Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

With the development of herbal medicine, more and more chemical extracts isolated from natural herbs are being used to treat cancer, and herbal monomers play an important role in treating tumors. There is no doubt that these substances have a powerful ability to address the growing incidence of cancer. Among them, Trigonelline, due to its anti-tumor, hypoglycemic, hypolipidemic, antioxidant, and aphrodisiac properties, has been comprehensively studied for its therapeutic potential. However, there is a lack of a complete and specific review of Trigonelline research. Regarding the information mentioned before, this paper summarizes and describes the literature related to the response mechanisms and therapeutic potential of Trigonelline. This review describes the effects of Trigonelline in inhibiting tumor growth and metastasis, reducing the toxicity of chemotherapeutic agents, decreasing oxidative stress, increasing the sensitivity type of chemotherapeutic agents, and reversing drug resistance. On account of the merits of low cost, safety and efficacy, and few toxic side effects, Trigonelline has the potential to become a new and valuable drug. Furthermore, the in-depth study of this natural substance is yet to be further developed. In addition, by exploiting it more extensively, it is expected to be an effective addition to cancer treatment. We can expect that in the future more and more herbal extracts can be used in clinical practice to prolong the survival and improve the quality of life of patients.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206363456250226061713
2025-03-05
2025-09-06
Loading full text...

Full text loading...

References

  1. LeiterA. VeluswamyR.R. WisniveskyJ.P. The global burden of lung cancer: Current status and future trends.Nat. Rev. Clin. Oncol.202320962463910.1038/s41571‑023‑00798‑337479810
    [Google Scholar]
  2. QuH.T. LiQ. HaoL. NiY.J. LuanW.Y. YangZ. ChenX.D. ZhangT.T. MiaoY.D. ZhangF. Esophageal cancer screening, early detection and treatment: Current insights and future directions.World J. Gastrointest. Oncol.20241641180119110.4251/wjgo.v16.i4.118038660654
    [Google Scholar]
  3. YangW.J. ZhaoH.P. YuY. WangJ.H. GuoL. LiuJ.Y. PuJ. LvJ. Updates on global epidemiology, risk and prognostic factors of gastric cancer.World J. Gastroenterol.202329162452246810.3748/wjg.v29.i16.245237179585
    [Google Scholar]
  4. CirilloL. InnocentiS. BecherucciF. Global epidemiology of kidney cancer.Nephrol. Dial. Transplant.202439692092810.1093/ndt/gfae03638341277
    [Google Scholar]
  5. Brianna LeeS.H. Chemotherapy: How to reduce its adverse effects while maintaining the potency?Med. Oncol.20234038810.1007/s12032‑023‑01954‑636735206
    [Google Scholar]
  6. SrinivasanG. Cervical cancer: Novel treatment strategies offer renewed optimism.Pathol. Res. Pract.202425415513610.1016/j.prp.2024.15513638271784
    [Google Scholar]
  7. TubridyE.A. TaunkN.K. KoE.M. Treatment of node-positive endometrial cancer: Chemotherapy, radiation, immunotherapy, and targeted therapy.Curr. Treat. Options Oncol.202425333034510.1007/s11864‑023‑01169‑x38270800
    [Google Scholar]
  8. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.11589137979378
    [Google Scholar]
  9. WangY. WuX. RenZ. LiY. ZouW. ChenJ. WangH. Overcoming cancer chemotherapy resistance by the induction of ferroptosis.Drug Resist. Updat.20236610091610.1016/j.drup.2022.10091636610291
    [Google Scholar]
  10. GmeinerW.H. Recent advances in therapeutic strategies to improve colorectal cancer treatment.Cancers (Basel)2024165102910.3390/cancers1605102938473386
    [Google Scholar]
  11. KonstantinidisN. FrankeH. SchwarzS. LachenmeierD.W. Risk assessment of trigonelline in coffee and coffee by-products.Molecules2023288346010.3390/molecules2808346037110693
    [Google Scholar]
  12. ZhangD.F. ZhangF. ZhangJ. ZhangR.M. LiR. Protection effect of trigonelline on liver of rats with non-alcoholic fatty liver diseases.Asian Pac. J. Trop. Med.20158865165410.1016/j.apjtm.2015.07.01226321519
    [Google Scholar]
  13. Omidi-ArdaliH. LorigooiniZ. SoltaniA. Balali-DehkordiS. Amini-KhoeiH. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: Protective effect of the trigonelline.Inflammopharmacology20192761265127310.1007/s10787‑019‑00581‑w30924005
    [Google Scholar]
  14. FaridM.M. YangX. KuboyamaT. TohdaC. Trigonelline recovers memory function in Alzheimer’s disease model mice: Evidence of brain penetration and target molecule.Sci. Rep.20201011642410.1038/s41598‑020‑73514‑133009465
    [Google Scholar]
  15. ChowdhuryA.A. GawaliN.B. BulaniV.D. KothavadeP.S. MestryS.N. DeshpandeP.S. JuvekarA.R. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d -galactose induced cognitive impairment.Pharmacol. Rep.201870237237710.1016/j.pharep.2017.09.00629477946
    [Google Scholar]
  16. FaragM.A. BakyM.H. MorganI. KhalifaM.R. RennertR. MohamedO.G. El-SayedM.M. PorzelA. WessjohannL.A. RamadanN.S. Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking.RSC Advances20231331214712149310.1039/D3RA03141A37485437
    [Google Scholar]
  17. HirakawaN. OkauchiR. MiuraY. YagasakiK. Anti-invasive activity of niacin and trigonelline against cancer cells.Biosci. Biotechnol. Biochem.200569365365810.1271/bbb.69.65315785001
    [Google Scholar]
  18. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J. (Engl.)2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  19. NeoptolemosJ.P. KleeffJ. MichlP. CostelloE. GreenhalfW. PalmerD.H. Therapeutic developments in pancreatic cancer: Current and future perspectives.Nat. Rev. Gastroenterol. Hepatol.201815633334810.1038/s41575‑018‑0005‑x29717230
    [Google Scholar]
  20. NussinovR. TsaiC.J. JangH. Anticancer drug resistance: An update and perspective.Drug Resist. Updat.20215910079610.1016/j.drup.2021.10079634953682
    [Google Scholar]
  21. XuJ.Y. LiuF.Y. LiuS.X. XieL.Z. LiJ. MaY.T. HanF.J. Plant-derived chinese medicine monomers on ovarian cancer via the Wnt/β-Catenin signaling pathway: Review of mechanisms and prospects.J. Oncol.2021202111010.1155/2021/685286734912456
    [Google Scholar]
  22. SathiyaseelanA. SaravanakumarK. JayalakshmiJ. GopiM. ShajahanA. BarathikannanK. KalaichelvanP.T. WangM.H. Trigonelline-loaded chitosan nanoparticles prompted antitumor activity on glioma cells and biocompatibility with pheochromocytoma cells.Int. J. Biol. Macromol.2020163364310.1016/j.ijbiomac.2020.06.16532585274
    [Google Scholar]
  23. XiaH. DaiX. YuH. ZhouS. FanZ. WeiG. TangQ. GongQ. BiF. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: The mechanism and its implications in targeted therapy.Cell Death Dis.20189326910.1038/s41419‑018‑0302‑x29449645
    [Google Scholar]
  24. LongW. YiP. AmazitL. LaMarcaH.L. AshcroftF. KumarR. ManciniM.A. TsaiS.Y. TsaiM.J. O’MalleyB.W. SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration.Mol. Cell201037332133210.1016/j.molcel.2010.01.00420159552
    [Google Scholar]
  25. WangC. JiangJ. JiJ. CaiQ. ChenX. YuY. ZhuZ. ZhangJ. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer.Sci. Rep.201771288610.1038/s41598‑017‑03031‑128588255
    [Google Scholar]
  26. Krajka-KuźniakV. PaluszczakJ. Baer-DubowskaW. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment.Pharmacol. Rep.201769339340210.1016/j.pharep.2016.12.01128267640
    [Google Scholar]
  27. VenkatesanP. ThirumalaivasanN. YuH.P. LaiP.S. WuS.P. Redox stimuli delivery vehicle based on transferrin-capped msnps for targeted drug delivery in cancer therapy.ACS Appl. Bio Mater.2019241623163310.1021/acsabm.9b0003635026896
    [Google Scholar]
  28. ThirumalaivasanN. VenkatesanP. LaiP.S. WuS.P. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles.ACS Appl. Bio Mater.2019293886389610.1021/acsabm.9b0048135021323
    [Google Scholar]
  29. WeiL.F. ChenC.Y. LaiC.K. ThirumalaivasanN. WuS.P. A nano-molar fluorescent turn-on probe for copper(II) detection in living cells.Methods2019168182310.1016/j.ymeth.2019.04.02331055073
    [Google Scholar]
  30. TaniguchiK. KarinM. NF-κB, inflammation, immunity and cancer: Coming of age.Nat. Rev. Immunol.201818530932410.1038/nri.2017.14229379212
    [Google Scholar]
  31. HamzawyM.A. Abo-YoussefA.M. MalakM.N. KhalafM.M. Multiple targets of Nrf 2 inhibitor; trigonelline in combating urethane-induced lung cancer by caspase-executioner apoptosis, cGMP and limitation of cyclin D1 and Bcl2.Eur. Rev. Med. Pharmacol. Sci.202226249393940836591848
    [Google Scholar]
  32. FouzderC. MukhutyA. MukherjeeS. MalickC. KunduR. Trigonelline inhibits Nrf2 via EGFR signalling pathway and augments efficacy of Cisplatin and Etoposide in NSCLC cells.Toxicol. In Vitro20217010503810.1016/j.tiv.2020.10503833148531
    [Google Scholar]
  33. NakayamaT. Funakoshi-TagoM. TamuraH. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs.Oncol. Lett.20171411109111410.3892/ol.2017.622728693281
    [Google Scholar]
  34. BakuradzeT. LangR. HofmannT. StiebitzH. BytofG. LantzI. BaumM. EisenbrandG. JanzowskiC. Antioxidant effectiveness of coffee extracts and selected constituents in cell‐free systems and human colon cell lines.Mol. Nutr. Food Res.201054121734174310.1002/mnfr.20100014720589861
    [Google Scholar]
  35. PeerapenP. ChanthickC. ThongboonkerdV. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes.Biomed. Pharmacother.202315811412410.1016/j.biopha.2022.11412436521247
    [Google Scholar]
  36. Lone AN. Malik AT. Naikoo HS. Raghu RS. A TasduqS. Trigonelline, a naturally occurring alkaloidal agent protects ultraviolet-B (UV-B) irradiation induced apoptotic cell death in human skin fibroblasts via attenuation of oxidative stress, restoration of cellular calcium homeostasis and prevention of endoplasmic reticulum (ER) stress.J. Photochem. Photobiol. B202020211172010.1016/j.jphotobiol.2019.11172031841988
    [Google Scholar]
  37. A NazirL. TanveerM.A. UmarS.A. LoveS. DivyaG. TasduqS.A. Inhibition of ultraviolet-B radiation induced photodamage by trigonelline through modulation of mitogen activating protein kinases and nuclear factor-κB signaling axis in skin.Photochem. Photobiol.202197478579410.1111/php.1336933345344
    [Google Scholar]
  38. TanveerM.A. RashidH. NazirL.A. ArchooS. ShahidN.H. RagniG. UmarS.A. TasduqS.A. Trigonelline, a plant derived alkaloid prevents ultraviolet-B-induced oxidative DNA damage in primary human dermal fibroblasts and BALB/c mice via modulation of phosphoinositide 3-kinase-Akt-Nrf2 signalling axis.Exp. Gerontol.202317111202810.1016/j.exger.2022.11202836384201
    [Google Scholar]
  39. ArltA. SchäferH. KalthoffH. The ‘N-factors’ in pancreatic cancer: Functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer.Oncogenesis2012111e3510.1038/oncsis.2012.3523552468
    [Google Scholar]
  40. MizunoR. HojoH. TakahashiM. KashioS. EnyaS. NakaoM. KonishiR. YodaM. HarataA. HamanishiJ. KawamotoH. MandaiM. SuzukiY. MiuraM. BambaT. IzumiY. KawaokaS. Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase.Nat. Commun.2022131334610.1038/s41467‑022‑30926‑z35705545
    [Google Scholar]
  41. LiaoJ.C. LeeK.T. YouB.J. LeeC.L. ChangW.T. WuY.C. LeeH.Z. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration.Food Nutr. Res.20155912988410.3402/fnr.v59.2988426699938
    [Google Scholar]
  42. SirotaR. GibsonD. KohenR. The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines.Redox Biol.20171117017510.1016/j.redox.2016.12.00627951496
    [Google Scholar]
  43. SirotaR. GibsonD. KohenR. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines.Redox Biol.20154485910.1016/j.redox.2014.11.01225498967
    [Google Scholar]
  44. TangL. ChenX. ZhangX. GuoY. SuJ. ZhangJ. PengC. ChenX. N-Glycosylation in progression of skin cancer.Med. Oncol.20193665010.1007/s12032‑019‑1270‑431037368
    [Google Scholar]
  45. ShinD. KimE.H. LeeJ. RohJ.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer.Free Radic. Biol. Med.201812945446210.1016/j.freeradbiomed.2018.10.42630339884
    [Google Scholar]
  46. RohJ.L. KimE.H. JangH. ShinD. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.Redox Biol.20171125426210.1016/j.redox.2016.12.01028012440
    [Google Scholar]
  47. KhanmohammadiA. AghaieA. VahediE. QazviniA. GhaneiM. AfkhamiA. HajianA. BagheriH. Electrochemical biosensors for the detection of lung cancer biomarkers: A review.Talanta202020612025110.1016/j.talanta.2019.12025131514848
    [Google Scholar]
  48. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.03331226287
    [Google Scholar]
  49. CarrolaJ. RochaC.M. BarrosA.S. GilA.M. GoodfellowB.J. CarreiraI.M. BernardoJ. GomesA. SousaV. CarvalhoL. DuarteI.F. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine.J. Proteome Res.201110122123010.1021/pr100899x21058631
    [Google Scholar]
  50. LiY. LinM. WangS. CaoB. LiC. LiG. Novel angiogenic regulators and anti-angiogenesis drugs targeting angiogenesis signaling pathways: Perspectives for targeting angiogenesis in lung cancer.Front. Oncol.20221284296010.3389/fonc.2022.84296035372042
    [Google Scholar]
  51. SinghA. MisraV. ThimmulappaR.K. LeeH. AmesS. HoqueM.O. HermanJ.G. BaylinS.B. SidranskyD. GabrielsonE. BrockM.V. BiswalS. Dysfunctional KEAP1-NF2 interaction in non-small-cell lung cancer.PLoS Med.2006310e42010.1371/journal.pmed.003042017020408
    [Google Scholar]
  52. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  53. FriedmanJ.R. RichbartS.D. MerrittJ.C. BrownK.C. NolanN.A. AkersA.T. LauJ.K. RobateauZ.R. MilesS.L. DasguptaP. Acetylcholine signaling system in progression of lung cancers.Pharmacol. Ther.201919422225410.1016/j.pharmthera.2018.10.00230291908
    [Google Scholar]
  54. QiaoX. WuX. ChenS. NiuM.M. HuaH. ZhangY. Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation.J. Enzyme Inhib. Med. Chem.2024391229524110.1080/14756366.2023.229524138134358
    [Google Scholar]
  55. MassoudJ. PinonA. Gallardo-VillagránM. PaulusL. OukC. CarrionC. AntounS. Diab-AssafM. TherrienB. LiagreB. A combination of ruthenium complexes and photosensitizers to treat colorectal cancer.Inorganics (Basel)2023111245110.3390/inorganics11120451
    [Google Scholar]
  56. GuertinK.A. LoftfieldE. BocaS.M. SampsonJ.N. MooreS.C. XiaoQ. HuangW.Y. XiongX. FreedmanN.D. CrossA.J. SinhaR. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer.Am. J. Clin. Nutr.201510151000101110.3945/ajcn.114.09609925762808
    [Google Scholar]
  57. RomualdoG.R. RochaA.B. VinkenM. CogliatiB. MorenoF.S. ChavesM.A.G. BarbisanL.F. Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis.Food Res. Int.201912356758910.1016/j.foodres.2019.05.02931285007
    [Google Scholar]
  58. KumarR. MauryaA.K. ParkerK.D. KantR. IbrahimH. KabirM.I. KumarD. WeberA.M. AgarwalR. KuhnK.A. RyanE.P. RainaK. Gender‐based effect of absence of gut microbiota on the protective efficacy of Bifidobacterium longum ‐fermented rice bran diet against inflammation‐associated colon tumorigenesis.Mol. Carcinog.2022611094195710.1002/mc.2345235856887
    [Google Scholar]
  59. WangX. ZhangH. YinS. YangY. YangH. YangJ. ZhouZ. LiS. YingG. BaY. lncRNA‐encoded pep‐AP attenuates the pentose phosphate pathway and sensitizes colorectal cancer cells to Oxaliplatin.EMBO Rep.2022231e5314010.15252/embr.20215314034779552
    [Google Scholar]
  60. Pirpour TazehkandA. SalehiR. VelaeiK. SamadiN. The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells.Mol. Biol. Rep.20204785817582910.1007/s11033‑020‑05650‑w32661875
    [Google Scholar]
  61. de OcaJ. AzuaraD. Sanchez-SantosR. NavarroM. CapellaG. MorenoV. SolaA. HotterG. BiondoS. OsorioA. Martí-RaguéJ. RafecasA. Caspase-3 activity, response to chemotherapy and clinical outcome in patients with colon cancer.Int. J. Colorectal Dis.2008231212710.1007/s00384‑007‑0362‑317805550
    [Google Scholar]
  62. IlavenilS. KimD.H. JeongY.I. ArasuM.V. VijayakumarM. PrabhuP.N. SrigopalramS. ChoiK.C. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells.Asian Pac. J. Trop. Med.20158426326810.1016/S1995‑7645(14)60328‑X25975496
    [Google Scholar]
  63. MendeA.L. SchulteJ.D. OkadaH. ClarkeJ.L. Current advances in immunotherapy for glioblastoma.Curr. Oncol. Rep.20212322110.1007/s11912‑020‑01007‑533496872
    [Google Scholar]
  64. ZhangY. DubeC. GibertM.Jr CruickshanksN. WangB. CoughlanM. YangY. SetiadyI. DeveauC. SaoudK. GrelloC. OxfordM. YuanF. AbounaderR. The p53 pathway in glioblastoma.Cancers (Basel)201810929710.3390/cancers1009029730200436
    [Google Scholar]
  65. PanH. WangH. ZhuL. WangX. CongZ. SunK. FanY. The involvement of Nrf2–ARE pathway in regulation of apoptosis in human glioblastoma cell U251.Neurol. Res.2013351717810.1179/1743132812Y.000000009423006842
    [Google Scholar]
  66. QinW. GuanD. MaR. YangR. XingG. ShiH. TangG. LiJ. LvH. JiangY. Effects of trigonelline inhibition of the Nrf2 transcription factor in vitro on Echinococcus granulosus.Acta Biochim. Biophys. Sin. (Shanghai)201749869670510.1093/abbs/gmx06728810706
    [Google Scholar]
  67. LiX. ZhangW. LiangL. DuanX. DengJ. ZhouY. Natural product‑derived icaritin exerts anti‑glioblastoma effects by positively modulating estrogen receptor β.Exp. Ther. Med.20201942841285010.3892/etm.2020.857132256768
    [Google Scholar]
  68. YooG. AllredC.D. The estrogenic effect of trigonelline and 3,3-diindolymethane on cell growth in non-malignant colonocytes.Food Chem. Toxicol.201687233010.1016/j.fct.2015.11.01526593444
    [Google Scholar]
  69. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  70. MicaliG. LacarrubbaF. DinottaF. MassiminoD. NascaM.R. Treating skin cancer with topical cream.Expert Opin. Pharmacother.20101191515152710.1517/14656566.2010.48128420408746
    [Google Scholar]
  71. DildarM. AkramS. IrfanM. KhanH.U. RamzanM. MahmoodA.R. AlsaiariS.A. SaeedA.H.M. AlraddadiM.O. MahnashiM.H. Skin cancer detection: A review using deep learning techniques.Int. J. Environ. Res. Public Health20211810547910.3390/ijerph1810547934065430
    [Google Scholar]
  72. CasariI. FalascaM. Diet and pancreatic cancer prevention.Cancers (Basel)2015742309231710.3390/cancers704089226610570
    [Google Scholar]
  73. KleinA.P. Genetic susceptibility to pancreatic cancer.Mol. Carcinog.2012511142410.1002/mc.2085522162228
    [Google Scholar]
  74. SahniS. PandyaA.R. HaddenW.J. NahmC.B. MaloneyS. CookV. ToftJ.A. Wilkinson-WhiteL. GillA.J. SamraJ.S. DonaA. MittalA. A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma.Int. J. Cancer202114861508151810.1002/ijc.3336833128797
    [Google Scholar]
  75. HippersonL. HaddenW.J. NahmC.B. GillA.J. SamraJ.S. DonaA. MittalA. SahniS. Urinary metabolite prognostic biomarker panel for pancreatic ductal adenocarcinomas.Biochim. Biophys. Acta, Gen. Subj.202118651112996610.1016/j.bbagen.2021.12996634329704
    [Google Scholar]
  76. BoettlerU. SommerfeldK. VolzN. PahlkeG. TellerN. SomozaV. LangR. HofmannT. MarkoD. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression.J. Nutr. Biochem.201122542644010.1016/j.jnutbio.2010.03.01120655719
    [Google Scholar]
  77. ArltA. SebensS. KrebsS. GeismannC. GrossmannM. KruseM-L. SchreiberS. SchäferH. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity.Oncogene201332404825483510.1038/onc.2012.49323108405
    [Google Scholar]
  78. HuG.L. WangX. ZhangL. QiuM.H. The sources and mechanisms of bioactive ingredients in coffee.Food Funct.20191063113312610.1039/C9FO00288J31166336
    [Google Scholar]
  79. ZhangN. ZhangH. YangX. XueQ. WangQ. ChangR. ZhuL. ChenZ. LiuX. USP14 exhibits high expression levels in hepatocellular carcinoma and plays a crucial role in promoting the growth of liver cancer cells through the HK2/AKT/P62 axis.BMC Cancer202424123710.1186/s12885‑024‑12009‑y38383348
    [Google Scholar]
  80. LiuD. LiuW. ChenX. YinJ. MaL. LiuM. ZhouX. XianL. LiP. TanX. ZhaoJ. LiaoY. CaoG. circKCNN2 suppresses the recurrence of hepatocellular carcinoma at least partially via regulating miR‐520c‐3p/methyl‐DNA‐binding domain protein 2 axis.Clin. Transl. Med.2022121e66210.1002/ctm2.66235051313
    [Google Scholar]
  81. XuM. YangL. LinY. LuY. BiX. JiangT. DengW. ZhangL. YiW. XieY. LiM. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma.J. Nanobiotechnology202220142710.1186/s12951‑022‑01615‑236175957
    [Google Scholar]
  82. LiJ. ZhuC. ZhangZ. ZhengX. WangC. ZhangH. Paeoniflorin increases the anti-tumor efficacy of sorafenib in tumor-bearing mice with liver cancer via suppressing the NF-κb/PD-l1 axis.Heliyon2024102e2446110.1016/j.heliyon.2024.e2446138312647
    [Google Scholar]
  83. FanX. YanZ. LinY. WangQ. JiangL. YaoX. DongL. ChenL. ZhaoT. ZhaoJ. HuH. WangH. Mechanism exploration of Zoledronic acid combined with PD-1 in the treatment of hepatocellular carcinoma.Cancer Immunol. Immunother.20247346210.1007/s00262‑024‑03652‑238430249
    [Google Scholar]
  84. LoftfieldE. RothwellJ.A. SinhaR. Keski-RahkonenP. RobinotN. AlbanesD. WeinsteinS.J. DerkachA. SampsonJ. ScalbertA. FreedmanN.D. Prospective investigation of serum metabolites, coffee drinking, liver cancer incidence, and liver disease mortality.J. Natl. Cancer Inst.2020112328629410.1093/jnci/djz12231168595
    [Google Scholar]
  85. WangX.Z. WuF.H. QuW. LiangJ.Y. A new β-carboline alkaloid from the seeds of Griffonia simplicifolia.Chin. J. Nat. Med.201311440140510.1016/S1875‑5364(13)60059‑X23845550
    [Google Scholar]
  86. NugrahiniA.D. IshidaM. NakagawaT. NishiK. SugaharaT. Trigonelline: An alkaloid with anti-degranulation properties.Mol. Immunol.202011820120910.1016/j.molimm.2019.12.02031896496
    [Google Scholar]
  87. CostaM.C. LimaT.F.O. ArcaroC.A. InacioM.D. Batista-DuharteA. CarlosI.Z. SpolidorioL.C. AssisR.P. BrunettiI.L. BavieraA.M. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity.J. Nutr. Biochem.20207610830310.1016/j.jnutbio.2019.10830331812909
    [Google Scholar]
  88. BekeleR.T. VenkatramanG. LiuR.Z. TangX. MiS. BeneschM.G.K. MackeyJ.R. GodboutR. CurtisJ.M. McMullenT.P.W. BrindleyD.N. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: Implications for tamoxifen therapy and resistance.Sci. Rep.2016612116410.1038/srep2116426883574
    [Google Scholar]
  89. YanC. XuanF. Paris saponin VII promotes ferroptosis to inhibit breast cancer via Nrf2/GPX4 axis.Biochem. Biophys. Res. Commun.202469714952410.1016/j.bbrc.2024.14952438252991
    [Google Scholar]
  90. ManivannanH.P. VeeraraghavanV.P. FrancisA.P. Identification of molecular targets of Trigonelline for treating breast cancer through network pharmacology and bioinformatics-based prediction.Mol. Divers.20242863835385710.1007/s11030‑023‑10780‑x38145425
    [Google Scholar]
  91. AlfarsiL.H. El AnsariR. CrazeM.L. MohammedO.J. MasisiB.K. EllisI.O. RakhaE.A. GreenA.R. SLC1A5 co-expression with TALDO1 associates with endocrine therapy failure in estrogen receptor-positive breast cancer.Breast Cancer Res. Treat.2021189231733110.1007/s10549‑021‑06298‑134282517
    [Google Scholar]
  92. AllredK.F. YackleyK.M. VanamalaJ. AllredC.D. Trigonelline is a novel phytoestrogen in coffee beans.J. Nutr.2009139101833183810.3945/jn.109.10800119710155
    [Google Scholar]
  93. LudwigI.A. CliffordM.N. LeanM.E.J. AshiharaH. CrozierA. Coffee: Biochemistry and potential impact on health.Food Funct.2014581695171710.1039/C4FO00042K24671262
    [Google Scholar]
  94. BevilacquaE. CruzatV. SinghI. Rose’MeyerR.B. PanchalS.K. BrownL. The potential of spent coffee grounds in functional food development.Nutrients202315499410.3390/nu1504099436839353
    [Google Scholar]
  95. SuB. ZhongM. ZhangY. WuK. HuangQ. ZhuC. ZengT. Deficiency of kin17 facilitates apoptosis of cervical cancer cells by modulating caspase 3, PARP, and Bcl-2 family proteins.J. Oncol.2022202211210.1155/2022/315696835909901
    [Google Scholar]
  96. LiuK.R. LiuY. YuY.Q. FengT.D. ZhangS.L. Identification of acetylcholine-related enzymes and the role of acetylcholine and nicotine in human cervical cancer.Int. J. Clin. Exp. Pathol.20169448544861
    [Google Scholar]
  97. WangY. XieL. LiuF. DingD. WeiW. HanF. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells.J. Ethnopharmacol.2024319Pt 211729910.1016/j.jep.2023.11729937816474
    [Google Scholar]
  98. GuertinK.A. MooreS.C. SampsonJ.N. HuangW.Y. XiaoQ. Stolzenberg-SolomonR.Z. SinhaR. CrossA.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations.Am. J. Clin. Nutr.2014100120821710.3945/ajcn.113.07875824740205
    [Google Scholar]
  99. LeiP. CaoL. ZhangH. FuJ. WeiX. ZhouF. ChengJ. MingJ. LuH. JiangT. Polyene phosphatidylcholine enhances the therapeutic response of oxaliplatin in gastric cancer through Nrf2/HMOX1 mediated ferroptosis.Transl. Oncol.20244310191110.1016/j.tranon.2024.10191138377934
    [Google Scholar]
  100. KimK.B. YangJ.Y. KwackS.J. KimH.S. RyuD.H. KimY.J. BaeJ.Y. LimD.S. ChoiS.M. KwonM.J. BangD.Y. LimS.K. KimY.W. HwangG.S. LeeB.M. Potential metabolomic biomarkers for evaluation of adriamycin efficacy using a urinary 1 H‐NMR spectroscopy.J. Appl. Toxicol.201333111251125910.1002/jat.277822782856
    [Google Scholar]
  101. GurunathanS. HanJ.W. ParkJ.H. KimE.S. ChoiY.J. KwonD.N. KimJ.H. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy.Int. J. Nanomedicine2015106257627610.2147/IJN.S9244926491296
    [Google Scholar]
  102. HamadiS.A. Effect of trigonelline and ethanol extract of Iraqi Fenugreek seeds on oxidative stress in alloxan diabetic rabbits.J. Assoc. Arab Univ. Basic Appl. Sci.2012121232610.1016/j.jaubas.2012.02.003
    [Google Scholar]
  103. YangH. HuY. WengM. LiuX. WanP. HuY. MaM. ZhangY. XiaH. LvK. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer.J. Adv. Res.2022379110610.1016/j.jare.2021.10.00135499052
    [Google Scholar]
  104. FuD. WangC. YuL. YuR. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling.Cell. Mol. Biol. Lett.20212612610.1186/s11658‑021‑00271‑y34098867
    [Google Scholar]
  105. LeeJ. RohJ.L. Induction of ferroptosis in head and neck cancer: A novel bridgehead for fighting cancer resilience.Cancer Lett.202254621585410.1016/j.canlet.2022.21585435973621
    [Google Scholar]
  106. RohJ.L. Nrf2 targeting in overcoming ferroptosis evasion in head and neck cancer.Biochem. Biophys. Res. Commun.202367122522810.1016/j.bbrc.2023.06.02237307705
    [Google Scholar]
  107. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.01532067993
    [Google Scholar]
  108. FournierC. R VargasT. MartinT. MelisA. ApetohL. Immunotherapeutic properties of chemotherapy.Curr. Opin. Pharmacol.201735838810.1016/j.coph.2017.05.00328551360
    [Google Scholar]
  109. Reyes-HabitoC.M. RohE.K. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer.J. Am. Acad. Dermatol.2014712217.e1217.e1110.1016/j.jaad.2014.04.01325037801
    [Google Scholar]
  110. El BairiK. OuzirM. AgnieszkaN. KhalkiL. Anticancer potential of Trigonella foenum graecum: Cellular and molecular targets.Biomed. Pharmacother.20179047949110.1016/j.biopha.2017.03.07128391170
    [Google Scholar]
  111. SocałaK. SzopaA. SerefkoA. PoleszakE. WlaźP. Neuroprotective effects of coffee bioactive compounds: A review.Int. J. Mol. Sci.202022110710.3390/ijms2201010733374338
    [Google Scholar]
  112. NguyenV. TaineE.G. MengD. CuiT. TanW. Pharmacological activities, therapeutic effects, and mechanistic actions of trigonelline.Int. J. Mol. Sci.2024256338510.3390/ijms2506338538542359
    [Google Scholar]
  113. LiuF.Y. DingD.N. WangY.R. LiuS.X. PengC. ShenF. ZhuX.Y. LiC. TangL.P. HanF.J. Icariin as a potential anticancer agent: A review of its biological effects on various cancers.Front. Pharmacol.202314121636310.3389/fphar.2023.121636337456751
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206363456250226061713
Loading
/content/journals/acamc/10.2174/0118715206363456250226061713
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; chinese medicine; herbal medicine; inhibit; mechanism; Trigonelline
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test