age-related neurological disorder in adults.Neurooncol. Adv.202131vdab12510.1093/noajnl/vdab125 34647022
    [Google Scholar]
  5. TouatM. IdbaihA. SansonM. LigonK.L. Glioblastoma targeted therapy: Updated approaches from recent biological insights.Ann. Oncol.20172871457147210.1093/annonc/mdx106 28863449
    [Google Scholar]
  6. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab106 34185076
    [Google Scholar]
  7. HollandE.C. EneC.I. Personalized medicine for gliomas.Surg. Neurol. Int.201562Suppl. 18910.4103/2152‑7806.151351 25722938
    [Google Scholar]
  8. LimamS. MissaouiN. AbdessayedN. MestiriS. SelmiB. MokniM. YacoubiM.T. Prognostic significance of MGMT methylation and expression of MGMT, P53, EGFR, MDM2 and PTEN in glioblastoma multiforme.Ann. Biol. Clin. (Paris)201977330731710.1684/abc.2019.1448 31131831
    [Google Scholar]
  9. DeCordovaS. ShastriA. TsolakiA.G. YasminH. KleinL. SinghS.K. KishoreU. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma.Front. Immunol.202011140210.3389/fimmu.2020.01402 32765498
    [Google Scholar]
  10. ShuklaG. AlexanderG.S. BakasS. NikamR. TalekarK. PalmerJ.D. ShiW. Advanced magnetic resonance imaging in glioblastoma: A review.Chin. Clin. Oncol2017644010.21037/cco.2017.06.28 28841802
    [Google Scholar]
  11. WilhelmssonU. EliassonC. BjerkvigR. PeknyM. Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression.Oncogene200322223407341110.1038/sj.onc.1206372 12776191
    [Google Scholar]
  12. JungC.S. FoerchC. SchänzerA. HeckA. PlateK.H. SeifertV. SteinmetzH. RaabeA. SitzerM. Serum GFAP is a diagnostic marker for glioblastoma multiforme.Brain2007130123336334110.1093/brain/awm263 17998256
    [Google Scholar]
  13. CzarnywojtekA. BorowskaM. DyrkaK. Van GoolS. Sawicka-GutajN. MoskalJ. KościńskiJ. GraczykP. HałasT. LewandowskaA.M. CzepczyńskiR. RuchałaM. Glioblastoma multiforme: The latest diagnostics and treatment techniques.Pharmacology2023108542343110.1159/000531319 37459849
    [Google Scholar]
  14. StuppR. MasonW.P. van den BentM.J. WellerM. FisherB. TaphoornM.J.B. BelangerK. BrandesA.A. MarosiC. BogdahnU. CurschmannJ. JanzerR.C. LudwinS.K. GorliaT. AllgeierA. LacombeD. CairncrossJ.G. EisenhauerE. MirimanoffR.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N. Engl. J. Med.20053521098799610.1056/NEJMoa043330 15758009
    [Google Scholar]
  15. McBainC. LawrieT.A. RogozińskaE. KernohanA. RobinsonT. JefferiesS. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis.Cochrane Database Syst. Rev.202151CD013579 34559423
    [Google Scholar]
  16. MohanG. AyishaH.T.P. NarayanasamyA. VellingiriB. Recent advances in radiotherapy and its associated side effects in cancer: A review.J. Basic Appl. Zool.201980110
    [Google Scholar]
  17. LiuM. ThakkarJ.P. GarciaC.R. DolecekT.A. WagnerL.M. DresslerE.V.M. VillanoJ.L. National cancer database analysis of outcomes in pediatric glioblastoma.Cancer Med.2018741151115910.1002/cam4.1404 29532996
    [Google Scholar]
  18. NowakB. RogujskiP. JanowskiM. LukomskaB. AndrzejewskaA. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all.Biochim. Biophys. Acta Rev. Cancer20211876118858210.1016/j.bbcan.2021.188582 34144129
    [Google Scholar]
  19. AngomR.S. NakkaN.M.R. BhattacharyaS. Advances in glioblastoma therapy: An update on current approaches.Brain Sci.20231311153610.3390/brainsci13111536 38002496
    [Google Scholar]
  20. GujarS. BellJ. DialloJ.S. SnapShot: Cancer immunotherapy with oncolytic viruses.Cell2019176512401240.e110.1016/j.cell.2019.01.051 30794777
    [Google Scholar]
  21. AsijaS. ChatterjeeA. YadavS. ChekuriG. KarulkarA. JaiswalA.K. GodaJ.S. PurwarR. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds.Int. Rev. Immunol.202241658260510.1080/08830185.2022.2101647 35938932
    [Google Scholar]
  22. AliS. XiaQ. MuhammadT. LiuL. MengX. Bars-CortinaD. KhanA.A. HuangY. DongL. Glioblastoma therapy: Rationale for a mesenchymal stem cell-based vehicle to carry recombinant viruses.Stem Cell Rev. Rep.202218252354310.1007/s12015‑021‑10207‑w 34319509
    [Google Scholar]
  23. RongL. LiN. ZhangZ. Emerging therapies for glioblastoma: Current state and future directions.J. Exp. Clin. Cancer Res.202241114210.1186/s13046‑022‑02349‑7 35428347
    [Google Scholar]
  24. BlitzS.E. KappelA.D. GesslerF.A. KlingerN.V. ArnaoutO. LuY. PeruzziP.P. SmithT.R. ChioccaE.A. FriedmanG.K. BernstockJ.D. Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: A double-edged sword.Int. J. Mol. Sci.2022233180810.3390/ijms23031808 35163730
    [Google Scholar]
  25. ZhouC. ChenQ. ChenY. QinC.F. Oncolytic Zika virus: New option for glioblastoma treatment.DNA Cell Biol.202342626727310.1089/dna.2022.0375 36350682
    [Google Scholar]
  26. MarelliG. HowellsA. LemoineN.R. WangY. Oncolytic viral therapy and the immune system: A double-edged sword against cancer.Front. Immunol.2018986610.3389/fimmu.2018.00866 29755464
    [Google Scholar]
  27. MarkertJ.M. RazdanS.N. KuoH.C. CantorA. KnollA. KarraschM. NaborsL.B. MarkiewiczM. AgeeB.S. ColemanJ.M. LakemanA.D. PalmerC.A. ParkerJ.N. WhitleyR.J. WeichselbaumR.R. FiveashJ.B. GillespieG.Y. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses.Mol. Ther.20142251048105510.1038/mt.2014.22 24572293
    [Google Scholar]
  28. KicielinskiK.P. ChioccaE.A. YuJ.S. GillG.M. CoffeyM. MarkertJ.M. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults.Mol. Ther.20142251056106210.1038/mt.2014.21 24553100
    [Google Scholar]
  29. DesjardinsA. GromeierM. HerndonJ.E.II BeaubierN. BolognesiD.P. FriedmanA.H. FriedmanH.S. McSherryF. MuscatA.M. NairS. PetersK.B. RandazzoD. SampsonJ.H. VlahovicG. HarrisonW.T. McLendonR.E. AshleyD. BignerD.D. Recurrent glioblastoma treated with recombinant poliovirus.N. Engl. J. Med.2018379215016110.1056/NEJMoa1716435 29943666
    [Google Scholar]
  30. MehtaA.M. SonabendA.M. BruceJ.N. Convection-enhanced delivery.Neurotherapeutics201714235837110.1007/s13311‑017‑0520‑4 28299724
    [Google Scholar]
  31. BauzonM. HermistonT. Armed therapeutic viruses: A disruptive therapy on the horizon of cancer immunotherapy.Front. Immunol.201457410.3389/fimmu.2014.00074 24605114
    [Google Scholar]
  32. ShahS. Novel therapies in glioblastoma treatment: Review of glioblastoma; Current treatment options; and novel oncolytic viral therapies.Med. Sci.2023121110.3390/medsci12010001 38249077
    [Google Scholar]
  33. HsuE. KeeneD. VentureyraE. MatzingerM.A. JimenezC. WangH.S. GrimardL. Bone marrow metastasis in astrocytic gliomata.J. Neurooncol.199837328529310.1023/A:1005909127196 9524086
    [Google Scholar]
  34. HamadA. YusubalievaG.M. BaklaushevV.P. ChumakovP.M. LipatovaA.V. Recent developments in glioblastoma therapy: oncolytic viruses and emerging future strategies.Viruses202315254710.3390/v15020547 36851761
    [Google Scholar]
  35. ChatterjeeD. BhattacharyaS. KumariL. DattaA. Aptamers: Ushering in new hopes in targeted glioblastoma therapy.J. Drug Target.20243291005102810.1080/1061186X.2024.2373306 38923419
    [Google Scholar]
  36. NakhjavaniM. ShigdarS. Future of PD-1/PD-L1 axis modulation for the treatment of triple-negative breast cancer.Pharmacol. Res.202217510601910.1016/j.phrs.2021.106019 34861397
    [Google Scholar]
  37. Glioblastoma treatment with irradiation and Olaptesed Pegol (NOX-A12). NC Patent T041214552022
  38. LiZ. FuX. HuangJ. ZengP. HuangY. ChenX. LiangC. Advances in screening and development of therapeutic aptamers against cancer cells.Front. Cell Dev. Biol.2021966279110.3389/fcell.2021.662791 34095130
    [Google Scholar]
  39. GilesB. SamarasingheR.M. ShigdaS. Rising to the challenge: Recent aptamer-conjugate success in treating glioblastoma.Aptamers (Oxf.)202262837
    [Google Scholar]
  40. SefahK. ShangguanD. XiongX. O’DonoghueM.B. TanW. Development of DNA aptamers using Cell-SELEX.Nat. Protoc.2010561169118510.1038/nprot.2010.66 20539292
    [Google Scholar]
  41. MahmoudianF. AhmariA. ShabaniS. SadeghiB. FahimiradS. FattahiF. Aptamers as an approach to targeted cancer therapy.Cancer Cell Int.202424110810.1186/s12935‑024‑03295‑4 38493153
    [Google Scholar]
  42. RuscitoA. DeRosaM.C. Small-molecule binding aptamers: Selection strategies, characterization, and applications.Front Chem.201641410.3389/fchem.2016.00014 27242994
    [Google Scholar]
  43. HanJ. GaoL. WangJ. WangJ. Application and development of aptamer in cancer: From clinical diagnosis to cancer therapy.J. Cancer202011236902691510.7150/jca.49532 33123281
    [Google Scholar]
  44. WangR.E. WuH. NiuY. CaiJ. Improving the stability of aptamers by chemical modification.Curr. Med. Chem.201118274126413810.2174/092986711797189565 21838692
    [Google Scholar]
  45. HenriJ.L. NakhjavaniM. McCoombeS. ShigdarS. Cytotoxic effects of aptamer-doxorubicin conjugates in an ovarian cancer cell line.Biochimie202320410811710.1016/j.biochi.2022.09.005 36155804
    [Google Scholar]
  46. FuW. YouC. MaL. LiH. JuY. GuoX. ShiS. ZhangT. ZhouR. LinY. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma.ACS Appl. Mater. Interfaces20191143395253953310.1021/acsami.9b13829 31601097
    [Google Scholar]
  47. BayracA.T. SefahK. ParekhP. BayracC. GulbakanB. OktemH.A. TanW. In vitro selection of DNA aptamers to glioblastoma multiforme.ACS Chem. Neurosci.20112317518110.1021/cn100114k 21892384
    [Google Scholar]
  48. LuoZ. YanZ. JinK. PangQ. JiangT. LuH. LiuX. PangZ. YuL. JiangX. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)–paclitaxel nanoconjugates.J. Colloid Interface Sci.201749078379610.1016/j.jcis.2016.12.004 27988470
    [Google Scholar]
  49. ZengY. ZhaoL. LiK. MaJ. ChenD. LiuC. ZhanW. ZhanY. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia.Nano Res.20231679859987210.1007/s12274‑023‑5742‑7
    [Google Scholar]
  50. ShiS. FuW. LinS. TianT. LiS. ShaoX. ZhangY. ZhangT. TangZ. ZhouY. LinY. CaiX. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier.Nanomedicine 20192110206110.1016/j.nano.2019.102061 31344499
    [Google Scholar]
  51. EspositoC.L. NuzzoS. IbbaM.L. Ricci-VitianiL. PalliniR. CondorelliG. CatuognoS. de FranciscisV. Combined targeting of glioblastoma stem-like cells by neutralizing RNA-bio-drugs for STAT3.Cancers 2020126143410.3390/cancers12061434 32486489
    [Google Scholar]
  52. YoonS. WuX. ArmstrongB. HabibN. RossiJ.J. An RNA aptamer targeting the receptor tyrosine kinase PDGFRα induces anti-tumor effects through STAT3 and p53 in glioblastoma.Mol. Ther. Nucleic Acids20191413114110.1016/j.omtn.2018.11.012 30594071
    [Google Scholar]
  53. AntonJ. SudibioS. HandokoH. PermataT. KodratH. NuryadiE. SofyanH. SusantoE. MulyadiR. AmanR. GondhowiardjoS. Overexpression of c-Met is associated with poor prognosis in glioblastoma multiforme: A systematic review and meta-analyses.Asian Pac. J. Cancer Prev.202122103075308010.31557/APJCP.2021.22.10.3075 34710981
    [Google Scholar]
  54. ZhangX. LiangH. TanY. WuX. LiS. ShiY.A. U87-EGFRvIII cell-specific aptamer mediates small interfering RNA delivery.Biomed. Rep.20142449549910.3892/br.2014.276 24944794
    [Google Scholar]
  55. EspositoC.L. NuzzoS. KumarS.A. RienzoA. LawrenceC.L. PalliniR. ShawL. AlderJ.E. Ricci-VitianiL. CatuognoS. de FranciscisV. A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells.J. Control. Release2016238435710.1016/j.jconrel.2016.07.032 27448441
    [Google Scholar]
  56. VermeerA.W.P. NordeW. The thermal stability of immunoglobulin: Unfolding and aggregation of a multi-domain protein.Biophys. J.200078139440410.1016/S0006‑3495(00)76602‑1 10620303
    [Google Scholar]
  57. PapademetriouI.T. PorterT. Promising approaches to circumvent the blood-brain barrier: Progress, pitfalls and clinical prospects in brain cancer.Ther. Deliv.201568989101610.4155/tde.15.48 26488496
    [Google Scholar]
  58. ZhouG. LatchoumaninO. HebbardL. DuanW. LiddleC. GeorgeJ. QiaoL. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers.Adv. Drug Deliv. Rev.201813410712110.1016/j.addr.2018.04.005 29627370
    [Google Scholar]
  59. SongY. ZhuZ. AnY. ZhangW. ZhangH. LiuD. YuC. DuanW. YangC.J. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture.Anal. Chem.20138584141414910.1021/ac400366b 23480100
    [Google Scholar]
  60. HeF. XiongY. LiuJ. TongF. YanD. Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis.Biosens. Bioelectron.20167779980410.1016/j.bios.2015.10.054 26513286
    [Google Scholar]
  61. KeefeA.D. PaiS. EllingtonA. Aptamers as therapeutics.Nat. Rev. Drug Discov.20109753755010.1038/nrd3141 20592747
    [Google Scholar]
  62. LolloB. SteeleF. GoldL. Beyond antibodies: New affinity reagents to unlock the proteome.Proteomics201414663864410.1002/pmic.201300187 24395722
    [Google Scholar]
  63. BukariB. SamarasingheR.M. NoibanchongJ. ShigdarS.L. Non-invasive delivery of therapeutics into the brain: the potential of aptamers for targeted delivery.Biomedicines20208512010.3390/biomedicines8050120 32422973
    [Google Scholar]
  64. UribeM.L. MarroccoI. YardenY. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers 20211311274810.3390/cancers13112748 34206026
    [Google Scholar]
  65. Díaz-SerranoA. GellaP. JiménezE. ZugazagoitiaJ. Paz-Ares RodríguezL. Targeting EGFR in lung cancer: Current standards and developments.Drugs201878989391110.1007/s40265‑018‑0916‑4 29915896
    [Google Scholar]
  66. LiF. WuH. DuX. SunY. RausseoB.N. TalukderA. KatailihaA. ElzoharyL. WangY. WangZ. LizéeG. Epidermal growth factor receptor-targeted neoantigen peptide vaccination for the treatment of non-small cell lung cancer and glioblastoma.Vaccines 2023119146010.3390/vaccines11091460 37766136
    [Google Scholar]
  67. ZhangZ. LuM. QinY. GaoW. TaoL. SuW. ZhongJ. Neoantigen: A new breakthrough in tumor immunotherapy.Front. Immunol.20211267235610.3389/fimmu.2021.672356 33936118
    [Google Scholar]
  68. NaeimiR. BahmaniA. AfsharS. Investigating the role of peptides in effective therapies against cancer.Cancer Cell Int.202222113910.1186/s12935‑022‑02553‑7 35346211
    [Google Scholar]
  69. BattagliaS. Neoantigen prediction from genomic and transcriptomic data. Methods Enzymol.202063526728110.1016/bs.mie.2019.10.003 32122550
    [Google Scholar]
  70. YamadaT. AzumaK. MutaE. KimJ. SugawaraS. ZhangG.L. MatsuedaS. Kasama-KawaguchiY. YamashitaY. YamashitaT. NishioK. ItohK. HoshinoT. SasadaT. EGFR T790M mutation as a possible target for immunotherapy; identification of HLA-A*0201-restricted T cell epitopes derived from the EGFR T790M mutation.PLoS One2013811e7838910.1371/journal.pone.0078389 24223798
    [Google Scholar]
  71. OfujiK. TadaY. YoshikawaT. ShimomuraM. YoshimuraM. SaitoK. NakamotoY. NakatsuraT. A peptide antigen derived from EGFR T790M is immunogenic in non-small cell lung cancer.Int. J. Oncol.201546249750410.3892/ijo.2014.2787 25532027
    [Google Scholar]
  72. AkazawaY. SaitoY. YoshikawaT. SaitoK. NosakaK. ShimomuraM. MizunoS. NakamotoY. NakatsuraT. Efficacy of immunotherapy targeting the neoantigen derived from epidermal growth factor receptor T790M/C797S mutation in non–small cell lung cancer.Cancer Sci.202011182736274610.1111/cas.14451 32391625
    [Google Scholar]
  73. DimouA. GreweP. SidneyJ. SetteA. NormanP.J. DoebeleR.C. HLA class I binding of mutant EGFR peptides in NSCLC is associated with improved survival.J. Thorac. Oncol.202116110411210.1016/j.jtho.2020.08.023 32927123
    [Google Scholar]
  74. LiF. DengL. JacksonK.R. TalukderA.H. KatailihaA.S. BradleyS.D. ZouQ. ChenC. HuoC. ChiuY. StairM. FengW. BagaevA. KotlovN. SvekolkinV. AtaullakhanovR. MiheechevaN. FrenkelF. WangY. ZhangM. HawkeD. HanL. ZhouS. ZhangY. WangZ. DeckerW.K. SonnemannH.M. RoszikJ. ForgetM.A. DaviesM.A. BernatchezC. YeeC. BassettR. HwuP. DuX. LizeeG. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations.J. Immunother. Cancer202197e00253110.1136/jitc‑2021‑002531 34244308
    [Google Scholar]
  75. EbbenJ.D. LubetR.A. GadE. DisisM.L. YouM. Epidermal growth factor receptor derived peptide vaccination to prevent lung adenocarcinoma formation: An in vivo study in a murine model of EGFR mutant lung cancer.Mol. Carcinog.201655111517152510.1002/mc.22405 26346412
    [Google Scholar]
  76. WellerM. ButowskiN. TranD.D. RechtL.D. LimM. HirteH. AshbyL. MechtlerL. GoldlustS.A. IwamotoF. DrappatzJ. O’RourkeD.M. WongM. HamiltonM.G. FinocchiaroG. PerryJ. WickW. GreenJ. HeY. TurnerC.D. YellinM.J. KelerT. DavisT.A. StuppR. SampsonJ.H. ButowskiN. CampianJ. RechtL. LimM. AshbyL. DrappatzJ. HirteH. IwamotoF. MechtlerL. GoldlustS. BeckerK. BarnettG. NicholasG. DesjardinsA. BenkersT. WagleN. GrovesM. KesariS. HorvathZ. MerrellR. CurryR. O’RourkeJ. SchusterD. WongM. MrugalaM. JensenR. TrusheimJ. LesserG. BelangerK. SloanA. PurowB. FinkK. RaizerJ. SchulderM. NairS. PeakS. PerryJ. BrandesA. WellerM. MohileN. LandolfiJ. OlsonJ. FinocchiaroG. JennensR. DeSouzaP. RobinsonB. CrittendenM. ShihK. FlowersA. OngS. ConnellyJ. HadjipanayisC. GiglioP. MottF. MathieuD. LessardN. SepulvedaS.J. LöveyJ. WheelerH. InglisP-L. HardieC. BotaD. LesniakM. PortnowJ. FrankelB. JunckL. ThompsonR. BerkL. McGhieJ. MacdonaldD. SaranF. SoffiettiR. BlumenthalD. André de, S.B.C.M.; Nowak, A.; Singhal, N.; Hottinger, A.; Schmid, A.; Srkalovic, G.; Baskin, D.; Fadul, C.; Nabors, L.; LaRocca, R.; Villano, J.; Paleologos, N.; Kavan, P.; Pitz, M.; Thiessen, B.; Idbaih, A.; Frenel, J.S.; Domont, J.; Grauer, O.; Hau, P.; Marosi, C.; Sroubek, J.; Hovey, E.; Sridhar, P.S.; Cher, L.; Dunbar, E.; Coyle, T.; Raymond, J.; Barton, K.; Guarino, M.; Raval, S.; Stea, B.; Dietrich, J.; Hopkins, K.; Erridge, S.; Steinbach, J-P.; Pineda, L.E.; Balana, Q.C.; Sonia del, B.B.; Wenczl, M.; Molnár, K.; Hideghéty, K.; Lossos, A.; Myra van, L.; Levy, A.; Harrup, R.; Patterson, W.; Lwin, Z.; Sathornsumetee, S.; Lee, E-J.; Ho, J-T.; Emmons, S.; Duic, J.P.; Shao, S.; Ashamalla, H.; Weaver, M.; Lutzky, J.; Avgeropoulos, N.; Hanna, W.; Nadipuram, M.; Cecchi, G.; O’Donnell, R.; Pannullo, S.; Carney, J.; Hamilton, M.; MacNeil, M.; Beaney, R.; Fabbro, M.; Schnell, O.; Fietkau, R.; Stockhammer, G.; Malinova, B.; Odrazka, K.; Sames, M.; Miguel Gil, G.; Razis, E.; Lavrenkov, K.; Castro, G.; Ramirez, F.; Baldotto, C.; Viola, F.; Malheiros, S.; Lickliter, J.; Gauden, S.; Dechaphunkul, A.; Thaipisuttikul, I.; Thotathil, Z.; Ma, H-I.; Cheng, W-Y.; Chang, C-H.; Salas, F.; Dietrich, P-Y.; Mamot, C.; Nayak, L.; Nag, S. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial.Lancet Oncol.201718101373138510.1016/S1470‑2045(17)30517‑X 28844499
    [Google Scholar]
  77. WuA. XiaoJ. AnkerL. HallW.A. GregersonD.S. CaveneeW.K. ChenW. LowW.C. Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas.J. Neurooncol.2006761233010.1007/s11060‑005‑3280‑7 16155724
    [Google Scholar]
  78. EllingsonB.M. ChungC. PopeW.B. BoxermanJ.L. KaufmannT.J. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape.J. Neurooncol.2017134349550410.1007/s11060‑017‑2375‑2 28382534
    [Google Scholar]
  79. ZhangZ. ChenX. YuanT. Precision radiotherapy for nasopharyngeal carcinoma.Precis. Radiat. Oncol.202481374110.1002/pro6.1219
    [Google Scholar]
  80. YartsevS. KronT. Van DykJ. Tomotherapy as a tool in imageguided radiation therapy (IGRT): Theoretical and technological aspects.Biomed. Imaging Interv. J.,31e1610.2349/biij.3.1.e162007
    [Google Scholar]
  81. TomsS.A. KimC.Y. NicholasG. RamZ. Increased compliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma: A subgroup analysis of the EF-14 phase III trial.J. Neurooncol.2019141246747310.1007/s11060‑018‑03057‑z 30506499
    [Google Scholar]
  82. KesariS. RamZ. Tumor-treating fields plus chemotherapy versus chemotherapy alone for glioblastoma at first recurrence: A post hoc analysis of the EF-14 trial.CNS Oncol.20176318519310.2217/cns‑2016‑0049 28399638
    [Google Scholar]
  83. StuppR. TaillibertS. KannerA. ReadW. SteinbergD.M. LhermitteB. TomsS. IdbaihA. AhluwaliaM.S. FinkK. Di MecoF. LiebermanF. ZhuJ.J. StragliottoG. TranD.D. BremS. HottingerA.F. KirsonE.D. Lavy-ShahafG. WeinbergU. KimC.Y. PaekS.H. NicholasG. BrunaJ. HirteH. WellerM. PaltiY. HegiM.E. RamZ. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial.JAMA2017318232306231610.1001/jama.2017.18718 29260225
    [Google Scholar]
  84. ZhuJ.J. DemirevaP. KannerA.A. PannulloS. MehdornM. AvgeropoulosN. SalmaggiA. SilvaniA. GoldlustS. DavidC. Benouaich-AmielA. Health-related quality of life, cognitive screening, and functional status in a randomized phase III trial (EF-14) of tumor treating fields with temozolomide compared to temozolomide alone in newly diagnosed glioblastoma.J. Neurooncol.2017135354555210.1007/s11060‑017‑2601‑y 28849310
    [Google Scholar]
  85. LiX. LiuK. XingL. RubinskyB. A review of tumor treating fields (TTFields): Advancements in clinical applications and mechanistic insights.Radiol. Oncol.202357327929110.2478/raon‑2023‑0044 37665740
    [Google Scholar]
  86. RominiyiO. VanderlindenA. ClentonS.J. BridgewaterC. Al-TamimiY. CollisS.J. Tumour treating fields therapy for glioblastoma: Current advances and future directions.Br. J. Cancer2021124469770910.1038/s41416‑020‑01136‑5 33144698
    [Google Scholar]
  87. MunE.J. BabikerH.M. WeinbergU. KirsonE.D. Von HoffD.D. Tumor-treating fields: A fourth modality in cancer treatment.Clin. Cancer Res.201824226627510.1158/1078‑0432.CCR‑17‑1117 28765323
    [Google Scholar]
  88. ColamariaA. LeoneA. FochiN.P. Di NapoliV. GiordanoG. LandriscinaM. PatelK. CarboneF. Tumor treating fields for the treatment of glioblastoma: Current understanding and future perspectives.Surg. Neurol. Int.20231439410.25259/SNI_674_2023 38053701
    [Google Scholar]
  89. WellerM. Le RhunE. PreusserM. TonnJ.C. RothP. How we treat glioblastoma.ESMO Open20194Suppl. 2e00052010.1136/esmoopen‑2019‑000520 31297242
    [Google Scholar]
  90. GoetzL.H. SchorkN. J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  91. MouliereF. SmithC.G. HeiderK. SuJ. van der PolY. ThompsonM. MorrisJ. WanJ.C.M. ChandranandaD. HadfieldJ. GrzelakM. HudecovaI. CouturierD.L. CooperW. ZhaoH. GaleD. EldridgeM. WattsC. BrindleK. RosenfeldN. MairR. Fragmentation patterns and personalized sequencing of cell‐free DNA in urine and plasma of glioma patients.EMBO Mol. Med.2021138e1288110.15252/emmm.202012881 34291583
    [Google Scholar]
  92. MairR. MouliereF. Cell-free DNA technologies for the analysis of brain cancer.Br. J. Cancer2022126337137810.1038/s41416‑021‑01594‑5 34811503
    [Google Scholar]
  93. GousiasK. TheocharousT. SimonM. Mechanisms of cell cycle arrest and apoptosis in glioblastoma.Biomedicines202210356410.3390/biomedicines10030564 35327366
    [Google Scholar]
  94. KreatsoulasD. BolyardC. WuB.X. CamH. GiglioP. LiZ. Translational landscape of glioblastoma immunotherapy for physicians: Guiding clinical practice with basic.J. Hematol. Oncol.20221518010.1186/s13045‑022‑01298‑0
    [Google Scholar]
  95. SunilK.G. JoshiA. KaushikV. Bioinformatics in personalized medicine.Advances in Bioinformatics. SinghV. KumarA. SingaporeSpringer2021303315
    [Google Scholar]
  96. RatliffM. KimH. QiH. KimM. KuB. AzorinD.D. HausmannD. KhajuriaR.K. PatelA. MaierE. CousinL. OgierA. SahmF. EtminanN. BunseL. WinklerF. El-KhouryV. PlattenM. KwonY.J. Patient-derived tumor organoids for guidance of personalized drug therapies in recurrent glioblastoma.Int. J. Mol. Sci.20222312657210.3390/ijms23126572 35743016
    [Google Scholar]
  97. ChiA.S. CahillD.P. ReardonD.A. WenP.Y. MikkelsenT. PeereboomD.M. xploring predictors of response to dacomitinib in EGFR-Amplified recurrent glioblastoma. JCO Precis Oncol.,2020202 , 19.0029532923886
    [Google Scholar]
  98. FrenelJ-S. CartronP-F. GourmelonC. CampionL. AumontM. AugereauP. DucrayF. LoussouarnD. LallierL. RobertM. CamponeM. 370MO FOLAGLI: A phase I study of folinic acid combined with temozolomide and radiotherapy to modulate MGMT gene promoter methylation in newly diagnosed MGMT non-methytated glioblastoma.Ann. Oncol.202031S40010.1016/j.annonc.2020.08.479
    [Google Scholar]
  99. KesslerT. BerberichA. CasaliniB. DrüschlerK. OstermannH. DormannA. WalterS. HaiL. SchlesnerM. Herold-MendeC. JungkC. UnterbergA. BendszusM. SahmK. von DeimlingA. WinklerF. PlattenM. WickW. SahmF. WickA. Molecular profiling-based decision for targeted therapies in IDH wild-type glioblastoma.Neurooncol. Adv.202021vdz06010.1093/noajnl/vdz060 32642725
    [Google Scholar]
  100. LombardiG. BarresiV. IndraccoloS. SimboloM. FassanM. MandruzzatoS. SimonelliM. CacceseM. PizziM. FassinaA. PadovanM. MasettoE. GardimanM.P. BonavinaM.G. CaffoM. PersicoP. ChioffiF. DenaroL. Dei TosA.P. ScarpaA. ZagonelV. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: A monocentric, observational and prospective pilot study.Cancers 2020128228310.3390/cancers12082283 32823925
    [Google Scholar]
  101. MishinovS.V. BudnikA.Y. StupakV.V. LeplinaO.Y. TyrinovaT.V. OstaninA.A. ChernykhE.R. Autologous and pooled tumor lysates in combined immunotherapy of patients with glioblastoma.Sovrem. Tekhnologii Med.2020122344110.17691/stm2020.12.2.04 34513051
    [Google Scholar]
  102. ReardonD.A. DesjardinsA. VredenburghJ.J. O’RourkeD.M. TranD.D. FinkK.L. NaborsL.B. LiG. BotaD.A. LukasR.V. AshbyL.S. DuicJ.P. MrugalaM.M. CruickshankS. VitaleL. HeY. GreenJ.A. YellinM.J. TurnerC.D. KelerT. DavisT.A. SampsonJ.H. Rindopepimut with Bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): Results of a double-blind randomized phase II trial.Clin. Cancer Res.20202671586159410.1158/1078‑0432.CCR‑18‑1140 32034072
    [Google Scholar]
  103. RudnickJ.D. SarmientoJ.M. UyB. NunoM. WheelerC.J. MazerM.J. WangH. HuJ.L. ChuR.M. PhuphanichS. BlackK.L. YuJ.S. A phase I trial of surgical resection with Gliadel Wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma.J. Clin. Neurosci.20207418719310.1016/j.jocn.2020.03.006 32169363
    [Google Scholar]
  104. SampsonJ.H. AchrolA. AghiM.K. BankiewiczK. BexonM. BremS. BrennerA.J. ChandhasinC. ChowdharyS.A. CoelloM. DasS. HanS.J. KesariS. MerchantF. MerchantN. RandazzoD. VogelbaumM.A. VrionisF. ZabekM. ButowskiN.A. MDNA55 survival in recurrent glioblastoma (rGBM) patients expressing the interleukin-4 receptor (IL4R) as compared to a matched synthetic control.J. Clin. Oncol.20203815suppl.2513251310.1200/JCO.2020.38.15_suppl.2513
    [Google Scholar]
  105. SmithC. LineburgK.E. MartinsJ.P. AmbalathingalG.R. NellerM.A. MorrisonB. MatthewsK.K. RehanS. CrooksP. PanikkarA. BeagleyL. Le TexierL. SrihariS. WalkerD. KhannaR. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme.J. Clin. Invest.2020130116041605310.1172/JCI138649 32750039
    [Google Scholar]
  106. Van Den BentM. EoliM. SepulvedaJ.M. SmitsM. WalenkampA. FrenelJ.S. FranceschiE. ClementP.M. ChinotO. De VosF. WhenhamN. SangheraP. WellerM. DubbinkH.J. FrenchP. LoomanJ. DeyJ. KrauseS. AnsellP. NuyensS. SpruytM. BrilhanteJ. CoensC. GorliaT. GolfinopoulosV. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma.Neuro-oncol.202022568469310.1093/neuonc/noz222 31747009
    [Google Scholar]
  107. WangQ.T. NieY. SunS.N. LinT. HanR.J. JiangJ. LiZ. LiJ.Q. XiaoY.P. FanY.Y. YuanX.H. ZhangH. ZhaoB.B. ZengM. LiS.Y. LiaoH.X. ZhangJ. HeY.W. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients.Cancer Immunol. Immunother.20206971375138710.1007/s00262‑020‑02496‑w 32078016
    [Google Scholar]
  108. Bonneville-LevardA. FrappazD. TredanO. LavergneE. CorsetV. AgrapartV. ChabaudS. PissalouxD. WangQ. AttignonV. CartalatS. DucrayF. Thomas-MaisonneuveL. HonnoratJ. MeyronetD. TaillandierL. BlonskiM. ViariA. BaudetC. SohierE. LantuejoulS. PaindavoineS. TreilleuxI. RodriguezC. PérolD. BlayJ.Y. Molecular profile to guide personalized medicine in adult patients with primary brain tumors: Results from the ProfiLER trial.Med. Oncol.2022391410.1007/s12032‑021‑01536‑4 34739635
    [Google Scholar]
  109. CardonaA.F. Jaramillo-VelásquezD. Ruiz-PatiñoA. PoloC. JiménezE. HakimF. GómezD. RamónJ.F. CifuentesH. MejíaJ.A. SalgueroF. OrdoñezC. MuñozÁ. BermúdezS. UsecheN. PinedaD. RicaurteL. Zatarain-BarrónZ.L. RodríguezJ. AvilaJ. RojasL. JallerE. SoteloC. Garcia-RobledoJ.E. SantoyoN. RolfoC. RosellR. ArrietaO. Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation.J. Neurooncol.2021154335336410.1007/s11060‑021‑03834‑3 34498213
    [Google Scholar]
  110. PadovanM. EoliM. PellerinoA. RizzatoS. CasertaC. SimonelliM. MichiaraM. CacceseM. AnghileriE. CerrettiG. RudàR. ZagonelV. LombardiG. Depatuxizumab Mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-world experience from a multicenter study of Italian Association of Neuro-Oncology (AINO).Cancers 20211311277310.3390/cancers13112773 34204877
    [Google Scholar]
  111. WerleniusK. StragliottoG. StrandeusM. BlomstrandM. CarénH. JakolaA.S. RydenhagB. DyregaardD. DzhandzhugazyanK.N. KirkinA.F. RaidaM.K. SmitsA. KinhultS. A randomized phase II trial of efficacy and safety of the immunotherapy ALECSAT as an adjunct to radiotherapy and temozolomide for newly diagnosed glioblastoma.Neurooncol. Adv.202131vdab15610.1093/noajnl/vdab156 34765977
    [Google Scholar]
  112. CiesielskiM.J. AhluwaliaM.S. ReardonD.A. AbadA.P. CurryW.T. WongE.T. PeereboomD.M. FigelS.A. HutsonA. GromanA. WithersH.G. LiuS. BelalA. QiuJ-X. MogensenK. SchileroC. CasucciD.M. MechtlerL. FenstermakerR.A. Final data from the phase 2a single-arm trial of SurVaxM for newly diagnosed glioblastoma.J. Clin. Oncol.20224016Suppl.203710.1200/JCO.2022.40.16_suppl.2037
    [Google Scholar]
  113. HuJ.L. OmofoyeO.A. RudnickJ.D. KimS. TighiouartM. PhuphanichS. WangH. MazerM. GanawayT. ChuR.M. PatilC.G. BlackK.L. ShiaoS.L. WangR. YuJ.S. A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma.Clin. Cancer Res.202228468969610.1158/1078‑0432.CCR‑21‑2867 34862245
    [Google Scholar]
  114. KasendaB. KönigD. ManniM. RitschardR. DuthalerU. BartoszekE. BärenwaldtA. DeusterS. HutterG. CordierD. MarianiL. HenchJ. FrankS. KrähenbühlS. ZippeliusA. RochlitzC. MamotC. WickiA. LäubliH. Targeting immunoliposomes to EGFR-positive glioblastoma.ESMO Open20227110036510.1016/j.esmoop.2021.100365 34998092
    [Google Scholar]
  115. Van GoolS.W. MakalowskiJ. BitarM. Van de VlietP. SchirrmacherV. StueckerW. Synergy between TMZ and individualized multimodal immunotherapy to improve overall survival of IDH1 wild-type MGMT promoter-unmethylated GBM patients.Genes Immun.202223825525910.1038/s41435‑022‑00162‑y 35173295
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206364677250401190214
Loading
/content/journals/acamc/10.2174/0118715206364677250401190214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test