Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

1,4-Naphthoquinone and its derivatives are recognized for their potent anticancer effects, establishing this pharmacophore as a key focus in cancer research. Their potential to modulate cellular pathways suggests they could be effective in developing new HuR inhibitors, targeting a protein crucial for regulating cancer-related gene expression. Compounds C1-C20 were designed by using Discovery Studio (DS) software.

Methods

In this study, a systematic approach involves scaffold hopping followed by additional research such as molecular docking, ADMET, drug-likeness, toxicity prediction, molecular dynamic (MD) simulation, and binding free energy analysis was used to discover novel Human Antigen R (HuR) inhibitors.

Results

In molecular docking, 1,4-Naphthoquinone derivatives showed better interactions with the HuR protein compared to that of the conventional HuR inhibitor MS-444. Among twenty 1,4-Naphthoquinone derivatives, most of the compounds showed favorable pharmacokinetic characteristics. In the toxicity prediction model, most of the designed compounds were neither mutagenic nor carcinogenic. According to MD simulation, C5 is more stable than MS-444.

Conclusion

The designed 1,4-Naphthoquinone derivatives have been found to be crucial structural motifs for the discovery of novel HuR inhibitors, which was well supported by the screening and molecular modeling methods.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206354755241220062707
2025-02-04
2025-12-27
Loading full text...

Full text loading...

References

  1. de MartelC. GeorgesD. BrayF. FerlayJ. CliffordG.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis.Lancet Glob. Health202082e180e19010.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  2. SrikantanS. GorospeM. HuR function in disease.Front. Biosci.201217118920510.2741/3921 22201738
    [Google Scholar]
  3. BaylinS.B. Mechanisms underlying epigenetically mediated gene silencing in cancer.Semin. Cancer Biol.200212533133710.1016/S1044‑579X(02)00053‑6 12191632
    [Google Scholar]
  4. WurthL. Versatility of RNA-binding proteins in cancer.Comp. Funct. Genomics201220124178525 22666083
    [Google Scholar]
  5. BenoitR.M. MeisnerN.C. KallenJ. GraffP. HemmigR. CèbeR. OstermeierC. WidmerH. AuerM. The X-ray crystal structure of the first RNA recognition motif and site-directed mutagenesis suggest a possible HuR redox sensing mechanism.J. Mol. Biol.201039751231124410.1016/j.jmb.2010.02.043 20219472
    [Google Scholar]
  6. BlancoF.F. PreetR. AguadoA. VishwakarmaV. StevensL.E. VyasA. PadhyeS. XuL. WeirS.J. AnantS. Meisner-KoberN. BrodyJ.R. DixonD.A. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis.Oncotarget2016745740437405810.18632/oncotarget.12189 27677075
    [Google Scholar]
  7. KimY. YouJ.H. RyuY. ParkG. LeeU. MoonH.E. ParkH.R. SongC.W. KuJ.L. ParkS.H. PaekS.H. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma.NPJ Precis. Oncol.2024817910.1038/s41698‑024‑00566‑1 38548861
    [Google Scholar]
  8. MaW.J. ChengS. CampbellC. WrightA. FurneauxH. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein.J. Biol. Chem.1996271148144815110.1074/jbc.271.14.8144 8626503
    [Google Scholar]
  9. MaW.J. FurneauxH. Localization of the human HuR gene to chromosome 19p13.2.Hum. Genet.1996991323310.1007/s004390050305 9003489
    [Google Scholar]
  10. SchultzC.W. PreetR. DhirT. DixonD.A. BrodyJ.R. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR).Wiley Interdiscip. Rev. RNA2020113e158110.1002/wrna.1581 31970930
    [Google Scholar]
  11. ZucalC. D’AgostinoV. LoffredoR. MantelliB. NatthakanThongon; Lal, P.; Latorre, E.; Provenzani, A. Targeting the multifaceted HuR protein, benefits and caveats.Curr. Drug Targets201516549951510.2174/1389450116666150223163632 25706256
    [Google Scholar]
  12. BlundellT.L. Structure-based drug design.Nature19963846604Suppl.2326 8895597
    [Google Scholar]
  13. AmzelL.M. Structure-based drug design.Curr. Opin. Biotechnol.19989436636910.1016/S0958‑1669(98)80009‑8 9720263
    [Google Scholar]
  14. WhittleP.J. BlundellT.L. Protein structure-based drug design.Annu. Rev. Biophys. Biomol. Struct.199423134937510.1146/annurev.bb.23.060194.002025 7919786
    [Google Scholar]
  15. KhannaI. Drug discovery in pharmaceutical industry: Productivity challenges and trends.Drug Discov. Today20121719-201088110210.1016/j.drudis.2012.05.007 22627006
    [Google Scholar]
  16. BrunoA. CostantinoG. SartoriL. RadiM. The in silico drug discovery toolbox: Applications in lead discovery and optimization.Curr. Med. Chem.201926213838387310.2174/0929867324666171107101035 29110597
    [Google Scholar]
  17. CallisT.B. GarrettT.R. MontgomeryA.P. DanonJ.J. KassiouM. Recent scaffold hopping applications in central nervous system drug discovery.J. Med. Chem.20226520134831350410.1021/acs.jmedchem.2c00969 36206553
    [Google Scholar]
  18. HuY. StumpfeD. BajorathJ. Recent advances in scaffold hopping.J. Med. Chem.20176041238124610.1021/acs.jmedchem.6b01437 28001064
    [Google Scholar]
  19. JosephB.P. WeberV. KnüpferL. GiorgettiA. Alfonso-PrietoM. KraußS. CarloniP. RossettiG. Low molecular weight inhibitors targeting the RNA-binding protein HuR.Int. J. Mol. Sci.202324171312710.3390/ijms241713127 37685931
    [Google Scholar]
  20. WangH. ZengF. LiuQ. LiuH. LiuZ. NiuL. TengM. LiX. The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding.Acta Crystallogr. D Biol. Crystallogr.201369337338010.1107/S0907444912047828 23519412
    [Google Scholar]
  21. AbdelmohsenK. GorospeM. Posttranscriptional regulation of cancer traits by HuR.Wiley Interdiscip. Rev. RNA20101221422910.1002/wrna.4 21935886
    [Google Scholar]
  22. DenkertC. WeichertW. WinzerK.J. MüllerB.M. NoskeA. NiesporekS. KristiansenG. GuskiH. DietelM. HauptmannS. Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma.Clin. Cancer Res.200410165580558610.1158/1078‑0432.CCR‑04‑0070 15328200
    [Google Scholar]
  23. DixonD.A. TolleyN.D. KingP.H. NaborsL.B. McIntyreT.M. ZimmermanG.A. PrescottS.M. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells.J. Clin. Invest.2001108111657166510.1172/JCI12973 11733561
    [Google Scholar]
  24. HeinonenM. BonoP. NarkoK. ChangS.H. LundinJ. JoensuuH. FurneauxH. HlaT. HaglundC. RistimäkiA. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma.Cancer Res.20056562157216110.1158/0008‑5472.CAN‑04‑3765 15781626
    [Google Scholar]
  25. SommerG. HeiseT. Role of the RNA-binding protein La in cancer pathobiology.RNA Biol.202118221823610.1080/15476286.2020.1792677 32687431
    [Google Scholar]
  26. MeisnerN.C. HintersteinerM. MuellerK. BauerR. SeifertJ.M. NaegeliH.U. OttlJ. ObererL. GuenatC. MossS. HarrerN. WoisetschlaegerM. BuehlerC. UhlV. AuerM. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR.Nat. Chem. Biol.20073850851510.1038/nchembio.2007.14 17632515
    [Google Scholar]
  27. ChaeM.J. SungH.Y. KimE.H. LeeM. KwakH. ChaeC.H. KimS. ParkW.Y. Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-α mRNA.Exp. Mol. Med.2009411182483110.3858/emm.2009.41.11.088 19949288
    [Google Scholar]
  28. SunL. ZhangS. JiangZ. HuangX. WangT. HuangX. LiH. ZhangL. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-α-treated A549 cells.Biochem. Biophys. Res. Commun.20114161-29910510.1016/j.bbrc.2011.11.004 22093832
    [Google Scholar]
  29. D’AgostinoV.G. LalP. MantelliB. TiedjeC. ZucalC. ThongonN. GaestelM. LatorreE. MarinelliL. SeneciP. AmadioM. ProvenzaniA. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function.Sci. Rep.2015511647810.1038/srep16478 26553968
    [Google Scholar]
  30. GuoJ. LvJ. ChangS. ChenZ. LuW. XuC. LiuM. PangX. Inhibiting cytoplasmic accumulation of HuR synergizes genotoxic agents in urothelial carcinoma of the bladder.Oncotarget2016729452494526210.18632/oncotarget.9932 27303922
    [Google Scholar]
  31. WuX. LanL. WilsonD.M. MarquezR.T. TsaoW. GaoP. RoyA. TurnerB.A. McDonaldP. TungeJ.A. RogersS.A. DixonD.A. AubéJ. XuL. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction.ACS Chem. Biol.20151061476148410.1021/cb500851u 25750985
    [Google Scholar]
  32. YeT. ZhuS. ZhuY. FengQ. HeB. XiongY. ZhaoL. ZhangY. YuL. YangL. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion.Biomed. Pharmacother.20168231932610.1016/j.biopha.2016.05.015 27470369
    [Google Scholar]
  33. KaurK. WuX. FieldsJ.K. JohnsonD.K. LanL. PrattM. SomozaA.D. WangC.C.C. KaranicolasJ. OakleyB.R. XuL. De GuzmanR.N. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro.PLoS One2017124e017547110.1371/journal.pone.0175471 28414767
    [Google Scholar]
  34. SunH. TawaG. WallqvistA. Classification of scaffold-hopping approaches.Drug Discov. Today2012177-831032410.1016/j.drudis.2011.10.024 22056715
    [Google Scholar]
  35. ZhengS. LeiZ. AiH. ChenH. DengD. YangY. Deep scaffold hopping with multimodal transformer neural networks.J. Cheminform.20211318710.1186/s13321‑021‑00565‑5 34774103
    [Google Scholar]
  36. CamporaM. FrancesconiV. SchenoneS. TassoB. TonelliM. Journey on naphthoquinone and anthraquinone derivatives: New insights in Alzheimer’s disease.Pharmaceuticals (Basel)20211413310.3390/ph14010033 33466332
    [Google Scholar]
  37. VermaR.P. Anti-cancer activities of 1,4-naphthoquinones: A QSAR study.Anticancer. Agents Med. Chem.20066548949910.2174/187152006778226512 17017857
    [Google Scholar]
  38. O’BrienP.J. Molecular mechanisms of quinone cytotoxicity.Chem. Biol. Interact.199180114110.1016/0009‑2797(91)90029‑7 1913977
    [Google Scholar]
  39. BenitesJ. ValderramaJ.A. BettegaK. PedrosaR.C. CalderonP.B. VerraxJ. Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents.Eur. J. Med. Chem.201045126052605710.1016/j.ejmech.2010.10.006 20980080
    [Google Scholar]
  40. SongY. BuettnerG.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide.Free Radic. Biol. Med.201049691996210.1016/j.freeradbiomed.2010.05.009 20493944
    [Google Scholar]
  41. SilvaL.R. GuimarãesA.S. do NascimentoJ. do Santos NascimentoI.J. da SilvaE.B. McKerrowJ.H. CardosoS.H. da Silva-JúniorE.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases.Bioorg. Med. Chem.20214111621310.1016/j.bmc.2021.116213 33992862
    [Google Scholar]
  42. PrachayasittikulV. PingaewR. WorachartcheewanA. NantasenamatC. PrachayasittikulS. RuchirawatS. PrachayasittikulV. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives.Eur. J. Med. Chem.20148424726310.1016/j.ejmech.2014.07.024 25019480
    [Google Scholar]
  43. WangR. GaoY. LaiL. LigBuilder: A multi-purpose program for structure-based drug design.J. Mol. Model.200067-849851610.1007/s0089400060498
    [Google Scholar]
  44. SchneiderG. FechnerU. Computer-based de novo design of drug-like molecules.Nat. Rev. Drug Discov.20054864966310.1038/nrd1799 16056391
    [Google Scholar]
  45. JorgensenW.L. The many roles of computation in drug discovery.Science200430356651813181810.1126/science.1096361 15031495
    [Google Scholar]
  46. BatoolM. AhmadB. ChoiS. A structure-based drug discovery paradigm.Int. J. Mol. Sci.20192011278310.3390/ijms20112783 31174387
    [Google Scholar]
  47. Della VolpeS. NastiR. QueiroloM. UnverM.Y. JumdeV.K. DömlingA. VasileF. PotenzaD. AmbrosioF.A. CostaG. AlcaroS. ZucalC. ProvenzaniA. Di GiacomoM. RossiD. HirschA.K.H. CollinaS. Novel compounds targeting the RNA-binding protein HuR. Structure-based design, synthesis, and interaction studies.ACS Med. Chem. Lett.201910461562010.1021/acsmedchemlett.8b00600 30996806
    [Google Scholar]
  48. NadendlaR.R. Molecular modeling: A powerful tool for drug design and molecular docking.Resonance200495516010.1007/BF02834015
    [Google Scholar]
  49. QSAR, ADMET and Predictive Toxicology - BIOVIA - Dassault Systèmes®Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/qsar-admet-and-predictive-toxicology/
  50. AssoniG. La PietraV. DigilioR. CianiC. LicataN.V. MicaelliM. FacenE. TomaszewskaW. CerofoliniL. Pérez-RàfolsA. Varela ReyM. FragaiM. WoodhooA. MarinelliL. ArosioD. BonomoI. ProvenzaniA. SeneciP. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models.Adv. Drug Deliv. Rev.202218111408810.1016/j.addr.2021.114088 34942276
    [Google Scholar]
  51. LalP. CerofoliniL. D’AgostinoV.G. ZucalC. FuccioC. BonomoI. DassiE. GiuntiniS. Di MaioD. VishwakarmaV. PreetR. WilliamsS.N. FairlambM.S. MunkR. LehrmannE. AbdelmohsenK. ElezgaraiS.R. LuchinatC. NovellinoE. QuattroneA. BiasiniE. ManzoniL. GorospeM. DixonD.A. SeneciP. MarinelliL. FragaiM. ProvenzaniA. Regulation of HuR structure and function by dihydrotanshinone-I.Nucleic Acids Res.201745169514952710.1093/nar/gkx623 28934484
    [Google Scholar]
  52. Lachiondo-OrtegaS. DelgadoT.C. Baños-JaimeB. Velázquez-CruzA. Díaz-MorenoI. Martínez-ChantarM.L. Hu Antigen R (HuR) protein structure, function and regulation in hepatobiliary tumors.Cancers (Basel)202214112666266610.3390/cancers14112666 35681645
    [Google Scholar]
  53. Della VolpeS. LincianoP. ListroR. TumminelliE. AmadioM. BonomoI. ElgaherW.A.M. AdamS. HirschA.K.H. BoecklerF.M. VasileF. RossiD. CollinaS. Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization.Bioorg. Chem.202111610530510530510.1016/j.bioorg.2021.105305 34482166
    [Google Scholar]
  54. ShuklaR. ShuklaH. SonkarA. PandeyT. TripathiT. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase.J. Biomol. Struct. Dyn.20183682045205710.1080/07391102.2017.1341337 28605994
    [Google Scholar]
  55. WuG. RobertsonD.H. BrooksC.L.III ViethM. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm.J. Comput. Chem.200324131549156210.1002/jcc.10306 12925999
    [Google Scholar]
  56. HusseinM.F. New sulfonamide hybrids: Synthesis, in vitro antimicrobial activity and docking study of some novel sulfonamide derivatives bearing carbamate/acyl-thiourea scaffolds.Mediterr. J. Chem.20187537038510.13171/mjc751912111445mh
    [Google Scholar]
  57. Van RompayA.R. NordaA. LindénK. JohanssonM. KarlssonA. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases.Mol. Pharmacol.20015951181118610.1124/mol.59.5.1181 11306702
    [Google Scholar]
  58. BrennanC. SteitzJ.A. HuR and MRNA stability.Cell. Mol. Life Sci.200158226627710.1007/PL00000854 11289308
    [Google Scholar]
  59. TrisciuzziD. NicolottiO. MitevaM.A. VilloutreixB.O. Analysis of solvent-exposed and buried co-crystallized ligands: A case study to support the design of novel protein–protein interaction inhibitors.Drug Discov. Today201924255155910.1016/j.drudis.2018.11.013 30472428
    [Google Scholar]
  60. Castro-AlvarezA. CostaA. VilarrasaJ. The performance of several docking programs at reproducing protein–macrolide-like crystal structures.Molecules201722113610.3390/molecules22010136 28106755
    [Google Scholar]
  61. GhersiD. SanchezR. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites.Proteins200974241742410.1002/prot.22154 18636505
    [Google Scholar]
  62. JhaP. RajoriaP. PooniaP. ChopraM. Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies.Sci. Rep.20241412809710.1038/s41598‑024‑78330‑5
    [Google Scholar]
  63. ClarkA.M. LabuteP. 2D depiction of protein-ligand complexes.J. Chem. Inf. Model.20074751933194410.1021/ci7001473 17715911
    [Google Scholar]
  64. Marques da FonsecaA. CaluacoB.J. MadureiraJ.M.C. CabongoS.Q. GaietaE.M. DjataF. ColaresR.P. NetoM.M. FernandesC.F.C. MarinhoG.S. SantosH.S.D. MarinhoE.S. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA.Mol. Biotechnol.20246681919193310.1007/s12033‑023‑00831‑x 37490200
    [Google Scholar]
  65. AnthonyL.A. RajaramanD. SundararajanG. SureshM. NethajiP. JaganathanR. PoomaniK. Synthesis, crystal structure, Hirshfeld surface analysis, DFT, molecular docking and molecular dynamic simulation studies of (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine derivatives.J. Mol. Struct.2022126613348310.1016/j.molstruc.2022.133483 35692554
    [Google Scholar]
  66. ShivanikaC. DeepakK.S. RagunathanV. TiwariP. SumithaA. BrindhaD.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.1815584 32897178
    [Google Scholar]
  67. AbbottN.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery.J. Inherit. Metab. Dis.201336343744910.1007/s10545‑013‑9608‑0 23609350
    [Google Scholar]
  68. ChlebekJ. KorábečnýJ. DoležalR. ŠtěpánkováŠ. PérezD.I. HošťálkováA. OpletalL. CahlíkováL. MacákováK. KučeraT. HrabinováM. JunD. In vitro and in silico acetylcholinesterase inhibitory activity of thalictricavine and canadine and their predicted penetration across the blood-brain barrier.Molecules2019247134010.3390/molecules24071340 30959739
    [Google Scholar]
  69. WangB. YangL.P. ZhangX.Z. HuangS.Q. BartlamM. ZhouS.F. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme.Drug Metab. Rev.200941457364310.1080/03602530903118729 19645588
    [Google Scholar]
  70. Gómez-LechónM.J. LahozA. GombauL. CastellJ.V. DonatoM.T. In vitro evaluation of potential hepatotoxicity induced by drugs.Curr. Pharm. Des.201016171963197710.2174/138161210791208910 20236064
    [Google Scholar]
  71. ChandrasekaranB. AbedS.N. Al-AttraqchiO. KucheK. TekadeR.K. Computer-Aided Prediction of Pharmacokinetic (ADMET) properties.Dosage Form Design Parameters2018273175510.1016/B978‑0‑12‑814421‑3.00021‑X
    [Google Scholar]
  72. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  73. SvenssonF. NorinderU. BenderA. Modelling compound cytotoxicity using conformal prediction and PubChem HTS data.Toxicol. Res. (Camb.)201761738010.1039/C6TX00252H 30090478
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206354755241220062707
Loading
/content/journals/acamc/10.2174/0118715206354755241220062707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test