Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Colorectal cancer (CRC) is a significant global health burden, ranking third in incidence and second in mortality worldwide. The incidence of CRC continues to rise, and drug resistance to conventional therapies such as 5-fluorouracil (5-FU) poses a challenge in treatment. Quercetin, a naturally occurring flavonol, has shown anti-carcinogenic properties and potential in sensitizing cancer cells to chemotherapy.

Aims and Objective

This review assesses recent animal and clinical studies on the impact of quercetin on CRC treatment and progression and evaluates its potential in combination with conventional therapies.

Methods

A comprehensive literature search was conducted to identify relevant studies investigating quercetin's effects on CRC. The search included both animal and clinical studies.

Results

Quercetin has been shown to inhibit cancer progression through cell cycle arrest and apoptosis induction. It sensitizes cancer cells to chemotherapy while exhibiting protective effects on normal cells. In CRC, quercetin has demonstrated potential in reducing tumor growth and modulating signaling pathways involved in inflammation and immune responses.

Conclusion

Quercetin shows promise as a novel therapeutic agent for CRC, and its combination with conventional therapies may lead to more effective treatment options and improved patient outcomes. Further research is warranted to validate these findings in clinical settings.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206354948250226103832
2025-03-06
2025-09-06
Loading full text...

Full text loading...

References

  1. HuangJ. Global epidemiology, Precursor detection, and screening uptake for colorectal cancer.Hong KongThe Chinese University of Hong Kong2021
    [Google Scholar]
  2. SafarpourA.R. BananzadehA. IzadpanahA. GhahramaniL. TadayonS.M.K. BahramiF. HosseiniS.V. Report of 13-year survival of patients with colon and rectal cancers; lessons from Shiraz colorectal cancer surgery registry system of a level three medical center.BMC Surg.202222114210.1186/s12893‑022‑01591‑2 35428290
    [Google Scholar]
  3. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  4. RejhováA. OpattováA. ČumováA. SlívaD. VodičkaP. Natural compounds and combination therapy in colorectal cancer treatment.Eur. J. Med. Chem.201814458259410.1016/j.ejmech.2017.12.039 29289883
    [Google Scholar]
  5. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. Multi drug resistance in colorectal cancer-approaches to overcome, Advancements and future success.Adv. Cancer Biol. Metast.202412100114
    [Google Scholar]
  6. GavrilasL.I. CruceriuD. MocanA. LoghinF. MiereD. BalacescuO. Plant-derived bioactive compounds in colorectal cancer: Insights from combined regimens with conventional chemotherapy to overcome drug-resistance.Biomedicines2022108194810.3390/biomedicines10081948 36009495
    [Google Scholar]
  7. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  8. BhatI.U.H. BhatR. Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, Their wastes, And by-products.Biology202110758610.3390/biology10070586 34206761
    [Google Scholar]
  9. ParasuramanS. DavidA.A.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.194044 28082789
    [Google Scholar]
  10. BasakD. UddinM.N. HancockJ. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC).Cancers20201211333610.3390/cancers12113336 33187272
    [Google Scholar]
  11. AvanA. MehrabadiS. VelayatiM. ZafariN. HassanianS.M. MobarhanM.G. FernsG. KhazaeiM. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer.Curr. Cancer Drug Targets202323534635310.2174/1568009623666221228094557 36582060
    [Google Scholar]
  12. MehrabadiS. Interaction between gut microbiota dysbiosis and multiple sclerosis.Int. J. Med. Investig.201924191475610.3390/ijms241914756 37834203
    [Google Scholar]
  13. DamavandiS. AvanA. ZafariN. VelayatiM. MehrabadiS. KhazaeiM. HassanianS.M. FernsG.A. Remodeling of the gut microbiota in colorectal cancer and its association with obesity.Curr. Pharm. Des.202329425627110.2174/1381612829666230118123018 36654469
    [Google Scholar]
  14. DingC. ShanZ. LiM. ChenH. LiX. JinZ. Characterization of the fatty acid metabolism in colorectal cancer to guide clinical therapy.Mol. Ther. Oncolytics20212053254410.1016/j.omto.2021.02.010 33738339
    [Google Scholar]
  15. YangM. YangH. JiL. HuX. TianG. WangB. YangJ. A multi-omics machine learning framework in predicting the survival of colorectal cancer patients.Comput. Biol. Med.202214610551610.1016/j.compbiomed.2022.105516 35468406
    [Google Scholar]
  16. ChanC.Y. LienC.H. LeeM.F. HuangC.Y. Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC).Biomedicine2016631510.7603/s40681‑016‑0015‑3 27510965
    [Google Scholar]
  17. AlmatroodiS.A. AlsahliM.A. AlmatroudiA. VermaA.K. AloliqiA. AllemailemK.S. KhanA.A. RahmaniA.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways.Molecules2021265131510.3390/molecules26051315 33804548
    [Google Scholar]
  18. JainA. MaduC.O. LuY. Phytochemicals in chemoprevention: A cost-effective complementary approach.J. Cancer202112123686370010.7150/jca.57776 33995644
    [Google Scholar]
  19. Ghafouri-FardS. ShabestariF.A. VaeziS. AbakA. ShooreiH. KarimiA. TaheriM. BasiriA. Emerging impact of quercetin in the treatment of prostate cancer.Biomed. Pharmacother.202113811154810.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  20. EzzatiM. YousefiB. VelaeiK. SafaA. A review on anti-cancer properties of Quercetin in breast cancer.Life Sci.202024811746310.1016/j.lfs.2020.117463 32097663
    [Google Scholar]
  21. SharmaH. SenS. SinghN. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer.Cancer Biol. Ther.20054994995510.4161/cbt.4.9.1908 16082193
    [Google Scholar]
  22. UttarawichienT. KamnerdnondC. InwisaiT. SuwannalertP. SibmoohN. PayuhakritW. Quercetin inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2.Sci. Pharm.20218922310.3390/scipharm89020023
    [Google Scholar]
  23. Leersumv.N.J. AalbersA.G. SnijdersH.S. HennemanD. WoutersM.W. TollenaarR.A. EddesE.H. Synchronous colorectal carcinoma: A risk factor in colorectal cancer surgery.Dis. Colon Rectum201457446046610.1097/DCR.0000000000000068 24608302
    [Google Scholar]
  24. HäfnerM.F. DebusJ. Radiotherapy for colorectal cancer: Current standards and future perspectives.Visc. Med.201632317217710.1159/000446486 27493944
    [Google Scholar]
  25. NørgaardA. DamC. JakobsenA. PløenJ. LindebjergJ. RafaelsenS.R. Selection of colon cancer patients for neoadjuvant chemotherapy by preoperative CT scan.Scand. J. Gastroenterol.201449220220810.3109/00365521.2013.862294 24279811
    [Google Scholar]
  26. GaneshK. StadlerZ.K. CercekA. MendelsohnR.B. ShiaJ. SegalN.H. DiazL.A.Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential.Nat. Rev. Gastroenterol. Hepatol.201916636137510.1038/s41575‑019‑0126‑x 30886395
    [Google Scholar]
  27. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.107447 31756363
    [Google Scholar]
  28. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_18 31417011
    [Google Scholar]
  29. TaniguchiK. KarinM. NF-κB, inflammation, immunity and cancer: Coming of age.Nat. Rev. Immunol.201818530932410.1038/nri.2017.142 29379212
    [Google Scholar]
  30. TuomistoA.E. MäkinenM.J. VäyrynenJ.P. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance.World J. Gastroenterol.201925314383440410.3748/wjg.v25.i31.4383 31496619
    [Google Scholar]
  31. GangadharanA. ChoiS.E. HassanA. AyoubN.M. DuranteG. BalwaniS. KimY.H. PecoraA. GoyA. SuhK.S. Protein calorie malnutrition, nutritional intervention and personalized cancer care.Oncotarget2017814240092403010.18632/oncotarget.15103 28177923
    [Google Scholar]
  32. YamamotoT. KawadaK. ObamaK. Inflammation-related biomarkers for the prediction of prognosis in colorectal cancer patients.Int. J. Mol. Sci.20212215800210.3390/ijms22158002 34360768
    [Google Scholar]
  33. LichtensternC.R. NguR.K. ShalapourS. KarinM. Immunotherapy, inflammation and colorectal cancer.Cells20209361810.3390/cells9030618 32143413
    [Google Scholar]
  34. EastJ.E. DekkerE. A new focus for CRC prevention—more serration, less inflammation.Nat. Rev. Gastroenterol. Hepatol.2013102697010.1038/nrgastro.2012.245 23296243
    [Google Scholar]
  35. ZhongJ. ZongS. WangJ. FengM. WangJ. ZhangH. XiongL. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment.Biochim. Biophys. Acta Mol. Cell Res.20231870711949310.1016/j.bbamcr.2023.119493 37201766
    [Google Scholar]
  36. DalalN. JalandraR. BayalN. YadavA.K. Harshulika; Sharma, M.; Makharia, G.K.; Kumar, P.; Singh, R.; Solanki, P.R.; Kumar, A. Gut microbiota-derived metabolites in CRC progression and causation.J. Cancer Res. Clin. Oncol.2021147113141315510.1007/s00432‑021‑03729‑w 34273006
    [Google Scholar]
  37. NewsholmeP. CruzatV.F. KeaneK.N. CarlessiR. Bittencourtd.P.I.H., Jr Molecular mechanisms of ROS production and oxidative stress in diabetes.Biochem. J.2016473244527455010.1042/BCJ20160503C 27941030
    [Google Scholar]
  38. Cieślar-PobudaA. YueJ. LeeH-C. SkoniecznaM. WeiY-H. ROS and oxidative stress in stem cells.Oxid. Med. Cell. Longev.20172017504716810.1155/2017/5047168 29018510
    [Google Scholar]
  39. FarooqM.A. NiaziA.K. AkhtarJ. Saifullah; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses.Plant Physiol. Biochem.201914135336910.1016/j.plaphy.2019.04.039 31207496
    [Google Scholar]
  40. XianD. LaiR. SongJ. XiongX. ZhongJ. Emerging perspective: Role of increased ROS and redox imbalance in skin carcinogenesis.Oxid. Med. Cell. Longev.2019201911110.1155/2019/8127362 31636809
    [Google Scholar]
  41. SahooB.M. BanikB.K. BorahP. JainA. Reactive oxygen species (ROS): Key components in cancer therapies.Anticancer. Agents Med. Chem.20222221522210.2174/1871520621666210608095512 34102991
    [Google Scholar]
  42. FarmerE.E. MuellerM.J. ROS-mediated lipid peroxidation and RES-activated signaling.Annu. Rev. Plant Biol.201364142945010.1146/annurev‑arplant‑050312‑120132 23451784
    [Google Scholar]
  43. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species‐induced lipid peroxidation in apoptosis, autophagy, And ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/5080843 31737171
    [Google Scholar]
  44. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, Toxicity, Oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  45. PivettaT.P. SilvaL.B. KawakamiC.M. AraújoM.M. LamaD.M.P.F.M. NaalR.M.Z.G. Maria-EnglerS.S. GasparL.R. MarcatoP.D. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect.J. Drug Deliv. Sci. Technol.20195310114810.1016/j.jddst.2019.101148
    [Google Scholar]
  46. KendreP.N. PandeV.V. ChavanK.M. Novel formulation strategy to enhance solubility of quercetin.Pharmacophore20145358370
    [Google Scholar]
  47. Rodríguez-FélixF. Del-Toro-SánchezC.L. Javier Cinco-MoroyoquiF. JuárezJ. Ruiz-CruzS. López-AhumadaG.A. Carvajal-MillanE. Castro-EnríquezD.D. Barreras-UrbinaC.G. Tapia-HernándezJ.A. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability.J. Food Sci.201984102883289710.1111/1750‑3841.14803 31553062
    [Google Scholar]
  48. FerreiraM. GomesD. NetoM. PassarinhaL.A. CostaD. SousaÂ. Development and characterization of quercetin-loaded delivery systems for increasing its bioavailability in cervical cancer cells.Pharmaceutics202315393610.3390/pharmaceutics15030936 36986797
    [Google Scholar]
  49. NeamtuA.A. MaghiarT.A. AlayaA. OlahN.K. TurcusV. PeleaD. TotoliciB.D. NeamtuC. MaghiarA.M. MatheE. A comprehensive view on the quercetin impact on colorectal cancer.Molecules2022276187310.3390/molecules27061873 35335239
    [Google Scholar]
  50. CatalánM. FerreiraJ. Carrasco-PozoC. The microbiota-derived metabolite of quercetin, 3, 4-dihydroxyphenylacetic acid prevents malignant transformation and mitochondrial dysfunction induced by hemin in colon cancer and normal colon epithelia cell lines.Molecules20202518413810.3390/molecules25184138 32927689
    [Google Scholar]
  51. AlmaghrabiO.A. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney.Saudi J. Biol. Sci.201522222723110.1016/j.sjbs.2014.12.008 25737657
    [Google Scholar]
  52. VafadarA. ShabaninejadZ. MovahedpourA. FallahiF. TaghavipourM. GhasemiY. AkbariM. ShafieeA. HajighadimiS. MoradizarmehriS. RaziE. SavardashtakiA. MirzaeiH. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells.Cell Biosci.20201013210.1186/s13578‑020‑00397‑0 32175075
    [Google Scholar]
  53. SunD. ZouY. SongL. HanS. YangH. ChuD. DaiY. MaJ. O’DriscollC.M. YuZ. GuoJ. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer.Acta Pharm. Sin. B202212137839310.1016/j.apsb.2021.06.005 35127393
    [Google Scholar]
  54. LuJ. WangZ. LiS. XinQ. YuanM. LiH. SongX. GaoH. PervaizN. SunX. LvW. JingT. ZhuY. Quercetin inhibits the migration and invasion of HCCLM3 cells by suppressing the expression of p-Akt1, matrix metalloproteinase (MMP) MMP-2, and MMP-9.Med. Sci. Monit.2018242583258910.12659/MSM.906172 29701200
    [Google Scholar]
  55. TrinhN.T. NguyenT.M.N. YookJ.I. AhnS.G. KimS.A. Quercetin and quercitrin from Agrimonia pilosa Ledeb inhibit the migration and invasion of colon cancer cells through the JNK signaling pathway.Pharmaceuticals202215336410.3390/ph15030364 35337161
    [Google Scholar]
  56. BaghelS.S. ShrivastavaN. BaghelR.S. AgrawalP. RajputS. A review of quercetin: Antioxidant and anticancer properties.World J. Pharm. Pharm. Sci.20121146160
    [Google Scholar]
  57. LesjakM. BearaI. SiminN. PintaćD. MajkićT. BekvalacK. OrčićD. Mimica-DukićN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  58. DelgadoL. FernandesI. González-ManzanoS. Freitasd.V. MateusN. Santos-BuelgaC. Anti-proliferative effects of quercetin and catechin metabolites.Food Funct.20145479780310.1039/c3fo60441a 24573487
    [Google Scholar]
  59. ZhangH. ZhangM. YuL. ZhaoY. HeN. YangX. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines.Food Chem. Toxicol.20125051589159910.1016/j.fct.2012.01.025 22310237
    [Google Scholar]
  60. BulzomiP. GalluzzoP. BolliA. LeoneS. AcconciaF. MarinoM. The pro‐apoptotic effect of quercetin in cancer cell lines requires ERβ‐dependent signals.J. Cell. Physiol.201222751891189810.1002/jcp.22917 21732360
    [Google Scholar]
  61. KimH.J. KimS.K. KimB.S. LeeS.H. ParkY.S. ParkB.K. KimS.J. KimJ. ChoiC. KimJ.S. ChoS.D. JungJ.W. RohK.H. KangK.S. JungJ.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway.J. Agric. Food Chem.201058158643865010.1021/jf101510z 20681654
    [Google Scholar]
  62. HongyuZ. YongqingZ. MingxiuS. JinpingL. PingyaL. NingL. KaiZ. Role of ginseng, quercetin, and tea in enhancing chemotherapeutic efficacy of colorectal cancer.Front. Med.20229939424
    [Google Scholar]
  63. AmadoN. PredesD. MorenoM. CarvalhoI. MendesF. AbreuJ. Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies.Int. J. Mol. Sci.2014157120941210610.3390/ijms150712094 25007066
    [Google Scholar]
  64. PashirzadM. JohnstonT.P. SahebkarA. Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating wnt β-Catenin signaling pathway.J. Oncol.2021202111210.1155/2021/3619510 34621313
    [Google Scholar]
  65. HashemzaeiM. FarA.D. YariA. HeraviR.E. TabrizianK. TaghdisiS.M. SadeghS.E. TsarouhasK. KouretasD. TzanakakisG. NikitovicD. AnisimovN.Y. SpandidosD.A. TsatsakisA.M. RezaeeR. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo.Oncol. Rep.201738281982810.3892/or.2017.5766 28677813
    [Google Scholar]
  66. DongY. LeiJ. ZhangB. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil.Poult. Sci.202099104892490310.1016/j.psj.2020.06.028 32988526
    [Google Scholar]
  67. QiuD. YanX. XiaoX. ZhangG. WangY. CaoJ. MaR. HongS. MaM. To explore immune synergistic function of Quercetin in inhibiting breast cancer cells.Cancer Cell Int.202121163210.1186/s12935‑021‑02345‑5 34838003
    [Google Scholar]
  68. YangY. WangT. ChenD. MaQ. ZhengY. LiaoS. WangY. ZhangJ. Quercetin preferentially induces apoptosis in KRAS‐mutant colorectal cancer cells via JNK signaling pathways.Cell Biol. Int.201943211712410.1002/cbin.11055 30203888
    [Google Scholar]
  69. AdorisioS. ArgentieriM.P. AvatoP. CaderniG. ChioccioliS. CirmiS. DelfinoD.V. GrecoG. HreliaP. IritiM. LenziM. LombardoG.E. LuceriC. MaugeriA. MontopoliM. MuscariI. NaniM.F. NavarraM. GasperiniS. TurriniE. FimognariC. The molecular basis of the anticancer properties of quercetin.Pharmadvances20213349652010.36118/pharmadvances.2021.10
    [Google Scholar]
  70. BenitoI. EncíoI.J. MilagroF.I. AlfaroM. Martínez-PeñuelaA. BarajasM. MarzoF. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in combination with Quercetin inhibit colorectal cancer development in ApcMin/+ mice.Int. J. Mol. Sci.2021229490610.3390/ijms22094906 34063173
    [Google Scholar]
  71. JiaL. HuangS. YinX. ZanY. GuoY. HanL. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction.Life Sci.201820812313010.1016/j.lfs.2018.07.027 30025823
    [Google Scholar]
  72. FangJ. ZhangS. XueX. ZhuX. SongS. WangB. JiangL. QinM. LiangH. GaoL. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy.Int. J. Nanomed.2018135113512610.2147/IJN.S170862 30233175
    [Google Scholar]
  73. ZhouY. ZhangJ. WangK. HanW. WangX. GaoM. WangZ. SunY. YanH. ZhangH. XuX. YangD.H. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter.Eur. J. Pharmacol.202088117318510.1016/j.ejphar.2020.173185 32422185
    [Google Scholar]
  74. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms24032952 36769274
    [Google Scholar]
  75. LeeY.K. ParkS.Y. KimY.M. LeeW.S. ParkO.J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin.Exp. Mol. Med.200941320120710.3858/emm.2009.41.3.023 19293639
    [Google Scholar]
  76. ZhaoP. HuZ. MaW. ZangL. TianZ. HouQ. Quercetin alleviates hyperthyroidism‐induced liver damage via Nrf2 Signaling pathway.Biofactors202046460861910.1002/biof.1626 32078205
    [Google Scholar]
  77. LeeS. H. KimI.S. ParkS. Y. ParkO. J. KimY. M. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells2011164340347
    [Google Scholar]
  78. MawalizadehF. MohammadzadehG. KhedriA. RashidiM. Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil.Mol. Biol. Rep.202148127733774210.1007/s11033‑021‑06782‑3 34637097
    [Google Scholar]
  79. SanaeiA. MohammadzadehG. RashidiM. Quercetin improves the anti-angiogenic property of 5-fluorouracil on the human umbilical vein endothelial cells huvec cell line.Internat J. Cancer Manag.20221412168510.3390/life14121685
    [Google Scholar]
  80. WangL. LeeI.M. ZhangS.M. BlumbergJ.B. BuringJ.E. SessoH.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women.Am. J. Clin. Nutr.200989390591210.3945/ajcn.2008.26913 19158208
    [Google Scholar]
  81. WuH. PanL. GaoC. XuH. LiY. ZhangL. MaL. MengL. SunX. QinH. Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR pathway.Molecules20192410199310.3390/molecules24101993 31137633
    [Google Scholar]
  82. LeeS.H. KimI.S. ParkO.J. KimY.M. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells.J. Cancer Prev.201116340347
    [Google Scholar]
  83. Carrillo-MartinezE.J. Flores-HernándezF.Y. Salazar-MontesA.M. Nario-ChaidezH.F. Hernández-OrtegaL.D. Quercetin, A flavonoid with great pharmacological capacity.Molecules2024295100010.3390/molecules29051000 38474512
    [Google Scholar]
  84. HussainY. MirzaeiS. AshrafizadehM. ZarrabiA. HushmandiK. KhanH. DagliaM. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance.Cancers2021137160210.3390/cancers13071602 33807174
    [Google Scholar]
  85. AskarM.A. El-NasharH.A.S. Al-AzzawiM.A. RahmanS.S.A. ElshawiO.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer.Breast Cancer2022161178223422108672810.1177/11782234221086728 35359610
    [Google Scholar]
  86. LiY. WangZ. JinJ. ZhuS.X. HeG.Q. LiS.H. WangJ. CaiY. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway.Biochem. Biophys. Res. Commun.2020523494795310.1016/j.bbrc.2020.01.048 31964531
    [Google Scholar]
  87. ZangX. ChengM. ZhangX. ChenX. Quercetin nanoformulations:A promising strategy for tumor therapy.Food Funct.202112156664668110.1039/D1FO00851J 34152346
    [Google Scholar]
  88. FaragM.R. MoselhyA.A.A. El-MleehA. AljuaydiS.H. IsmailT.A. CerboD.A. CrescenzoG. Abou-ZeidS.M. Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats.Antioxidants20211012190610.3390/antiox10121906 34943009
    [Google Scholar]
  89. TanR.Z. WangC. DengC. ZhongX. YanY. LuoY. LanH.Y. HeT. WangL. Quercetin protects against cisplatin‐induced acute kidney injury by inhibiting Mincle/Syk/NF‐κB signaling maintained macrophage inflammation.Phytother. Res.202034113915210.1002/ptr.6507 31497913
    [Google Scholar]
  90. Sánchez-GonzálezP.D. López-HernándezF.J. DueñasM. PrietoM. Sánchez-LópezE. ThomaleJ. Ruiz-OrtegaM. López-NovoaJ.M. MoralesA.I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues.Food Chem. Toxicol.2017107Pt A22623610.1016/j.fct.2017.06.047 28669851
    [Google Scholar]
  91. BehlingE.B. SendãoM.C. FrancescatoH.D. AntunesL.M. CostaR.S. BianchiM.D. Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys.Pharmacol. Rep.2006584526532 16963799
    [Google Scholar]
  92. LangnerE. LemieszekM.K. RzeskiW. Lycopene, sulforaphane, quercetin, And curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro.J. Food Biochem.2019434e1280210.1111/jfbc.12802 31353575
    [Google Scholar]
  93. HardieD.G. CarlingD. CarlsonM. The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?Annu. Rev. Biochem.199867182185510.1146/annurev.biochem.67.1.821 9759505
    [Google Scholar]
  94. WuS. XieJ. ShiH. WangZ. miR-492 promotes chemoresistance to CDDP and metastasis by targeting inhibiting DNMT3B and induces stemness in gastric cancer.Biosci. Rep.2020403BSR2019434210.1042/BSR20194342 32065219
    [Google Scholar]
  95. KimH.S. WannatungT. LeeS. YangW.K. ChungS.H. LimJ.S. ChoeW. KangI. KimS.S. HaJ. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer.Apoptosis201217993894910.1007/s10495‑012‑0719‑0 22684842
    [Google Scholar]
  96. HuangC. ChenT. ZhuD. HuangQ. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles.Front Chem.2020822510.3389/fchem.2020.00225 32296682
    [Google Scholar]
  97. Redondo-BlancoS. FernándezJ. Gutiérrez-del-RíoI. VillarC.J. LombóF. New insights toward colorectal cancer chemotherapy using natural bioactive compounds.Front. Pharmacol.2017810910.3389/fphar.2017.00109 28352231
    [Google Scholar]
  98. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w 35971151
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206354948250226103832
Loading
/content/journals/acamc/10.2174/0118715206354948250226103832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test