Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Hepatocellular carcinoma (HCC) is among the most prevalent and fatal cancers globally. The gut-liver axis, involving intricate interactions between gut microbiota and the liver, has emerged as a critical pathway in HCC development. This review comprehensively examines the molecular mechanisms by which gut microbiota contribute to hepatocarcinogenesis. It discusses factors that either protect against or promote HCC, such as bacterial translocation, and explores the biological processes that drive carcinogenesis, while addressing clinical and pathophysiological complexities. Special attention is given to the role of toll-like receptors (TLRs) and inflammation in liver cells, where microbial components trigger changes in TLR activation, leading to increased inflammation and fibrosis. Additionally, the review covers obesity-related HCC, highlighting the impact of gut microbiota alterations on this cancer type. It critically assesses current literature on therapeutic interventions targeting gut microbiota in HCC, focusing on strategies like probiotics and antibiotics that could modulate microbial composition to prevent HCC progression. The review also explores gut microbiota-derived biomarkers for early detection and monitoring of HCC and discusses personalized therapies based on individual gut-liver interactions. Finally, it identifies research gaps and suggests future studies to deepen understanding of how gut microbiota can be leveraged as an adjunct therapy in HCC. Overall, the review underscores the pivotal role of gut microbiota in HCC pathogenesis and treatment, pointing to microbiome modulation as a promising therapeutic avenue.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206364200250304034753
2025-03-13
2025-10-22
Loading full text...

Full text loading...

References

  1. GanesanP. KulikL.M. Hepatocellular carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  2. McGlynnK.A. PetrickJ.L. El-SeragH.B. Epidemiology of hepatocellular carcinoma.Hepatology202173S1Suppl. 141310.1002/hep.31288 32319693
    [Google Scholar]
  3. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  4. AlsahliM.A. AlmatroodiS.A. AlmatroudiA. KhanA.A. AnwarS. AlmutaryA.G. AlrumaihiF. RahmaniA.H. 6-Gingerol, a major ingredient of ginger attenuates Diethylnitrosamine-Induced liver injury in rats through the modulation of oxidative stress and anti-inflammatory activity.Mediators Inflamm.2021202111710.1155/2021/6661937 33531877
    [Google Scholar]
  5. LiS. HanW. HeQ. ZhangW. ZhangY. Relationship between intestinal microflora and hepatocellular cancer based on gut‐liver axis theory.Contrast Media Mol. Imaging202220221653362810.1155/2022/6533628 35965618
    [Google Scholar]
  6. TrivediY. BolgarinaZ. DesaiH.N. SenaratneM. SwamiS.S. AyeS.L. MohammedL. The role of gut microbiome in hepatocellular carcinoma: A systematic review.Cureus2023158e4386210.7759/cureus.43862 37614827
    [Google Scholar]
  7. JiaW. RajaniC. XuH. ZhengX. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma.Protein Cell202112537439310.1007/s13238‑020‑00748‑0 32797354
    [Google Scholar]
  8. SchwabeR.F. GretenT.F. Gut microbiome in HCC – Mechanisms, diagnosis and therapy.J. Hepatol.202072223023810.1016/j.jhep.2019.08.016 31954488
    [Google Scholar]
  9. ZhangN. GouY. LiangS. ChenN. LiuY. HeQ. ZhangJ. Dysbiosis of gut microbiota promotes hepatocellular carcinoma progression by regulating the immune response.J. Immunol. Res.2021202111310.1155/2021/4973589 34722779
    [Google Scholar]
  10. SchneiderK.M. MohsA. GuiW. GalvezE.J.C. CandelsL.S. HoenickeL. MuthukumarasamyU. HollandC.H. ElfersC. KilicK. SchneiderC.V. SchierwagenR. StrnadP. WirtzT.H. MarschallH.U. LatzE. LelouvierB. Saez-RodriguezJ. de VosW. StrowigT. TrebickaJ. TrautweinC. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment.Nat. Commun.2022131396410.1038/s41467‑022‑31312‑5 35803930
    [Google Scholar]
  11. LiK. LiuJ. QinX. Research progress of gut microbiota in hepatocellular carcinoma.J. Clin. Lab. Anal.2022367e2451210.1002/jcla.24512 35719048
    [Google Scholar]
  12. LuoW. GuoS. ZhouY. ZhaoJ. WangM. SangL. ChangB. WangB. Hepatocellular carcinoma: How the gut microbiota contributes to pathogenesis, diagnosis, and therapy.Front. Microbiol.20221387316010.3389/fmicb.2022.873160 35572649
    [Google Scholar]
  13. ValdesA.M. WalterJ. SegalE. SpectorT.D. Role of the gut microbiota in nutrition and health.BMJ201836110.1136/bmj.k2179 29899036
    [Google Scholar]
  14. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ20160510 28512250
    [Google Scholar]
  15. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  16. HouK. WuZ.X. ChenX.Y. WangJ.Q. ZhangD. XiaoC. ZhuD. KoyaJ.B. WeiL. LiJ. ChenZ.S. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑4 35461318
    [Google Scholar]
  17. AlbillosA. de GottardiA. RescignoM. The gut-liver axis in liver disease: Pathophysiological basis for therapy.J. Hepatol.202072355857710.1016/j.jhep.2019.10.003 31622696
    [Google Scholar]
  18. MingZ. RuishiX. LinyiX. YonggangY. HaomingL. XintianL. The gut-liver axis in fatty liver disease: Role played by natural products.Front. Pharmacol.202415136529410.3389/fphar.2024.1365294 38686320
    [Google Scholar]
  19. TilgH. AdolphT.E. TraunerM. Gut-liver axis: Pathophysiological concepts and clinical implications.Cell Metab.202234111700171810.1016/j.cmet.2022.09.017 36208625
    [Google Scholar]
  20. TaoX. WangN. QinW. Gut microbiota and hepatocellular carcinoma.Gastrointest. Tumors201521334010.1159/000380895 26673641
    [Google Scholar]
  21. MaC. ChenC. JiaL. HeX. ZhangB. Comparison of the intestinal microbiota composition and function in healthy and diseased Yunlong Grouper.AMB Express20199118710.1186/s13568‑019‑0913‑3 31754862
    [Google Scholar]
  22. GokalpS. DinleyiciE.C. MulukC. InciA. AktasE. OkurI. EzguF. TumerL. Intestinal microbiota composition of children with glycogen storage Type I patients.Eur. J. Clin. Nutr.202478540741210.1038/s41430‑024‑01412‑0 38402355
    [Google Scholar]
  23. WanM.L.Y. El-NezamiH. Targeting gut microbiota in hepatocellular carcinoma: Probiotics as a novel therapy.Hepatobiliary Surg. Nutr.201871112010.21037/hbsn.2017.12.07 29531939
    [Google Scholar]
  24. WanS. NieY. ZhangY. HuangC. ZhuX. Gut microbial dysbiosis is associated with profibrotic factors in liver fibrosis mice.Front. Cell. Infect. Microbiol.2020101810.3389/fcimb.2020.00018 32083022
    [Google Scholar]
  25. LiM. ZhouY. ZuoL. NieD. LiX. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice.Nutrition20218111095910.1016/j.nut.2020.110959 33059126
    [Google Scholar]
  26. GiuffrèM. CampigottoM. CampiscianoG. ComarM. CrocèL.S. A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature.Am. J. Physiol. Gastrointest. Liver Physiol.20203185G889G90610.1152/ajpgi.00161.2019 32146836
    [Google Scholar]
  27. XiaoQ.A. YangY.F. ChenL. XieY.C. LiH.T. FuZ.G. HanQ. QinJ. TianJ. ZhaoW.J. CaiF. HuY.T. AiL.F. LiC. ChenX.Y. WangD. TanY.Y. XiaX. ZhangX.L. The causality between gut microbiome and liver cirrhosis: A bi-directional two-sample Mendelian randomization analysis.Front. Microbiol.202314125687410.3389/fmicb.2023.1256874 37920262
    [Google Scholar]
  28. LiuS. YangX. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer.Front. Cell. Infect. Microbiol.202313114012610.3389/fcimb.2023.1140126 36968098
    [Google Scholar]
  29. YanF. ZhangQ. ShiK. ZhangY. ZhuB. BiY. WangX. Gut microbiota dysbiosis with hepatitis B virus liver disease and association with immune response.Front. Cell. Infect. Microbiol.202313115298710.3389/fcimb.2023.1152987 37201112
    [Google Scholar]
  30. MilosevicI. RussoE. VujovicA. BaracA. StevanovicO. GittoS. AmedeiA. Microbiota and viral hepatitis: State of the art of a complex matter.World J. Gastroenterol.202127335488550110.3748/wjg.v27.i33.5488 34588747
    [Google Scholar]
  31. BiswasP. PalS. DasM. DamS. Microbe-induced oxidative stress in cancer development and efficacy of probiotics as therapeutics in preventing its onset and progression.SingaporeSpringer202235133542
    [Google Scholar]
  32. BorrelliA. BonelliP. TuccilloF.M. GoldfineI.D. EvansJ.L. BuonaguroF.M. ManciniA. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches.Redox Biol.20181546747910.1016/j.redox.2018.01.009 29413959
    [Google Scholar]
  33. MallaR.R. MarniR. ChakrabortyA. ROS-mediated pathways: Potential role in hepatocellular carcinoma biology and therapy.Theranostics and Precision Medicine for the Management of Hepatocellular CarcinomaElsevier2022232133510.1016/B978‑0‑323‑98807‑0.00004‑1
    [Google Scholar]
  34. FuN. YaoH. NanY. QiaoL. Role of oxidative stress in hepatitis C virus induced hepatocellular carcinoma.Curr. Cancer Drug Targets2017176498504 27677955
    [Google Scholar]
  35. LiuY. HaoC. LiL. ZhangH. ZhaW. MaL. ChenL. GanJ. The role of oxidative stress in the development and therapeutic intervention of hepatocellular carcinoma.Curr. Cancer Drug Targets2023231079280410.2174/1568009623666230418121130 37073651
    [Google Scholar]
  36. ZhouS. DuR. WangZ. ShenW. GaoR. JiangS. FangY. ShiY. ChangA. LiuL. LiuC. LiN. XiangR. TLR 4 increases the stemness and is highly expressed in relapsed human hepatocellular carcinoma.Cancer Med.2019852325233710.1002/cam4.2070 30957973
    [Google Scholar]
  37. PapadakosS.P. ArvanitakisK. StergiouI.E. VallilasC. SougioultzisS. GermanidisG. TheocharisS. Interplay of extracellular vesicles and TLR4 signaling in hepatocellular carcinoma pathophysiology and therapeutics.Pharmaceutics20231510246010.3390/pharmaceutics15102460 37896221
    [Google Scholar]
  38. KairaluomaV. KemiN. HuhtaH. PohjanenV.M. HelminenO. Prognostic role of TLR4 and TLR2 in hepatocellular carcinoma.Acta Oncol.202160455455810.1080/0284186X.2021.1877346 33502274
    [Google Scholar]
  39. ChenI.T. ChengA.C. LiuY.T. YanC. ChengY.C. ChangC.F. TsengP.H. Persistent TLR4 activation promotes hepatocellular carcinoma growth through positive feedback regulation by LIN28A/Let-7g miRNA.Int. J. Mol. Sci.20222315841910.3390/ijms23158419 35955552
    [Google Scholar]
  40. AcharyaC. BajajJ.S. Chronic liver diseases and the microbiome—Translating our knowledge of gut microbiota to management of chronic liver disease.Gastroenterol.2021160255657210.1053/j.gastro.2020.10.056 33253686
    [Google Scholar]
  41. ZengY. ChenS. FuY. WuW. ChenT. ChenJ. YangB. OuQ. Gut microbiota dysbiosis in patients with hepatitis B virus–induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma.J. Viral Hepat.202027214315510.1111/jvh.13216 31600845
    [Google Scholar]
  42. LiuY. ChenS. YuS. WangJ. ZhangX. LvH. AboubacarH. GaoN. RanX. SunY. CaoG. LPS-TLR4 pathway exaggerates alcoholic hepatitis via provoking NETs formation.Gastroenterol. Hepatol.202447215816910.1016/j.gastrohep.2023.05.002 37150251
    [Google Scholar]
  43. LiuY. ZhangX. ChenS. WangJ. YuS. LiY. XuM. AboubacarH. LiJ. ShanT. WangJ. CaoG. Gut-derived lipopolysaccharide promotes alcoholic hepatosteatosis and subsequent hepatocellular carcinoma by stimulating neutrophil extracellular traps through toll-like receptor 4.Clin. Mol. Hepatol.202228352253910.3350/cmh.2022.0039 35508957
    [Google Scholar]
  44. GuptaH. YounG.S. ShinM.J. SukK.T. Role of gut microbiota in hepatocarcinogenesis.Microorganisms20197512110.3390/microorganisms7050121 31060311
    [Google Scholar]
  45. ShaoJ.W. GeT.T. ChenS.Z. WangG. YangQ. HuangC.H. XuL.C. ChenZ. Role of bile acids in liver diseases mediated by the gut microbiome.World J. Gastroenterol.202127223010302110.3748/wjg.v27.i22.3010 34168404
    [Google Scholar]
  46. FarooquiN. ElhenceA. Shalimar, A current understanding of bile acids in chronic liver disease.J. Clin. Exp. Hepatol.202212115517310.1016/j.jceh.2021.08.017 35068796
    [Google Scholar]
  47. KhalilA. ElfertA. GhanemS. HelalM. AbdelsattarS. ElgedawyG. ObadaM. Abdel-SamieeM. El-SaidH. The role of metabolomics in hepatocellular carcinoma.Egypt. Liver J.20211114110.1186/s43066‑021‑00085‑9
    [Google Scholar]
  48. PallozziM. De GaetanoV. Di TommasoN. CerritoL. SantopaoloF. StellaL. GasbarriniA. PonzianiF.R. Role of gut microbial metabolites in the pathogenesis of primary liver cancers.Nutrients20241614237210.3390/nu16142372 39064815
    [Google Scholar]
  49. TemrazS. NassarF. KreidiehF. MukherjiD. ShamseddineA. NasrR. Hepatocellular carcinoma immunotherapy and the potential influence of gut microbiome.Int. J. Mol. Sci.20212215780010.3390/ijms22157800 34360566
    [Google Scholar]
  50. RattanP. MinacapelliC.D. RustgiV. The microbiome and hepatocellular carcinoma.Liver Transpl.202026101316132710.1002/lt.25828 32564483
    [Google Scholar]
  51. BeyoğluD. IdleJ.R. The gut microbiota – A vehicle for the prevention and treatment of hepatocellular carcinoma.Biochem. Pharmacol.202220411522510.1016/j.bcp.2022.115225 35998677
    [Google Scholar]
  52. ZhangY. YangF.J. JiangQ.R. GaoH.J. SongX. ZhuH.Q. ZhouX. LuJ. Association between gut microbiota and hepatocellular carcinoma and biliary tract cancer: A mendelian randomization study.World J. Clin. Cases202412183497350410.12998/wjcc.v12.i18.3497 38983434
    [Google Scholar]
  53. SongY. LauH.C.H. ZhangX. YuJ. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma.Cancer Biol. Med.202321211910.20892/j.issn.2095‑3941.2023.0394 38148326
    [Google Scholar]
  54. BeharyJ. AmorimN. JiangX.T. RaposoA. GongL. McGovernE. IbrahimR. ChuF. StephensC. JebeiliH. FragomeliV. KoayY.C. JacksonM. O’SullivanJ. WeltmanM. McCaughanG. El-OmarE. ZekryA. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma.Nat. Commun.202112118710.1038/s41467‑020‑20422‑7 33420074
    [Google Scholar]
  55. RenZ. LiA. JiangJ. ZhouL. YuZ. LuH. XieH. ChenX. ShaoL. ZhangR. XuS. ZhangH. CuiG. ChenX. SunR. WenH. LerutJ.P. KanQ. LiL. ZhengS. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma.Gut20196861014102310.1136/gutjnl‑2017‑315084 30045880
    [Google Scholar]
  56. ZhouA. TangL. ZengS. LeiY. YangS. TangB. Gut microbiota: A new piece in understanding hepatocarcinogenesis.Cancer Lett.2020474152210.1016/j.canlet.2020.01.002 31917160
    [Google Scholar]
  57. BakhtiariR. A review of the effects of probiotics and their metabolites in the treatment of liver cancer: An update on probiotics as a new treatment.J. Clin. Pract. Res.2022451818
    [Google Scholar]
  58. ThilakarathnaW.P.D.W. RupasingheH.P.V. RidgwayN.D. Mechanisms by which probiotic bacteria attenuate the risk of hepatocellular carcinoma.Int. J. Mol. Sci.2021225260610.3390/ijms22052606 33807605
    [Google Scholar]
  59. LauH.C.H. ZhangX. JiF. LinY. LiangW. LiQ. ChenD. FongW. KangX. LiuW. ChuE.S.H. NgQ.W.Y. YuJ. Lactobacillus acidophilus suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma through producing valeric acid.EBioMedicine202410010495210.1016/j.ebiom.2023.104952 38176203
    [Google Scholar]
  60. RussoE. FiorindiC. GiudiciF. AmedeiA. Immunomodulation by probiotics and prebiotics in hepatocellular carcinoma.World J. Hepatol.202214237238510.4254/wjh.v14.i2.372 35317185
    [Google Scholar]
  61. QinH. YuanB. HuangW. WangY. Utilizing gut microbiota to improve hepatobiliary tumor treatments: Recent advances.Front. Oncol.20221292469610.3389/fonc.2022.924696 35924173
    [Google Scholar]
  62. PinatoD.J.J. LiX. Mishra-KalyaniP.S. D’AlessioA. FulgenziC.A.M. WeiG. SchneiderJ.A. RiveraD. PazdurR. TheoretM.R. CasakS.J. LemeryS. FashoyinI. CortelliniA. PelosofL.C. Antibiotic therapy and association with oncological outcomes from targeted and immune-based therapy in hepatocellular carcinoma (HCC).J. Clin. Oncol.20224016Suppl.4089408910.1200/JCO.2022.40.16_suppl.4089
    [Google Scholar]
  63. HuangC. FengS. HuoF. LiuH. Effects of four antibiotics on the diversity of the intestinal microbiota.Microbiol. Spectr.2022102e01904e0192110.1128/spectrum.01904‑21 35311555
    [Google Scholar]
  64. YangL. BajinkaO. JarjuP.O. TanY. TaalA.M. OzdemirG. The varying effects of antibiotics on gut microbiota.AMB Express202111111610.1186/s13568‑021‑01274‑w 34398323
    [Google Scholar]
  65. BichV.T.N. LeN.G. BarnettD. ChanJ. van BestN. TienT.D. AnhN.T.H. HoangT.H. van DoornH.R. WertheimH.F.L. PendersJ. Moderate and transient impact of antibiotic use on the gut microbiota in a rural Vietnamese cohort.Sci. Rep.20221212018910.1038/s41598‑022‑24488‑9 36424459
    [Google Scholar]
  66. SchwartzD.J. LangdonA.E. DantasG. Understanding the impact of antibiotic perturbation on the human microbiome.Genome Med.20201218210.1186/s13073‑020‑00782‑x 32988391
    [Google Scholar]
  67. LeS.N.H. Nguyen Ngoc MinhC. de SessionsP.F. JieS. Tran Thi HongC. ThwaitesG.E. The impact of antibiotics on the gut microbiota of children recovering from watery diarrhoea.NPJ Antimicrob. Resist20242112
    [Google Scholar]
  68. AddissoukyT.A. SayedI.E.T.E. AliM.M.A. WangY. BazA.E. KhalilA.A. ElarabanyN. Latest advances in hepatocellular carcinoma management and prevention through advanced technologies.Egypt. Liver J.2024141210.1186/s43066‑023‑00306‑3
    [Google Scholar]
  69. FengF. ZhaoY. Hepatocellular carcinoma: Prevention, diagnosis, and treatment.Med. Princ. Pract.202433541442310.1159/000539349 38772352
    [Google Scholar]
  70. ErstadD.J. RazaviA.A. LiS. TanabeK.K. FuchsB.C. Prevention Strategies for Hepatocellular Carcinoma.Cham, CHHumana Press201925528910.1007/978‑3‑030‑21540‑8_13
    [Google Scholar]
  71. OranratnachaiS. RattanasiriS. PooprasertA. TansawetA. ReungwetwattanaT. AttiaJ. ThakkinstianA. Efficacy of first line systemic chemotherapy and multikinase inhibitors in advanced hepatocellular carcinoma: A systematic review and network meta-analysis.Front. Oncol.20211165402010.3389/fonc.2021.654020 33869060
    [Google Scholar]
  72. ZhaoY. GongC. XuJ. ChenD. YangB. ChenZ. WeiL. Research progress of fecal microbiota transplantation in liver diseases.J. Clin. Med.2023124168310.3390/jcm12041683 36836218
    [Google Scholar]
  73. GuX. LuQ. ZhangC. TangZ. ChuL. Clinical application and progress of fecal microbiota transplantation in liver diseases: A review.Semin. Liver Dis.202141449550610.1055/s‑0041‑1732319 34261137
    [Google Scholar]
  74. ShenS. JacksonM. KhatiwadaS. RaposoA. VijayanA. RajapakseJ. IDDF2023-ABS-0223 Modulating the gut microbiota alters the gut-liver immune environment in a preclinical model of HCC.BMJ Publishing Group202310.1136/gutjnl‑2023‑IDDF.6
    [Google Scholar]
  75. SpanuD. PrettaA. LaiE. PersanoM. DonisiC. MarianiS. DuboisM. MigliariM. SabaG. ZiranuP. PuscedduV. PuzzoniM. AstaraG. ScartozziM. Hepatocellular carcinoma and microbiota: Implications for clinical management and treatment.World J. Hepatol.20221471319133210.4254/wjh.v14.i7.1319 36158925
    [Google Scholar]
  76. XiangZ. WuJ. LiJ. ZhengS. WeiX. XuX. Gut microbiota modulation: A viable strategy to address medical needs in hepatocellular carcinoma and liver transplantation.Engineering202329597210.1016/j.eng.2022.12.012
    [Google Scholar]
  77. ParkS.R. KimG. KimY. ChoB. KimS.Y. DoE.J. BaeD-J. KweonM-N. SongJ.S. ParkH. Fecal microbiota transplantation combined with anti-PD-1 inhibitor for unresectable or metastatic solid cancers refractory to anti-PD-1 inhibitor.J. Clin. Oncol.20234110510.1200/JCO.2023.41.16_suppl.105
    [Google Scholar]
  78. YangY. AnY. DongY. ChuQ. WeiJ. WangB. CaoH. Fecal microbiota transplantation: No longer cinderella in tumour immunotherapy. EBio.Med202410010496710.1016/j.ebiom.2024.104967 38241975
    [Google Scholar]
  79. AgarwalP.D. LuceyM.R. SaidA. KratzJ. Immunotherapy for HCC: Limitations in patients with NASH.Ann. Hepatol.202328210088610.1016/j.aohep.2022.100886 36925208
    [Google Scholar]
  80. ZhongC. LiY. YangJ. JinS. ChenG. LiD. FanX. LinH. Immunotherapy for hepatocellular carcinoma: Current limits and prospects.Front. Oncol.20211158968010.3389/fonc.2021.589680 33854960
    [Google Scholar]
  81. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202219315117210.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  82. YuS.J. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets.Pharmacol. Ther.202324410838710.1016/j.pharmthera.2023.108387 36948423
    [Google Scholar]
  83. CasseseG. HanH.S. LeeB. LeeH.W. ChoJ.Y. PanaroF. TroisiR.I. Immunotherapy for hepatocellular carcinoma: A promising therapeutic option for advanced disease.World J. Hepatol.202214101862187410.4254/wjh.v14.i10.1862 36340753
    [Google Scholar]
  84. NiuM. YiM. LiN. WuK. WuK. Advances of targeted therapy for hepatocellular carcinoma.Front. Oncol.20211171989610.3389/fonc.2021.719896 34381735
    [Google Scholar]
  85. ZhangH. ZhangW. JiangL. ChenY. Recent advances in systemic therapy for hepatocellular carcinoma.Biomark. Res.2022101310.1186/s40364‑021‑00350‑4 35000616
    [Google Scholar]
  86. LafaceC. FedeleP. MaselliF.M. AmbrogioF. FotiC. MolinariP. AmmendolaM. LioceM. RanieriG. Targeted therapy for hepatocellular carcinoma: Old and new opportunities.Cancers20221416402810.3390/cancers14164028 36011021
    [Google Scholar]
  87. RinaldiL. VetranoE. RinaldiB. GalieroR. CaturanoA. SalvatoreT. SassoF.C. HCC and molecular targeting therapies: Back to the future.Biomedicines2021910134510.3390/biomedicines9101345 34680462
    [Google Scholar]
  88. ZhongC. LiY. YangJ. JinS. ChenG. LiD. XiaoxiaoF. HuiL. Immunotherapy for hepatocellular carcinoma: Current limits and prospects.Front. Oncol.202111589680
    [Google Scholar]
  89. Orphanet: The FAB-HCC Trial: Fecal Microbiota Transplant (FMT) combined with Atezolizumab plus Bevacizumab in Patients with HepatoCellular Carcinoma who failed to respond to prior Immunotherapy2024Available from: https://www.orpha.net/en/research-trials/clinical-trial/643934?recruiting=0&terminated=0
  90. KomiyamaS. YamadaT. TakemuraN. KokudoN. HaseK. KawamuraY.I. Profiling of tumour-associated microbiota in human hepatocellular carcinoma.Sci. Rep.20211111058910.1038/s41598‑021‑89963‑1 34012007
    [Google Scholar]
  91. PóvoaP. CoelhoL. Which biomarkers can be used as diagnostic tools for infection in suspected sepsis?Semin. Respir. Crit. Care Med.202142566267110.1055/s‑0041‑1735148 34544183
    [Google Scholar]
  92. XieC. PochaC. Crosstalk between gut microbiota and hepatocellular carcinoma.Gastrointest. Disord.20235212714310.3390/gidisord5020013
    [Google Scholar]
  93. KomorowskiM. GreenA. TathamK.C. SeymourC. AntcliffeD. Sepsis biomarkers and diagnostic tools with a focus on machine learning.EBioMedicine20228610439410.1016/j.ebiom.2022.104394 36470834
    [Google Scholar]
  94. AdenijiN. DhanasekaranR. Current and emerging tools for hepatocellular carcinoma surveillance.Hepatol. Commun.20215121972198610.1002/hep4.1823 34533885
    [Google Scholar]
  95. PiñeroF. DirchwolfM. PessôaM.G. Biomarkers in hepatocellular carcinoma: Diagnosis, prognosis and treatment response assessment.Cells202096137010.3390/cells9061370 32492896
    [Google Scholar]
  96. Basthi MohanP. LochanR. ShettyS. Biomarker in hepatocellular carcinoma.Indian J. Surg. Oncol.202415S226126810.1007/s13193‑023‑01858‑x 38817995
    [Google Scholar]
  97. OmarM.A. OmranM.M. FaridK. TabllA.A. ShaheinY.E. EmranT.M. PetrovicA. LucicN.R. SmolicR. KovacT. SmolicM. Biomarkers for hepatocellular carcinoma: From origin to clinical diagnosis.Biomedicines2023117185210.3390/biomedicines11071852 37509493
    [Google Scholar]
  98. ChoE.J. KimB. YuS.J. HongS.K. ChoiY. YiN.J. LeeK.W. SuhK.S. YoonJ.H. ParkT. Urinary microbiome-based metagenomic signature for the noninvasive diagnosis of hepatocellular carcinoma.Br. J. Cancer2024130697097510.1038/s41416‑024‑02582‑1 38278977
    [Google Scholar]
  99. BajajJ.S. NgS.C. SchnablB. Promises of microbiome-based therapies.J. Hepatol.20227661379139110.1016/j.jhep.2021.12.003 35589257
    [Google Scholar]
  100. SunH. YangH. MaoY. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering.Front. Pharmacol.202314115015110.3389/fphar.2023.1150151 37214451
    [Google Scholar]
  101. YarchoanM. GaneE.J. MarronT.U. Perales-LinaresR. YanJ. CoochN. ShuD.H. FertigE.J. KagoharaL.T. BarthaG. NorthcottJ. LyleJ. RochestieS. PetersJ. ConnorJ.T. JaffeeE.M. CsikiI. WeinerD.B. Perales-PuchaltA. SardesaiN.Y. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: A phase 1/2 trial.Nat. Med.20243041044105310.1038/s41591‑024‑02894‑y 38584166
    [Google Scholar]
  102. ParkE.M. ChelvanambiM. BhutianiN. KroemerG. ZitvogelL. WargoJ.A. Targeting the gut and tumor microbiota in cancer.Nat. Med.202228469070310.1038/s41591‑022‑01779‑2 35440726
    [Google Scholar]
  103. GulliverE.L. YoungR.B. ChonwerawongM. D’AdamoG.L. ThomasonT. WiddopJ.T. RuttenE.L. MarcelinoR.V. BryantR.V. CostelloS.P. O’BrienC.L. HoldG.L. GilesE.M. ForsterS.C. Review article: The future of microbiome‐based therapeutics.Aliment. Pharmacol. Ther.202256219220810.1111/apt.17049 35611465
    [Google Scholar]
  104. SchupackD.A. MarsR.A.T. VoelkerD.H. AbeykoonJ.P. KashyapP.C. The promise of the gut microbiome as part of individualized treatment strategies.Nat. Rev. Gastroenterol. Hepatol.202219172510.1038/s41575‑021‑00499‑1 34453142
    [Google Scholar]
  105. XuJ. ZhanQ. FanY. LoE.K.K. ZhangF. YuY. El-NezamiH. ZengZ. Clinical aspects of gut microbiota in hepatocellular carcinoma management.Pathogens202110778210.3390/pathogens10070782 34206200
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206364200250304034753
Loading
/content/journals/acamc/10.2174/0118715206364200250304034753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test