Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Colorectal cancer (CRC) is a malignant gastrointestinal tract disorder with high occurrence and mortality index and showing an upsurge. Standard therapies for treating CRC are surgery and chemotherapy. Despite great effort in developing effective treatments, the progress is limited due to its relapse and recurrence. Prognosis of metastatic CRC is always complicated. This condition can be evaded by a novel approach ., targeted therapy which increases the survival rate in CRC patients by blocking important pathways and acting on immune checkpoints. Drugs with -acyl hydrazones (NAH) are currently being employed treatment of infectious diseases and disorders. NAH in combination with diverse heterocycles, natural product isolates are identified as interesting CRC inhibitors under-explored. This review provides an overview of the existing CRC targeted compounds having acyl hydrazones, hydrazine, hydrazides moieties, and their underlying mechanisms towards different CRC cell lines, together with a discussion of their limitations and future trends.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206356253241223040825
2025-01-23
2025-10-22
Loading full text...

Full text loading...

References

  1. Abdel-AzizH.A. ElsamanT. Al-DhfyanA. AttiaM.I. Al-RashoodK.A. Al-ObaidA.R.M. Synthesis and anticancer potential of certain novel 2-oxo-N'-(2-oxoindolin-3-ylidene)-2H-chromene-3-carbohydrazides.Eur. J. Med. Chem.20137035836310.1016/j.ejmech.2013.09.060 24177362
    [Google Scholar]
  2. Castrillón-LópezW. Herrera-RamírezA. Moreno-QuinteroG. CoaJ.C. NaranjoT.W. Cardona-GaleanoW. Resveratrol/hydrazone hybrids: Synthesis and chemopreventive activity against colorectal cancer cells.Pharmaceutics20221411227810.3390/pharmaceutics14112278 36365097
    [Google Scholar]
  3. Colorectal Cancer statisticsAvailable from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (Accessed on Sep 11, 2024).
  4. Cancer WHOAvailable from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on Sep 11, 2024).
  5. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers13092025 33922197
    [Google Scholar]
  6. MármolI. Sánchez-de-DiegoC. Pradilla DiesteA. CerradaE. Rodriguez YoldiM. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer.Int. J. Mol. Sci.201718119710.3390/ijms18010197 28106826
    [Google Scholar]
  7. KüçükgüzelŞ.G. KoçD. Çıkla-SüzgünP. ÖzsavcıD. Bingöl-ÖzakpınarÖ. Mega-TiberP. OrunO. ErzincanP. Sağ-ErdemS. ŞahinF. Synthesis of tolmetin hydrazide–hydrazones and discovery of a potent apoptosis inducer in colon cancer cells.Arch. Pharm.20153481073074210.1002/ardp.201500178 26287512
    [Google Scholar]
  8. NarayananS. GuptaP. NazimU. AliM. KaradkhelkarN. AhmadM. ChenZ.S. Anti-cancer effect of indanone-based thiazolyl hydrazone derivative on colon cancer cell lines.Int. J. Biochem. Cell Biol.2019110212810.1016/j.biocel.2019.02.004 30794858
    [Google Scholar]
  9. LewandowskaA. RudzkiG. LewandowskiT. Stryjkowska-GóraA. RudzkiS. Risk factors for the diagnosis of colorectal cancer.Cancer Contr.2022291073274821105669210.1177/10732748211056692 35000418
    [Google Scholar]
  10. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  11. BilizY. HasdemirB. Başpınar KüçükH. ZaimM. ŞentürkA.M. Müdüroğlu KırmızıbekmezA. Karaİ. Novel N -acyl hydrazone compounds as promising anticancer agents: Synthesis and molecular docking studies.ACS Omega2023822200732008410.1021/acsomega.3c02361 37305237
    [Google Scholar]
  12. SoceaL.I. BarbuceanuS.F. PahontuE.M. DumitruA.C. NitulescuG.M. SfeteaR.C. ApostolT.V. Acylhydrazones and their biological activity: A review.Molecules20222724871910.3390/molecules27248719 36557851
    [Google Scholar]
  13. SuG. WangD. YangQ. KongL. JuX. YangQ. ZhuY. ZhangS. LiY. Cepharanthine suppresses APC-mutant colorectal cancers by down-regulating the expression of β-catenin.Nat. Prod. Bioprospect.20241411810.1007/s13659‑024‑00443‑1 38421454
    [Google Scholar]
  14. NguyenL.H. GoelA. ChungD.C. Pathways of colorectal carcinogenesis.Gastroenterology2020158229130210.1053/j.gastro.2019.08.059 31622622
    [Google Scholar]
  15. KalyanA. KircherS. ShahH. MulcahyM. BensonA. Updates on immunotherapy for colorectal cancer.J. Gastrointest. Oncol.20189116016910.21037/jgo.2018.01.17 29564182
    [Google Scholar]
  16. AndreT. LonardiS. WongM. LenzH.J. GelsominoF. AgliettaM. MorseM. Van CutsemE. McDermottR.S. HillA.G. SawyerM.B. HendliszA. NeynsB. SvrcekM. MossR.A. LedeineJ.M. CaoZ.A. KambleS. KopetzS. OvermanM.J. Nivolumab + ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): First report of the full cohort from CheckMate-142.J. Clin. Oncol.2018364_suppl)(Suppl.55310.1200/JCO.2018.36.4_suppl.553
    [Google Scholar]
  17. GonzalezM.W. KannM.G. Chapter 4: Protein interactions and disease.PLOS Comput. Biol.2012812e100281910.1371/journal.pcbi.1002819 23300410
    [Google Scholar]
  18. LiuJ. XiaoQ. XiaoJ. NiuC. LiY. ZhangX. ZhouZ. ShuG. YinG. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities.Signal Transduct. Target. Ther.202271310.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  19. AghabozorgiA.S. BahreyniA. SoleimaniA. BahramiA. KhazaeiM. FernsG.A. AvanA. HassanianS.M. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives.Biochimie2019157647110.1016/j.biochi.2018.11.003 30414835
    [Google Scholar]
  20. KawasakiY. SendaT. IshidateT. KoyamaR. MorishitaT. IwayamaY. HiguchiO. AkiyamaT. Asef, a link between the tumor suppressor APC and G-protein signaling.Science200028954821194119710.1126/science.289.5482.1194 10947987
    [Google Scholar]
  21. AokiK. TaketoM.M. Adenomatous polyposis coli (APC): A multi-functional tumor suppressor gene.J. Cell Sci.2007120193327333510.1242/jcs.03485 17881494
    [Google Scholar]
  22. AkiyamaT. KawasakiY. Wnt signalling and the actin cytoskeleton.Oncogene200625577538754410.1038/sj.onc.1210063 17143298
    [Google Scholar]
  23. ShailesH. TseW.Y. FreitasM.O. SilverA. MartinS.A. Statin treatment as a targeted therapy for APC-mutated colorectal cancer.Front. Oncol.20221288055210.3389/fonc.2022.880552 35712511
    [Google Scholar]
  24. JaspersonK.W. TuohyT.M. NeklasonD.W. BurtR.W. Hereditary and familial colon cancer.Gastroenterology201013862044205810.1053/j.gastro.2010.01.054 20420945
    [Google Scholar]
  25. KawasakiY. SagaraM. ShibataY. ShirouzuM. YokoyamaS. AkiyamaT. Identification and characterization of Asef2, a guanine–nucleotide exchange factor specific for Rac1 and Cdc42.Oncogene200726557620762710.1038/sj.onc.1210574 17599059
    [Google Scholar]
  26. SagaraM. KawasakiY. IemuraS. NatsumeT. TakaiY. AkiyamaT. Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration.Oncogene200928101357136510.1038/onc.2008.478 19151759
    [Google Scholar]
  27. KawasakiY. JigamiT. FurukawaS. SagaraM. EchizenK. ShibataY. SatoR. AkiyamaT. The Adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis.J. Biol. Chem.201028521199120710.1074/jbc.M109.040691 19897489
    [Google Scholar]
  28. ZhangZ. ChenL. GaoL. LinK. ZhuL. LuY. ShiX. GaoY. ZhouJ. XuP. ZhangJ. WuG. Structural basis for the recognition of Asef by Adenomatous polyposis coli.Cell Res.201222237238610.1038/cr.2011.119 21788986
    [Google Scholar]
  29. MurayamaK. ShirouzuM. KawasakiY. Kato-MurayamaM. Hanawa-SuetsuguK. SakamotoA. KatsuraY. SuenagaA. ToyamaM. TeradaT. TaijiM. AkiyamaT. YokoyamaS. Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism.J. Biol. Chem.200728274238424210.1074/jbc.C600234200 17190834
    [Google Scholar]
  30. HansonC.A. MillerJ.R. Non-traditional roles for the Adenomatous polyposis Coli (APC) tumor suppressor protein.Gene200536111210.1016/j.gene.2005.07.024 16185824
    [Google Scholar]
  31. MuroyaK. KawasakiY. HayashiT. OhwadaS. AkiyamaT. PH domain-mediated membrane targeting of Asef.Biochem. Biophys. Res. Commun.20073551858810.1016/j.bbrc.2007.01.131 17292853
    [Google Scholar]
  32. MitinN. BettsL. YoheM.E. DerC.J. SondekJ. RossmanK.L. Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression.Nat. Struct. Mol. Biol.200714981482310.1038/nsmb1290 17704816
    [Google Scholar]
  33. JiangH. DengR. YangX. ShangJ. LuS. ZhaoY. SongK. LiuX. ZhangQ. ChenY. ChinnY.E. WuG. LiJ. ChenG. YuJ. ZhangJ. Peptidomimetic inhibitors of APC–Asef interaction block colorectal cancer migration.Nat. Chem. Biol.2017139994100110.1038/nchembio.2442 28759015
    [Google Scholar]
  34. HamannM.J. LubkingC.M. LuchiniD.N. BilladeauD.D. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element.Mol. Cell. Biol.20072741380139310.1128/MCB.01608‑06 17145773
    [Google Scholar]
  35. SongS. ChristovaT. PerusiniS. AlizadehS. BaoR.Y. MillerB.W. HurrenR. JitkovaY. GrondaM. IsaacM. JosephB. SubramaniamR. AmanA. ChauA. HoggeD.E. WeirS.J. KasperJ. SchimmerA.D. Al-awarR. WranaJ.L. AttisanoL. Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers.Cancer Res.201171247628763910.1158/0008‑5472.CAN‑11‑2745 22009536
    [Google Scholar]
  36. ShinS.H. LimD.Y. ReddyK. MalakhovaM. LiuF. WangT. SongM. ChenH. BaeK.B. RyuJ. LiuK. LeeM.H. BodeA.M. DongZ. A small molecule inhibitor of the β-catenin-TCF4 interaction suppresses colorectal cancer growth in vitro and in vivo.EBioMedicine201725223110.1016/j.ebiom.2017.09.029 29033371
    [Google Scholar]
  37. JaiswalA.S. BanerjeeS. AnejaR. SarkarF.H. OstrovD.A. NarayanS. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer.PLoS One201162e1669110.1371/journal.pone.0016691 21311763
    [Google Scholar]
  38. KimM.S. ChoH.I. YoonH.J. AhnY.H. ParkE.J. JinY.H. JangY.K. JIB-04, a small molecule histone demethylase inhibitor, selectively targets colorectal cancer stem cells by inhibiting the wnt/β-catenin signaling pathway.Sci. Rep.201881661110.1038/s41598‑018‑24903‑0 29700375
    [Google Scholar]
  39. ZhangJ. LiuT. ChenM. LiuF. LiuX. ZhangJ. LinJ. JinY. Synthesis and biological evaluation of indole‐2‐carbohydrazide derivatives as anticancer agents with anti‐angiogenic and antiproliferative activities.ChemMedChem201813121181119210.1002/cmdc.201800033 29637713
    [Google Scholar]
  40. HanY. TianY. WangR. FuS. JiangJ. DongJ. QinM. HouY. ZhaoY. Design, synthesis and biological evaluation of thieno[3,2-d]pyrimidine derivatives containing aroyl hydrazone or aryl hydrazide moieties for PI3K and mTOR dual inhibition.Bioorg. Chem.202010410419710.1016/j.bioorg.2020.104197 32927132
    [Google Scholar]
  41. AhmadM.F. AlamI. HuffS.E. PinkJ. FlanaganS.A. ShewachD. MiskoT.A. OleinickN.L. HarteW.E. ViswanathanR. HarrisM.E. DealwisC.G. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule.Proc. Natl. Acad. Sci. USA2017114318241824610.1073/pnas.1620220114 28716944
    [Google Scholar]
  42. SornaV. TheisenE.R. StephensB. WarnerS.L. BearssD.J. VankayalapatiH. SharmaS. High-throughput virtual screening identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors.J. Med. Chem.201356239496950810.1021/jm400870h 24237195
    [Google Scholar]
  43. SoldiR. Ghosh HalderT. WestonA. ThodeT. DrennerK. LewisR. KaadigeM.R. SrivastavaS. Daniel AmpanattuS. Rodriguez del VillarR. LangJ. VankayalapatiH. WeissmanB. TrentJ.M. HendricksW.P.D. SharmaS. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer.PLoS One2020157e023570510.1371/journal.pone.0235705 32649682
    [Google Scholar]
  44. YeT.H. YangF.F. ZhuY.X. LiY.L. LeiQ. SongX.J. XiaY. XiongY. ZhangL.D. WangN.Y. ZhaoL.F. GouH.F. XieY.M. YangS.Y. YuL.T. YangL. WeiY.Q. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis.Cell Death Dis.201781e253410.1038/cddis.2016.452 28055016
    [Google Scholar]
  45. HanM.İ. İmamoğluN. Design, synthesis, and anticancer evaluation of novel tetracaine hydrazide-hydrazones.ACS Omega20238109198921110.1021/acsomega.2c07192 36936335
    [Google Scholar]
  46. PatilS. KumanM.M. PalvaiS. SenguptaP. BasuS. Impairing powerhouse in colon cancer cells by hydrazide–hydrazone-based small molecule.ACS Omega2018321470148110.1021/acsomega.7b01512 30023806
    [Google Scholar]
  47. AmerizadehF. RahmaniF. MaftoohM. NasiriS.N. HassanianS.M. GiovannettiE. Moradi-MarjanehR. SabbaghzadehR. ShahidsalesS. Joudi-MashhadM. Ghayour-MobarhanM. FernsG.A. KhazaeiM. AvanA. Inhibition of the Wnt/b-catenin pathway using PNU-74654 reduces tumor growth in in vitro and in vivo models of colorectal cancer.Tissue Cell20227710185310.1016/j.tice.2022.101853 35803035
    [Google Scholar]
  48. SamirM. RamadanM. AbdelrahmanM.H. AbdelbasetM.S. AbourehabM.A.S. Abdel-AzizM. Abuo-RahmaG.E.D.A. 3,7-bis-benzylidene hydrazide ciprofloxacin derivatives as promising antiproliferative dual TOP I & TOP II isomerases inhibitors.Bioorg. Chem.202111010469810.1016/j.bioorg.2021.104698 33676043
    [Google Scholar]
  49. Al-BlewiF.F. RezkiN. Al-SodiesS.A. BardaweelS.K. SabbahD.A. MessaliM. AouadM.R. Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: Ultrasound assisted synthesis, molecular docking and anticancer evaluation.Chem. Cent. J.201812111810.1186/s13065‑018‑0489‑z 30467608
    [Google Scholar]
  50. PlasenciaC. GrandeF. OshimaT. CaoX. YamadaR. SanchezT. AielloF. GarofaloA. NeamatiN. Discovery of a novel quinoxalinhydrazide with a broad-spectrum anticancer activity.Cancer Biol. Ther.20098545846510.4161/cbt.8.5.7741 19221468
    [Google Scholar]
  51. GautamA. RawatP. SinghR.N. Flores HolguinN.R. Synthesis, spectroscopic and evaluation of anticancer activity of new hydrazone-containing dipyrromethane using experimental and theoretical approaches.J. Mol. Struct.2022126013278110.1016/j.molstruc.2022.132781
    [Google Scholar]
  52. ShinS.Y. LeeJ. AhnS. YooM. LeeY.H. KohD. LimY. Design, synthesis, and evaluation of 4-chromenone derivatives combined with N-acylhydrazone for aurora kinase A inhibitor.Appl. Biol. Chem.20216412110.1186/s13765‑021‑00596‑4
    [Google Scholar]
  53. Kamal BouhadirK.B. AtallahH. MezherR. FatfatM. Gali-MuhtasibH. ElaridiJ. Synthesis and biological assessment of novel acylhydrazone derivatives of 2-methyl-1,4-naphthoquinone.Organic Communications201710425927210.25135/acg.oc.26.17.07.040
    [Google Scholar]
  54. BarbosaV.A. BaréaP. MaziaR.S. Ueda-NakamuraT. CostaW.F. FoglioM.A. Goes RuizA.L.T. CarvalhoJ.E. Vendramini-CostaD.B. NakamuraC.V. SarragiottoM.H. Synthesis and evaluation of novel hybrids β -carboline-4-thiazolidinones as potential antitumor and antiviral agents.Eur. J. Med. Chem.20161241093110410.1016/j.ejmech.2016.10.018 27792980
    [Google Scholar]
  55. LiY. YanW. YangJ. YangZ. HuM. BaiP. TangM. ChenL. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance.Eur. J. Med. Chem.201815251652610.1016/j.ejmech.2018.05.003 29754076
    [Google Scholar]
  56. PotočnjakI. ŠimićL. VukelićI. BatičićL. DomitrovićR. Oleanolic acid induces HCT116 colon cancer cell death through the p38/FOXO3a/Sirt6 pathway.Chem. Biol. Interact.202236311001010.1016/j.cbi.2022.110010 35690101
    [Google Scholar]
  57. NiuG. SunL. PeiY. WangD. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway.Anticancer. Agents Med. Chem.201818458359010.2174/1871520617666171020124916 29065844
    [Google Scholar]
  58. HuD. MengR.Y. NguyenT.V. ChaiO.H. ParkB.H. LeeJ-S. KimS.M. Inhibition of colorectal cancer tumorigenesis by ursolic acid and doxorubicin is mediated by targeting the Akt signaling pathway and activating the Hippo signaling pathway.Mol. Med. Rep.2023271118 36382656
    [Google Scholar]
  59. ZengA. HuaH. LiuL. ZhaoJ. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo.Bioorg. Med. Chem.201927122546255210.1016/j.bmc.2019.03.033 30910472
    [Google Scholar]
  60. PotzeL. di FrancoS. KesslerJ.H. StassiG. MedemaJ.P. Betulinic acid kills colon cancer stem cells.Curr. Stem Cell Res. Ther.201611542743310.2174/1574888X11666151203223512 26647913
    [Google Scholar]
  61. ZhangX. HuJ. ChenY. Betulinic acid and the pharmacological effects of tumor suppression.Mol. Med. Rep.20161454489449510.3892/mmr.2016.5792 27748864
    [Google Scholar]
  62. JinJ.S. TsaoT.Y. SunP.C. YuC.P. TzaoC. SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin.Pathol. Oncol. Res.201218371372010.1007/s12253‑012‑9499‑7 22270866
    [Google Scholar]
  63. WangX. XuJ. WangH. WuL. YuanW. DuJ. CaiS. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial–mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells.Biochem. Biophys. Res. Commun.2015456132032610.1016/j.bbrc.2014.11.079 25434997
    [Google Scholar]
  64. HuangT-H. WuS-Y. HuangY-J. WeiP-L. WuA.T. ChaoT-Y. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells.Am. J. Cancer Res.20177512271237 28560069
    [Google Scholar]
  65. RodriguesD.A. Ferreira-SilvaG.À. FerreiraA.C.S. FernandesR.A. KweeJ.K. Sant’AnnaC.M.R. IontaM. FragaC.A.M. Design, synthesis, and pharmacological evaluation of novel N -acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors.J. Med. Chem.201659265567010.1021/acs.jmedchem.5b01525 26705137
    [Google Scholar]
  66. AzadN.S. ShiraiK. McReeA.J. OpyrchalM. JohnsonD.B. OrdentlichP. BrouwerS. SankohS. SchmidtE.V. MeyersM.L. JohnsonM.L. ENCORE 601: A phase 2 study of entinostat in combination with pembrolizumab in patients with microsatellite stable metastatic colorectal cancer.J. Clin. Oncol.2018361515_suppl355710.1200/JCO.2018.36.15_suppl.3557
    [Google Scholar]
  67. PreciadoD. MorenoG. CardonaW. YepesA.F. Discovery of novel trihybrids based on salicylic acid/isoleucine/N-acylhydrazone: A promising therapeutic opportunity in colorectal cancer.J. Appl. Pharm. Sci.20221211102010.7324/JAPS.2022.121102
    [Google Scholar]
  68. VilkováM. HudáčováM. PalušekováN. JendželovskýR. AlmášiM. BéresT. FedoročkoP. KožurkováM. Acridine based N-acylhydrazone derivatives as potential anticancer agents: Synthesis, characterization and ctDNA/HSA spectroscopic binding properties.Molecules2022279288310.3390/molecules27092883 35566236
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206356253241223040825
Loading
/content/journals/acamc/10.2174/0118715206356253241223040825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test