Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Maternal Embryonic Leucine Zipper Kinase (MELK) is a serine/threonine protein kinase involved in regulating key cellular processes, including cell cycle progression, apoptosis, embryonic development, spliceosome assembly, and gene expression. Notably, MELK is overexpressed in Triple-Negative Breast Cancer (TNBC), an aggressive malignancy associated with poor prognosis, high drug resistance, and limited treatment options. Given its critical role in TNBC pathogenesis, MELK has emerged as a potential biomarker and therapeutic target. This review explores the molecular functions of MELK, its involvement in oncogenic signaling pathways, and the development of MELK-targeting small-molecule inhibitors.

Methods

A comprehensive literature review was conducted to evaluate current knowledge on MELK, including its molecular functions, interactions within signaling pathways, role in TNBC progression, and potential as a therapeutic target. Relevant databases, including PubMed, Web of Science, Embase, and Scopus, were searched for studies related to MELK expression, signaling mechanisms, and experimental therapeutic approaches.

Results

MELK plays a central role in oncogenic signaling pathways that drive TNBC proliferation and survival. Preclinical studies have demonstrated that MELK inhibition can suppress TNBC cell growth and enhance chemotherapy efficacy. Several small-molecule inhibitors targeting MELK have shown promising anti-tumor activity in preclinical models. However, challenges remain in translating these findings into clinical applications due to drug specificity limitations and resistance mechanisms.

Conclusion

MELK is a promising biomarker and therapeutic target in TNBC. However, further research is required to refine MELK inhibitors, enhance clinical efficacy, and overcome drug resistance mechanisms. Targeting MELK could offer a novel therapeutic strategy to improve TNBC treatment outcomes.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206389899250522091159
2025-05-23
2025-10-22
Loading full text...

Full text loading...

References

  1. GangulyR. MohyeldinA. ThielJ. KornblumH.I. BeullensM. NakanoI. MELK—a conserved kinase: functions, signaling, cancer, and controversy.Clin. Transl. Med.201541e1110.1186/s40169‑014‑0045‑y 25852826
    [Google Scholar]
  2. HeyerB.S. KochanowskiH. SolterD. Expression of Melk, a new protein kinase, during early mouse development.Dev. Dyn.1999215434435110.1002/(SICI)1097‑0177(199908)215:4<344:AID‑AJA6>3.0.CO;2‑H 10417823
    [Google Scholar]
  3. BeullensM. VancauwenberghS. MorriceN. DeruaR. CeulemansH. WaelkensE. BollenM. Substrate specificity and activity regulation of protein kinase MELK.J. Biol. Chem.200528048400034001110.1074/jbc.M507274200 16216881
    [Google Scholar]
  4. ChoY.S. KangY. KimK. ChaY. ChoH.S. The crystal structure of MPK38 in complex with OTSSP167, an orally administrative MELK selective inhibitor.Biochem. Biophys. Res. Commun.2014447171110.1016/j.bbrc.2014.03.034 24657156
    [Google Scholar]
  5. WangY. LeeY.M. BaitschL. HuangA. XiangY. TongH. LakoA. VonT. ChoiC. LimE. MinJ. LiL. StegmeierF. SchlegelR. EckM.J. GrayN.S. MitchisonT.J. ZhaoJ.J. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells.eLife20143e0176310.7554/eLife.01763 24844244
    [Google Scholar]
  6. GrayD. JubbA.M. HogueD. DowdP. KljavinN. YiS. BaiW. FrantzG. ZhangZ. KoeppenH. de SauvageF.J. DavisD.P. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers.Cancer Res.200565219751976110.1158/0008‑5472.CAN‑04‑4531 16266996
    [Google Scholar]
  7. KohlerR.S. KettelhackH. Knipprath-MészarosA.M. FedierA. SchoetzauA. JacobF. Heinzelmann-SchwarzV. MELK expression in ovarian cancer correlates with poor outcome and its inhibition by OTSSP167 abrogates proliferation and viability of ovarian cancer cells.Gynecol. Oncol.2017145115916610.1016/j.ygyno.2017.02.016 28214016
    [Google Scholar]
  8. KunerR. FälthM. PressinottiN.C. BraseJ.C. PuigS.B. MetzgerJ. GadeS. SchäferG. BartschG. SteinerE. KlockerH. SültmannH. The maternal embryonic leucine zipper kinase (MELK) is upregulated in high-grade prostate cancer.J. Mol. Med. (Berl.)201391223724810.1007/s00109‑012‑0949‑1 22945237
    [Google Scholar]
  9. LiH. ChenM. YangZ. WangQ. WangJ. JinD. YangX. ChenF. ZhouX. LuoK. Phillygenin, a MELK inhibitor, inhibits cell survival and epithelial–mesenchymal transition in pancreatic cancer cells.OncoTargets Ther.2020132833284210.2147/OTT.S238958 32308417
    [Google Scholar]
  10. TianJ.H. MuL.J. WangM.Y. ZengJ. LongQ.Z. GuanB. WangW. JiangY.M. BaiX.J. DuY.F. BUB1B promotes proliferation of prostate cancer via transcriptional regulation of MELK.Anticancer. Agents Med. Chem.20202091140114610.2174/1871520620666200101141934 31893996
    [Google Scholar]
  11. NakanoI. Masterman-SmithM. SaigusaK. PaucarA.A. HorvathS. ShoemakerL. WatanabeM. NegroA. BajpaiR. HowesA. LelievreV. WaschekJ.A. LazareffJ.A. FreijeW.A. LiauL.M. GilbertsonR.J. CloughesyT.F. GeschwindD.H. NelsonS.F. MischelP.S. TerskikhA.V. KornblumH.I. Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells.J. Neurosci. Res.2008861486010.1002/jnr.21471 17722061
    [Google Scholar]
  12. DasA. PrajapatiA. KarnaA. SharmaH.K. UppalS. LatherV. PanditaD. AgarwalP. Structure-based virtual screening of chemical libraries as potential MELK inhibitors and their therapeutic evaluation against breast cancer.Chem. Biol. Interact.202337611044310.1016/j.cbi.2023.110443 36893906
    [Google Scholar]
  13. DentR. TrudeauM. PritchardK.I. HannaW.M. KahnH.K. SawkaC.A. LickleyL.A. RawlinsonE. SunP. NarodS.A. Triple-negative breast cancer: clinical features and patterns of recurrence.Clin. Cancer Res.200713154429443410.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  14. ZhengC. HeG. DengX. Overview of triple-negative breast cancer. Triple-Negative Breast Cancer202012010.1142/9789813277762_0001
    [Google Scholar]
  15. LehmannB.D. PietenpolJ.A. TanA.R. Triple-negative breast cancer: molecular subtypes and new targets for therapy.Am. Soc. Clin. Oncol. Educ. Book2015201535e31e3910.14694/EdBook_AM.2015.35.e31 25993190
    [Google Scholar]
  16. ReddyK.B. Triple-negative breast cancers: an updated review on treatment options.Curr. Oncol.201118417317910.3747/co.v18i4.738 21874107
    [Google Scholar]
  17. McDonaldI.M. GravesL.M. Enigmatic MELK: The controversy surrounding its complex role in cancer.J. Biol. Chem.2020295248195820310.1074/jbc.REV120.013433 32350113
    [Google Scholar]
  18. GuoB. GodzikA. ReedJ.C. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family.J. Biol. Chem.200127642780278510.1074/jbc.M005889200 11054413
    [Google Scholar]
  19. IrshadS. EllisP. TuttA. Molecular heterogeneity of triple-negative breast cancer and its clinical implications.Curr. Opin. Oncol.201123656657710.1097/CCO.0b013e32834bf8ae 21986848
    [Google Scholar]
  20. SimonM. MesmarF. HelgueroL. WilliamsC. Genome-wide effects of MELK-inhibitor in triple-negative breast cancer cells indicate context-dependent response with p53 as a key determinant.PLoS One2017122e017283210.1371/journal.pone.0172832 28235006
    [Google Scholar]
  21. SchmidP. AdamsS. RugoH.S. SchneeweissA. BarriosC.H. IwataH. DiérasV. HeggR. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.N. Engl. J. Med.2018379222108212110.1056/NEJMoa1809615 30345906
    [Google Scholar]
  22. RembaczK.P. ZrubekK.M. GolikP. MichalikK. BoguszJ. WladykaB. RomanowskaM. DubinG. Crystal structure of Maternal Embryonic Leucine Zipper Kinase (MELK) in complex with dorsomorphin (Compound C).Arch. Biochem. Biophys.20196711710.1016/j.abb.2019.05.014 31108049
    [Google Scholar]
  23. HeinenC. ÁcsK. HoogstratenD. DantumaN.P. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation.Nat. Commun.20112119110.1038/ncomms1179 21304520
    [Google Scholar]
  24. O’BrienM.T. OakhillJ.S. LingN.X.Y. LangendorfC.G. HoqueA. DiteT.A. MeansA.R. KempB.E. ScottJ.W. Impact of genetic variation on human CaMKK2 regulation by Ca2+-calmodulin and multisite phosphorylation.Sci. Rep.2017714326410.1038/srep43264 28230171
    [Google Scholar]
  25. CaoL.S. WangJ. ChenY. DengH. WangZ.X. WuJ.W. Structural basis for the regulation of maternal embryonic leucine zipper kinase.PLoS One201387e7003110.1371/journal.pone.0070031 23922895
    [Google Scholar]
  26. JanostiakR. RauniyarN. LamT.T. OuJ. ZhuL.J. GreenM.R. WajapeyeeN. MELK promotes melanoma growth by stimulating the NF-κB pathway.Cell Rep.201721102829284110.1016/j.celrep.2017.11.033 29212029
    [Google Scholar]
  27. CattaneoF. RussoR. CastaldoM. ChamberyA. ZolloC. EspositoG. PedoneP.V. AmmendolaR. Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-peptide receptor 2.Sci. Rep.2019911789410.1038/s41598‑019‑54502‑6 31784636
    [Google Scholar]
  28. SunH. MaH. ZhangH. JiM. Up-regulation of MELK by E2F1 promotes the proliferation in cervical cancer cells.Int. J. Biol. Sci.202117143875388810.7150/ijbs.62517 34671205
    [Google Scholar]
  29. VulstekeV. BeullensM. BoudrezA. KeppensS. Van EyndeA. RiderM.H. StalmansW. BollenM. Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1.J. Biol. Chem.2004279108642864710.1074/jbc.M311466200 14699119
    [Google Scholar]
  30. BolluL.R. ShepherdJ. ZhaoD. MaY. TahaneyW. SpeersC. MazumdarA. MillsG.B. BrownP.H. Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1.NPJ Breast Cancer202061210.1038/s41523‑019‑0143‑5 31909186
    [Google Scholar]
  31. WangX. XueX. PangM. YuL. QianJ. LiX. TianM. LyuA. LuC. LiuY. Epithelial–mesenchymal plasticity in cancer: signaling pathways and therapeutic targets.MedComm202458e65910.1002/mco2.659 39092293
    [Google Scholar]
  32. SherG. MasoodiT. PatilK. AkhtarS. KuttikrishnanS. AhmadA. UddinS. Dysregulated FOXM1 signaling in the regulation of cancer stem cells.Semin. Cancer Biol.202286Pt 310712110.1016/j.semcancer.2022.07.009 35931301
    [Google Scholar]
  33. McDonaldI.M. Exploring the controversial role of melk in cancer.202010.17615/a9ra‑cb39
    [Google Scholar]
  34. SoJ. PasculescuA. DaiA.Y. WillitonK. JamesA. NguyenV. CreixellP. SchoofE.M. SinclairJ. Barrios-RodilesM. GuJ. KrizusA. WilliamsR. OlhovskyM. DennisJ.W. WranaJ.L. LindingR. JorgensenC. PawsonT. ColwillK. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy.Sci. Signal.20158371rs310.1126/scisignal.2005700 25852190
    [Google Scholar]
  35. TalloaD. TriaricoS. AgrestiP. MastrangeloS. AttinàG. RomanoA. MauriziP. RuggieroA. BRAF and MEK targeted therapies in pediatric central nervous system tumors.Cancers (Basel)20221417426410.3390/cancers14174264 36077798
    [Google Scholar]
  36. HeasleyL.E. HanS.Y. JNK regulation of oncogenesis.Mol. Cells200621216717310.1016/S1016‑8478(23)12876‑7 16682809
    [Google Scholar]
  37. GuC. Banasavadi-SiddegowdaY.K. JoshiK. NakamuraY. KurtH. GuptaS. NakanoI. Tumor-specific activation of the C-JUN/MELK pathway regulates glioma stem cell growth in a p53-dependent manner.Stem Cells201331587088110.1002/stem.1322 23339114
    [Google Scholar]
  38. MinataM. GuC. JoshiK. Nakano-OkunoM. HongC. NguyenC.H. KornblumH.I. MollaA. NakanoI. Multi-kinase inhibitor C1 triggers mitotic catastrophe of glioma stem cells mainly through MELK kinase inhibition.PLoS One201494e9254610.1371/journal.pone.0092546 24739874
    [Google Scholar]
  39. JoshiK. Banasavadi-SiddegowdaY. MoX. KimS.H. MaoP. KigC. NardiniD. SobolR.W. ChowL.M.L. KornblumH.I. WaclawR. BeullensM. NakanoI. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells.Stem Cells20133161051106310.1002/stem.1358 23404835
    [Google Scholar]
  40. PickardM.R. WilliamsG.T. BCL2L14 (BCL2-like 14 (apoptosis facilitator)). Atlas Genet. Cytogenet Oncol. Haematol.,2014310.4267/2042/53480
    [Google Scholar]
  41. DamaskosC. GarmpiA. NikolettosK. VavourakisM. DiamantisE. PatsourasA. FarmakiP. NonniA. DimitroulisD. MantasD. AntoniouE.A. NikolettosN. KontzoglouK. GarmpisN. Triple-negative breast cancer: The progress of targeted therapies and future tendencies.Anticancer Res.201939105285529610.21873/anticanres.13722 31570423
    [Google Scholar]
  42. PogodaK. NiwińskaA. MurawskaM. PieńkowskiT. Analysis of pattern, time and risk factors influencing recurrence in triple-negative breast cancer patients.Med. Oncol.201330138810.1007/s12032‑012‑0388‑4 23292831
    [Google Scholar]
  43. YeoW. Treatment horizons for triple-negative breast cancer.Hong Kong J. Radiol.201518211111810.12809/hkjr1515321
    [Google Scholar]
  44. XieX. ChauhanG.B. EdupugantiR. KogawaT. ParkJ. TacamM. TanA.W. MugheesM. VidhuF. LiuD.D. TaliaferroJ.M. PitnerM.K. BrowningL.S. LeeJ.H. BertucciF. ShenY. WangJ. UenoN.T. KrishnamurthyS. HortobagyiG.N. TripathyD. Van LaereS.J. BartholomeuszG. DalbyK.N. BartholomeuszC. Maternal embryonic leucine zipper kinase is associated with metastasis in triple-negative breast cancer.Cancer Res. Commun.2023361078109210.1158/2767‑9764.CRC‑22‑0330 37377604
    [Google Scholar]
  45. SpeersC. ZhaoS.G. KothariV. SantolaA. LiuM. Wilder-RomansK. EvansJ. BatraN. BartelinkH. HayesD.F. LawrenceT.S. BrownP.H. PierceL.J. FengF.Y. Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer.Clin. Cancer Res.201622235864587510.1158/1078‑0432.CCR‑15‑2711 27225691
    [Google Scholar]
  46. ZhangY. ZhouX. LiY. XuY. LuK. LiP. WangX. Inhibition of maternal embryonic leucine zipper kinase with OTSSP167 displays potent anti-leukemic effects in chronic lymphocytic leukemia.Oncogene201837415520553310.1038/s41388‑018‑0333‑x 29895969
    [Google Scholar]
  47. HardemanA.A. HanY.J. GrushkoT.A. MuellerJ. GomezM.J. ZhengY. OlopadeO.I. Subtype-specific expression of MELK is partly due to copy number alterations in breast cancer.PLoS One2022176e026869310.1371/journal.pone.0268693 35749404
    [Google Scholar]
  48. XuQ. GeQ. ZhouY. YangB. YangQ. JiangS. JiangR. AiZ. ZhangZ. TengY. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway.EBioMedicine20205110260910.1016/j.ebiom.2019.102609 31915116
    [Google Scholar]
  49. KordeL.A. SomerfieldM.R. CareyL.A. CrewsJ.R. DenduluriN. HwangE.S. KhanS.A. LoiblS. MorrisE.A. PerezA. ReganM.M. SpearsP.A. SudheendraP.K. SymmansW.F. YungR.L. HarveyB.E. HershmanD.L. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline.J. Clin. Oncol.202139131485150510.1200/JCO.20.03399 33507815
    [Google Scholar]
  50. HargerM. LeeJ.H. WalkerB. TaliaferroJ.M. EdupugantiR. DalbyK.N. RenP. Computational insights into the binding of IN17 inhibitors to MELK.J. Mol. Model.201925615110.1007/s00894‑019‑4036‑1 31069524
    [Google Scholar]
  51. McDonaldI.M. GrantG.D. EastM.P. GilbertT.S.K. WilkersonE.M. GoldfarbD. BeriJ. HerringL.E. VaziriC. CookJ.G. EmanueleM.J. GravesL.M. Mass spectrometry–based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells.J. Biol. Chem.202029582359237410.1074/jbc.RA119.011083 31896573
    [Google Scholar]
  52. ChenS. ZhouQ. GuoZ. WangY. WangL. LiuX. LuM. JuL. XiaoY. WangX. Inhibition of MELK produces potential anti‐tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway.J. Cell. Mol. Med.20202421804182110.1111/jcmm.14878 31821699
    [Google Scholar]
  53. ChlenskiA. ParkC. DobraticM. SalwenH.R. BudkeB. ParkJ.H. MillerR. ApplebaumM.A. WilkinsonE. NakamuraY. ConnellP.P. CohnS.L. Maternal embryonic leucine zipper kinase (MELK), a potential therapeutic target for neuroblastoma.Mol. Cancer Ther.201918350751610.1158/1535‑7163.MCT‑18‑0819 30674566
    [Google Scholar]
  54. ChungS. SuzukiH. MiyamotoT. TakamatsuN. TatsuguchiA. UedaK. KijimaK. NakamuraY. MatsuoY. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer.Oncotarget20123121629164010.18632/oncotarget.790 23283305
    [Google Scholar]
  55. TangR. GaiY. LiK. HuF. GongC. WangS. FengF. AltineB. HuJ. LanX. A novel carbon-11 radiolabeled maternal embryonic leucine zipper kinase inhibitor for PET imaging of triple-negative breast cancer.Bioorg. Chem.202110710460910.1016/j.bioorg.2020.104609 33454507
    [Google Scholar]
  56. HuF. GongC. GaiY. JiangD. LiuQ. WangS. HuM. PiR. ShuH. HuJ. LanX. [18F]F-ET-OTSSP167 targets maternal embryo leucine zipper kinase for PET imaging of triple-negative breast cancer.Mol. Pharm.20211893544355210.1021/acs.molpharmaceut.1c00454 34482695
    [Google Scholar]
  57. BridgesC.S. ChenT.J. PuppiM. RabinK.R. LacorazzaH.D. Antileukemic properties of the kinase inhibitor OTSSP167 in T-cell acute lymphoblastic leukemia.Blood Adv.20237342243510.1182/bloodadvances.2022008548 36399528
    [Google Scholar]
  58. TangB. ZhuJ. FangS. WangY. VinothkumarR. LiM. WengQ. zheng, L.; Yang, Y.; Qiu, R.; Xu, M.; Zhao, Z.; Ji, J. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis.Free Radic. Biol. Med.202117231232910.1016/j.freeradbiomed.2021.06.012 34144192
    [Google Scholar]
  59. HoangT.M.N. FavierB. ValetteA. BaretteC. NguyenC.H. LafanechèreL. GriersonD.S. DimitrovS. MollaA. Benzo[e]pyridoindoles, novel inhibitors of the Aurora kinases.Cell Cycle20098576577210.4161/cc.8.5.7879 19221479
    [Google Scholar]
  60. GangulyR. HongC.S. SmithL.G.F. KornblumH.I. NakanoI. Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers.Mol. Cancer Ther.20141361393139810.1158/1535‑7163.MCT‑13‑0764 24795222
    [Google Scholar]
  61. GauthierA. HoM. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update.Hepatol. Res.201343214715410.1111/j.1872‑034X.2012.01113.x 23145926
    [Google Scholar]
  62. ShisekiM. YoshidaC. TakezakoN. OhwadaA. KumagaiT. NishiwakiK. HorikoshiA. FukudaT. TakanoH. KouzaiY. TanakaJ. MoritaS. SakamotoJ. SakamakiH. InokuchiK. Dasatinib rapidly induces deep molecular response in chronic-phase chronic myeloid leukemia patients who achieved major molecular response with detectable levels of BCR-ABL1 transcripts by imatinib therapy.Int. J. Clin. Oncol.201722597297910.1007/s10147‑017‑1141‑y 28550414
    [Google Scholar]
  63. BanerjeeS. Phosphorylation, ubiquitylation and characterisation of specific inhibitors of AMPK-related kinase NUAK1/ARK5.. (Doctoral Thesis) University of Dundee,2013
    [Google Scholar]
  64. YoonC-H. KimM-J. KimR-K. LimE-J. ChoiK-S. AnS. HwangS-G. KangS-G. SuhY. ParkM-J. LeeS-J. c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells.Oncogene201231444655466610.1038/onc.2011.634 22249269
    [Google Scholar]
  65. BennettB.L. SasakiD.T. MurrayB.W. O’LearyE.C. SakataS.T. XuW. LeistenJ.C. MotiwalaA. PierceS. SatohY. BhagwatS.S. ManningA.M. AndersonD.W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase.Proc. Natl. Acad. Sci. USA20019824136811368610.1073/pnas.251194298 11717429
    [Google Scholar]
  66. MadureiraP.A. VarshochiR. ConstantinidouD. FrancisR.E. CoombesR.C. YaoK.M. LamE.W.F. The Forkhead box M1 protein regulates the transcription of the estrogen receptor α in breast cancer cells.J. Biol. Chem.200628135251672517610.1074/jbc.M603906200 16809346
    [Google Scholar]
  67. ZhangX. WangJ. WangY. LiuG. LiH. YuJ. WuR. LiangJ. YuR. LiuX. MELK inhibition effectively suppresses growth of glioblastoma and cancer stem-like cells by blocking AKT and FOXM1 pathways.Front. Oncol.20211060808210.3389/fonc.2020.608082 33520717
    [Google Scholar]
  68. EdupugantiR. TaliaferroJ.M. WangQ. XieX. ChoE.J. VidhuF. RenP. AnslynE.V. BartholomeuszC. DalbyK.N. Discovery of a potent inhibitor of MELK that inhibits expression of the anti-apoptotic protein Mcl-1 and TNBC cell growth.Bioorg. Med. Chem.20172592609261610.1016/j.bmc.2017.03.018 28351607
    [Google Scholar]
  69. BekeL. KigC. LindersJ.T.M. BoensS. BoeckxA. van HeerdeE. ParadeM. De BondtA. Van den WyngaertI. BashirT. OgataS. MeerpoelL. Van EyndeA. JohnsonC.N. BeullensM. BrehmerD. BollenM. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.Biosci. Rep.2015356e0026710.1042/BSR20150194 26431963
    [Google Scholar]
  70. XiaoY. NimmerP. SheppardG.S. BrunckoM. HesslerP. LuX. Roberts-RappL. PappanoW.N. ElmoreS.W. SouersA.J. LeversonJ.D. PhillipsD.C. MCL-1 is a key determinant of breast cancer cell survival: Validation of MCL-1 dependency utilizing a highly selective small molecule inhibitor.Mol. Cancer Ther.20151481837184710.1158/1535‑7163.MCT‑14‑0928 26013319
    [Google Scholar]
  71. TouréB.B. GiraldesJ. SmithT. SpragueE.R. WangY. MathieuS. ChenZ. MishinaY. FengY. Yan-NealeY. ShakyaS. ChenD. MeyerM. PuleoD. BrazellJ.T. StraubC. SageD. WrightK. YuanY. ChenX. DucaJ. KimS. TianL. MartinE. HurovK. ShaoW. Toward the validation of maternal embryonic leucine zipper kinase: Discovery, optimization of highly potent and selective inhibitors, and preliminary biology insight.J. Med. Chem.201659104711472310.1021/acs.jmedchem.6b00052 27187609
    [Google Scholar]
  72. RáczA. PalkóR. CsányiD. RiedlZ. BajuszD. KeserűG.M. Consensus virtual screening identified (1,2,4)triazolo(1,5‐b)isoquinolines as MELK inhibitor chemotypes.ChemMedChem2021172e20210056910.1002/cmdc.202100569 34632716
    [Google Scholar]
  73. RachmanM. BajuszD. HetényiA. ScarpinoA. MerőB. EgyedA. BudayL. BarrilX. KeserűG.M. Discovery of a novel kinase hinge binder fragment by dynamic undocking.RSC Med. Chem.202011555255810.1039/C9MD00519F 33479656
    [Google Scholar]
  74. HebbardL.W. MaurerJ. MillerA. LesperanceJ. HassellJ. OshimaR.G. TerskikhA.V. Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo.Cancer Res.201070218863887310.1158/0008‑5472.CAN‑10‑1295 20861186
    [Google Scholar]
  75. BekeL. LindersJ.T. KigC. BoeckxA. HeerdeE. WuytsD. ParadeM. MeerpoelL. JohnsonC. BeullensM. BollenM. BrehmerD. Abstract 2936: JNJ-47117096, a selective small molecule inhibitor of the MELK oncogene decreases DNA damage tolerance in highly proliferating cancer cells.Cancer Res.20147419Supplement.293610.1158/1538‑7445.AM2014‑2936
    [Google Scholar]
  76. SunY. LiuX. HeQ. ZhangN. YanW. LvX. WangY. Discovery of first-in-class PROTACs targeting maternal embryonic leucine zipper kinase (MELK) for the treatment of Burkitt lymphoma.RSC Med. Chem.20241572351235610.1039/D4MD00252K 39026635
    [Google Scholar]
  77. JiW. ArnstC. TiptonA.R. BekierM.E. TaylorW.R. YenT.J. LiuS.T. OTSSP167 abrogates mitotic checkpoint through inhibiting multiple mitotic kinases.PLoS One2016114e015351810.1371/journal.pone.0153518 27082996
    [Google Scholar]
  78. HuangH.T. SeoH.S. ZhangT. WangY. JiangB. LiQ. BuckleyD.L. NabetB. RobertsJ.M. PaulkJ. DastjerdiS. WinterG.E. McLauchlanH. MoranJ. BradnerJ.E. EckM.J. Dhe-PaganonS. ZhaoJ.J. GrayN.S. MELK is not necessary for the proliferation of basal-like breast cancer cells.eLife20176e2669310.7554/eLife.26693 28926338
    [Google Scholar]
  79. GiulianoC.J. LinA. SmithJ.C. PalladinoA.C. SheltzerJ.M. Abstract 837A: Combining CRISPR/Cas9 mutagenesis and a small-molecule inhibitor to probe the function of MELK in cancer.Cancer Res.20187813Suppl.837A10.1158/1538‑7445.AM2018‑837A
    [Google Scholar]
  80. ZwangY. JonasO. ChenC. RinneM.L. DoenchJ.G. PiccioniF. TanL. HuangH.T. WangJ. HamY.J. O’ConnellJ. BholaP. DoshiM. WhitmanM. CimaM. LetaiA. RootD.E. LangerR.S. GrayN. HahnW.C. Synergistic interactions with PI3K inhibition that induce apoptosis.eLife20176e2452310.7554/eLife.24523 28561737
    [Google Scholar]
  81. HuangH. Exploring novel kinase targets and novel pharmacology for cancer therapeutics.Harvard University2017
    [Google Scholar]
  82. JauneE. CavazzaE. RoncoC. GrytsaiO. AbbeP. TekayaN. ZerhouniM. BerangerG. KaminskiL. BostF. GessonM. TulicM. HofmanP. BallottiR. PasseronT. BottonT. BenhidaR. RocchiS. Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies.Cell Death Dis.20211216410.1038/s41419‑020‑03344‑6 33431809
    [Google Scholar]
  83. KlaegerS. HeinzlmeirS. WilhelmM. PolzerH. VickB. KoenigP.A. ReineckeM. RuprechtB. PetzoldtS. MengC. ZechaJ. ReiterK. QiaoH. HelmD. KochH. SchoofM. CanevariG. CasaleE. DepaoliniS.R. FeuchtingerA. WuZ. SchmidtT. RueckertL. BeckerW. HuengesJ. GarzA.K. GohlkeB.O. ZolgD.P. KayserG. VooderT. PreissnerR. HahneH. TõnissonN. KramerK. GötzeK. BassermannF. SchleglJ. EhrlichH.C. AicheS. WalchA. GreifP.A. SchneiderS. FelderE.R. RulandJ. MédardG. JeremiasI. SpiekermannK. KusterB. The target landscape of clinical kinase drugs.Science20173586367eaan436810.1126/science.aan4368 29191878
    [Google Scholar]
  84. SumanS. SumanG. MishraS. Current Advances in Breast Cancer Research: A Molecular Approach.Bentham Science Publishers202010.2174/97898114514471200101
    [Google Scholar]
  85. LinM.L. ParkJ.H. NishidateT. NakamuraY. KatagiriT. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family.Breast Cancer Res.200791R1710.1186/bcr1650 17280616
    [Google Scholar]
  86. NakamuraY. KatagiriT. NakatsuruS. Breast cancer-associated gene, MELK, and its interactions with Bcl-G. WO patent 2008/023841,2008
    [Google Scholar]
  87. CalcagnoD.Q. TakenoS.S. GigekC.O. LealM.F. WisnieskiF. ChenE.S. AraújoT.M.T. LimaE.M. MelaragnoM.I. DemachkiS. AssumpçãoP.P. BurbanoR.R. SmithM.C. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines.World J. Gastroenterol.201622439506951410.3748/wjg.v22.i43.9506 27920471
    [Google Scholar]
  88. LeeH.G. SongE.Y. KangM.A. KimJ.T. KimJ.W. YeomY.I. KimS.Y. ParkK.C. CST1, DCC1, IFITM1 or MELK as markers for diagnosing stomach cancer. US 9,075,066 B22015
    [Google Scholar]
  89. Van CutsemE. CervantesA. NordlingerB. ArnoldD. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann Oncol.201425iii1iii9Suppl. 310.1093/annonc/mdu26025190710
    [Google Scholar]
  90. Ezz EldinR.R. Al-KarmalawyA.A. AlotaibiM.H. SalehM.A. Quinoxaline derivatives as a promising scaffold for breast cancer treatment.New J. Chem.202246219975998410.1039/D2NJ00050D
    [Google Scholar]
  91. JurmeisterS. Ramos-MontoyaA. SandiC. Pértega-GomesN. WadhwaK. LambA.D. DunningM.J. AttigJ. CarrollJ.S. FryerL.G.D. FelisbinoS.L. NealD.E. Identification of potential therapeutic targets in prostate cancer through a cross‐species approach.EMBO Mol. Med.2018103e827410.15252/emmm.201708274 29437778
    [Google Scholar]
  92. LawalH.A. UzairuA. UbaS. QSAR, molecular docking studies, ligand-based design and pharmacokinetic analysis on Maternal Embryonic Leucine Zipper Kinase (MELK) inhibitors as potential anti-triple-negative breast cancer (MDA-MB-231 cell line) drug compounds.Bull. Natl. Res. Cent.20214519010.1186/s42269‑021‑00541‑x
    [Google Scholar]
  93. AllegrettiP.A. HortonT.M. AbdolazimiY. MoellerH.P. YehB. CaffetM. MichelG. SmithM. AnnesJ.P. Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization.Bioorg. Med. Chem.202028111519310.1016/j.bmc.2019.115193 31757680
    [Google Scholar]
  94. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  95. TaleleT.T. Acetylene group friend or foe in medicinal chemistry.J. Med. Chem.202063115625566310.1021/acs.jmedchem.9b01617 32031378
    [Google Scholar]
  96. MeelM.H. de GooijerM.C. Guillén NavarroM. WaraneckiP. BreurM. BuilL.C.M. WedekindL.E. TwiskJ.W.R. KosterJ. HashizumeR. RaabeE.H. Montero CarcabosoA. BugianiM. van TellingenO. van VuurdenD.G. KaspersG.J.L. HullemanE. MELK inhibition in diffuse intrinsic pontine glioma.Clin. Cancer Res.201824225645565710.1158/1078‑0432.CCR‑18‑0924 30061363
    [Google Scholar]
  97. OshiM. GandhiS. HuyserM.R. TokumaruY. YanL. YamadaA. MatsuyamaR. EndoI. TakabeK. MELK expression in breast cancer is associated with infiltration of immune cell and pathological compete response (pCR) after neoadjuvant chemotherapy.Am. J. Cancer Res.202111944214437 34659896
    [Google Scholar]
  98. KatzJ.D. JewellJ.P. GuerinD.J. LimJ. DinsmoreC.J. DeshmukhS.V. PanB.S. MarshallC.G. LuW. AltmanM.D. DahlbergW.K. DavisL. FalconeD. GabardaA.E. HangG. HatchH. HolmesR. KuniiK. LumbK.J. LutterbachB. MathvinkR. NazefN. PatelS.B. QuX. ReillyJ.F. RickertK.W. RosensteinC. SoissonS.M. SpencerK.B. SzewczakA.A. WalkerD. WangW. YoungJ. ZengQ. Discovery of a 5 H -Benzo[4,5]cyclohepta[1,2-b]pyridin-5-one (MK-2461) inhibitor of c-met kinase for the treatment of cancer.J. Med. Chem.201154124092410810.1021/jm200112k 21608528
    [Google Scholar]
  99. LeeI.H. LeeS.J. KangB. LeeJ. JungJ.H. ParkH.Y. ParkJ.Y. ParkN.J.Y. KimE.A. KangJ. ChaeY.S. Exploration of MELK as a downstream of Del-1 and druggable targets in triple-negative breast cancer.Breast Cancer Res. Treat.2024205118119110.1007/s10549‑023‑07198‑2 38279017
    [Google Scholar]
  100. BadouelC. KörnerR. Frank-VaillantM. CouturierA. NiggE.A. TassanJ.P. M-phase MELK activity is regulated by MPF and MAPK.Cell Cycle20065888388910.4161/cc.5.8.2683 16628004
    [Google Scholar]
  101. ChungS. KijimaK. KudoA. FujisawaY. HaradaY. TairaA. TakamatsuN. MiyamotoT. MatsuoY. NakamuraY. Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor.Oncotarget2016714181711818210.18632/oncotarget.7685 26918358
    [Google Scholar]
  102. SafaA.R. Resistance to cell death and its modulation in cancer stem cells.Crit. Rev. Oncog.2016213-420321910.1615/CritRevOncog.2016016976 27915972
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206389899250522091159
Loading
/content/journals/acamc/10.2174/0118715206389899250522091159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AMPK; apoptosis; Bcl‐2; Cancer progression; MELK; targeted therapy; TNBC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test