Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Anthraquinones are well known for their wide spectrum of pharmacological properties. Anthraquinone antibiotics, such as doxorubicin, daunorubicin, epirubicin, and mitoxantrone, have long been used in the clinical management of various tumors. However, their use is limited due to their toxicity effects, especially cardiomyopathy, despite their pronounced therapeutic effects. In recent years, medicinal chemists have explored the possibility of modifying the anthraquinone ring appended with structurally diverse functionality in order to develop better chemotherapeutic agents with fewer adverse effects. The fused polycyclic structure of anthraquinone offers rigidity, planarity, and aromaticity, which helps in double helix DNA intercalation, disruption of G4 DNA, and inhibition of topoisomerase-II enzyme of cancer cells, making them suitable pharmacophore for anticancer drug discovery. Incorporation of suitable functional groups such as amino, hydroxyl, and their derivatives into anthraquinone rings can improve their interactions with biological targets involved in cancer progression. These subtle structural changes produce newer anthraquinone derivatives with improved anticancer properties, increased potency, selectivity, and reduced toxicity, and can overcome multi-drug resistance. On the other hand, the molecular hybrids of the anthraquinone derivatives have been reported to act on multiple targets in cancer cells, as seen in the case of clinical candidates like alectinib, midostaurin, tucatinib, belinostat, and dacinostat. Molecular hybrid has given a new direction for anticancer drug development, which can produce bifunctional drug candidates with reduced toxicity. This review summarizes different structural modifications that have been made to the anthraquinone ring in the last decade with the aim of bringing out potent yet toxicity-free anticancer agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206374787250227064528
2025-03-03
2025-10-22
Loading full text...

Full text loading...

References

  1. MonksT.J. HanzlikR.P. CohenG.M. RossD. GrahamD.G. Quinone chemistry and toxicity.Toxicol. Appl. Pharmacol.1992112121610.1016/0041‑008X(92)90273‑U1733045
    [Google Scholar]
  2. MalikE.M. MüllerC.E. Anthraquinones as pharmacological tools and drugs.Med. Res. Rev.201636470574810.1002/med.2139127111664
    [Google Scholar]
  3. ShakourZ.T. FaragM.A. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives.J. Adv. Res.20223925727310.1016/j.jare.2021.11.00735660073
    [Google Scholar]
  4. WangP. WeiJ. HuaX. DongG. DziedzicK. WahabA. EfferthT. SunW. MaP. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation.J. Cell. Physiol.2023jcp.3106310.1002/jcp.3106337393608
    [Google Scholar]
  5. Diaz-MuñozG. MirandaI.L. SartoriS.K. RezendeD.D.C. DiazM.A.N. Anthraquinones: An overview.Stud. Nat. Prod. Chem.20185831333810.1016/B978‑0‑444‑64056‑7.00011‑8
    [Google Scholar]
  6. DongM. MingX. XiangT. FengN. ZhangM. YeX. HeY. ZhouM. WuQ. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: A comprehensive review.Food Funct.202415188973899710.1039/D4FO02600D39189379
    [Google Scholar]
  7. PhanK. RaesK. SpeybroeckV.V. RoosenM. ClerckD.K. MeesterD.S. Non-food applications of natural dyes extracted from agro-food residues: A critical review.J. Clean. Prod.202130112692010.1016/j.jclepro.2021.126920
    [Google Scholar]
  8. ChenC.X. YangS.S. PangJ.W. HeL. ZangY.N. DingL. RenN.Q. DingJ. Anthraquinones-based photocatalysis: A comprehensive review.Environ. Sci. Ecotechnol.20242210044910.1016/j.ese.2024.10044939104553
    [Google Scholar]
  9. Cervantes-GonzálezJ. VosburgD.A. Mora-RodriguezS.E. VázquezM.A. ZepedaL.G. GómezV.C. Lagunas-RiveraS. Anthraquinones: Versatile organic photocatalysts.ChemCatChem202012153811382710.1002/cctc.202000376
    [Google Scholar]
  10. MalikM.S. AlsantaliR.I. JassasR.S. AlsimareeA.A. SyedR. AlsharifM.A. KalpanaK. MoradM. AlthagafiI.I. AhmedS.A. Journey of anthraquinones as anticancer agents – a systematic review of recent literature.RSC Advances20211157358063582710.1039/D1RA05686G35492773
    [Google Scholar]
  11. BaqiY. Anthraquinones as a privileged scaffold in drug discovery targeting nucleotide-binding proteins.Drug Discov. Today201621101571157710.1016/j.drudis.2016.06.02727373759
    [Google Scholar]
  12. PreetG. Gomez-BanderasJ. EbelR. JasparsM. A structure-activity relationship analysis of anthraquinones with antifouling activity against marine biofilm-forming bacteria.Front. Nat. Prod.2022199082210.3389/fntpr.2022.990822
    [Google Scholar]
  13. RoyS. AliA. KamraM. MuniyappaK. BhattacharyaS. Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amidoanthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity.Eur. J. Med. Chem.202019511220210.1016/j.ejmech.2020.11220232302880
    [Google Scholar]
  14. QunT. ZhouT. HaoJ. WangC. ZhangK. XuJ. WangX. ZhouW. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms.RSC Med. Chem.20231481446147110.1039/D3MD00116D37593578
    [Google Scholar]
  15. ZhengY. ZhuL. FanL. ZhaoW. WangJ. HaoX. ZhuY. HuX. YuanY. ShaoJ. WangW. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.Eur. J. Med. Chem.201712590291310.1016/j.ejmech.2016.10.01227769031
    [Google Scholar]
  16. TikhomirovA.S. ShtilA.A. ShchekotikhinA.E. Advances in the discovery of anthraquinone-based anticancer agents.Rec. Pat. Anti. Drug Discov.201813215918310.2174/157489281366617120612311429210664
    [Google Scholar]
  17. PhillipsM. The chemistry of anthraquinone.Chem. Rev.19296115717410.1021/cr60021a007
    [Google Scholar]
  18. Diaz-MuñozG. MirandaI.L. SartoriS.K. RezendeD.D.C. DiazM.A.N. Anthraquinones: An overview.Stud. Nat. Prod. Chem.20185831333810.1016/B978‑0‑444‑64056‑7.00011‑8
    [Google Scholar]
  19. FieserL.F. The discovery of synthetic alizarin.J. Chem. Educ.1930711260910.1021/ed007p2609
    [Google Scholar]
  20. FouillaudM. CaroY. VenkatachalamM. GrondinI. DufosséL. Anthraquinones. Phenol. Comp. Food201813117210.1201/9781315120157‑9
    [Google Scholar]
  21. SiddamurthiS. GuttiG. JanaS. KumarA. SinghS.K. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy.Future Med. Chem.202012111037106910.4155/fmc‑2019‑019832349522
    [Google Scholar]
  22. VolkovaM. RussellR.III Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment.Curr. Cardiol. Rev.20127421422010.2174/15734031179996064522758622
    [Google Scholar]
  23. WestendorfJ MarquardtH PoginskyB DominiakM SchmidtJ MarquardtH Genotoxicity of naturally occurring hydroxyanthraquinones.Mutat. Res. Genet. Toxicol.199024011210.1016/0165‑1218(90)90002‑j
    [Google Scholar]
  24. CuiX.R. TsukadaM. SuzukiN. ShimamuraT. GaoL. KoyanagiJ. KomadaF. SaitoS. Comparison of the cytotoxic activities of naturally occurring hydroxyanthraquinones and hydroxynaphthoquinones.Eur. J. Med. Chem.20084361206121510.1016/j.ejmech.2007.08.00917949858
    [Google Scholar]
  25. CheemalamarriC. BatchuU.R. ThallamapuramN.P. KatragaddaS.B. ShettyR.P. A review on hydroxy anthraquinones from bacteria: Crosstalk’s of structures and biological activities.Nat. Prod. Res.202236236186620510.1080/14786419.2022.203992035175877
    [Google Scholar]
  26. Mielczarek-PutaM. StrugaM. RoszkowskiP. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA).Med. Chem. Res.201928122153216410.1007/s00044‑019‑02443‑0
    [Google Scholar]
  27. ZhangC. JinS. XueX. ZhangT. JiangY. WangP.C. LiangX.J. Tunable self-assembly of Irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells.J. Mater. Chem. B Mater. Biol. Med.20164193286329110.1039/C6TB00612D27239311
    [Google Scholar]
  28. LiangC. YeW. ZhuC. NaR. ChengY. CuiH. LiuD. YangZ. ZhouS. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity.Mol. Pharm.20141151378139010.1021/mp400413924720787
    [Google Scholar]
  29. MishraB. AcharyaP.C. DeU.C. Synthesis and antineoplastic efficacy of anthraquinone and saturated fatty acid conjugates.ChemistrySelect2023825e20230150210.1002/slct.202301502
    [Google Scholar]
  30. ZhaoL.M. MaF.Y. JinH.S. ZhengS. ZhongQ. WangG. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach.Eur. J. Med. Chem.201510230330910.1016/j.ejmech.2015.08.00626291039
    [Google Scholar]
  31. LinK.W. LinW.H. SuC.L. HsuH.Y. LinC.N. Design, synthesis and antitumour evaluation of novel anthraquinone derivatives.Bioorg. Chem.202110710439510.1016/j.bioorg.2020.10439533384144
    [Google Scholar]
  32. OliveiraL.A. NicolellaH.D. FurtadoR.A. LimaN.M. TavaresD.C. CorrêaT.A. AlmeidaM.V. Design, synthesis, and antitumor evaluation of novel anthraquinone derivatives.Med. Chem. Res.20202991611162010.1007/s00044‑020‑02587‑4
    [Google Scholar]
  33. MorganI. WessjohannL.A. KaluđerovićG.N. In vitro anticancer screening and preliminary mechanistic study of A-ring substituted Anthraquinone derivatives.Cells202211116810.3390/cells1101016835011730
    [Google Scholar]
  34. LiuY. LiangY. JiangJ. QinQ. WangL. LiuX. Design, synthesis and biological evaluation of 1,4-dihydroxyanthraquinone derivatives as anticancer agents.Bioorg. Med. Chem. Lett.20192991120112610.1016/j.bmcl.2019.02.02630846253
    [Google Scholar]
  35. LiY. GuoF. ChenT. ZhangL. WangZ. SuQ. FengL. Design, synthesis, molecular docking, and biological evaluation of new emodin anthraquinone derivatives as potential antitumor substances.Chem. Biodivers.2020179e200032810.1002/cbdv.20200032832627416
    [Google Scholar]
  36. HuangK. JiangL. LiangR. LiH. RuanX. ShanC. YeD. ZhouL. Synthesis and biological evaluation of anthraquinone derivatives as allosteric phosphoglycerate mutase 1 inhibitors for cancer treatment.Eur. J. Med. Chem.2019168455710.1016/j.ejmech.2019.01.08530798052
    [Google Scholar]
  37. TikhomirovA.S. SinkevichY.B. DezhenkovaL.G. KaluzhnyD.N. IlyinskyN.S. BorshchevskiyV.I. ScholsD. ShchekotikhinA.E. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives.Eur. J. Med. Chem.202426511610310.1016/j.ejmech.2023.11610338176358
    [Google Scholar]
  38. SirazhetdinovaN.S. SavelyevV.A. BaevD.S. GolubevaT.S. KlimenkoL.S. TolstikovaT.G. GanbaatarJ. ShultsE.E. Synthesis, characterization and anticancer evaluation of nitrogen-substituted 1-(3-aminoprop-1-ynyl)-4-hydroxyanthraquinone derivatives.Med. Chem. Res.20213081541155610.1007/s00044‑021‑02754‑1
    [Google Scholar]
  39. HuX. CaoY. YinX. ZhuL. ChenY. WangW. HuJ. Design and synthesis of various quinizarin derivatives as potential anticancer agents in acute T lymphoblastic leukemia.Bioorg. Med. Chem.20192771362136910.1016/j.bmc.2019.02.04130827866
    [Google Scholar]
  40. XieX.W. LiuZ.P. LiX. Design, synthesis, bioevaluation of LFC- and PA-tethered anthraquinone analogues of mitoxantrone.Bioorg. Chem.202010110400510.1016/j.bioorg.2020.10400532599362
    [Google Scholar]
  41. TianW. LiJ. SuZ. LanF. LiZ. LiangD. WangC. LiD. HouH. Novel anthraquinone compounds induce cancer cell death through paraptosis.ACS Med. Chem. Lett.201910573273610.1021/acsmedchemlett.8b0062431097991
    [Google Scholar]
  42. LiY. GuoF. ChenT. ZhangL. QinY. Anthraquinone derivative C10 inhibits proliferation and cell cycle progression in colon cancer cells via the Jak2/Stat3 signaling pathway.Toxicol. Appl. Pharmacol.202141811548110.1016/j.taap.2021.11548133722666
    [Google Scholar]
  43. KatzhendlerJ. GeanK. BaradG. TashmaZ. BenshoshanR. RingelI. BachrachU. RamuA. Synthesis of aminoanthraquinone derivatives and their in vitro evaluation as potential anti-cancer drugs.Eur. J. Med. Chem.1989241233010.1016/0223‑5234(89)90159‑1
    [Google Scholar]
  44. HuangH.S. ChiuH.F. LuW.C. YuanC.L. Synthesis and antitumor activity of 1,8-diaminoanthraquinone derivatives.Chem. Pharm. Bull.20055391136113910.1248/cpb.53.113616141583
    [Google Scholar]
  45. BanerjeeS. RoyS. DharumaduraiD. PerumalsamyB. ThirumuruganR. DasS. ChattopadhyayA.P. GuinP.S. A Co(III) Complex of 1-Amino-4-hydroxy-9,10-anthraquinone exhibits apoptotic action against MCF-7 human breast cancer cells.ACS Omega2022711428143610.1021/acsomega.1c0612535036804
    [Google Scholar]
  46. RoyS. MuniyappaK. BhattacharyaS. Deciphering the binding insights of novel disubstituted anthraquinone derivatives with G‐quadruplex DNA to exhibit selective cancer cell cytotoxicity.Chem. Med. Chem.20221722e20220043610.1002/cmdc.20220043636161519
    [Google Scholar]
  47. AcharyaP.C. DebbarmaS. Targeting G-quadruplex DNA for cancer chemotherapy.Curr. Drug Discov. Technol.2022193e14022220111010.2174/157016381966622021411540835156574
    [Google Scholar]
  48. SangthongS. HaH. TeerawattananonT. NgamrojanavanichN. NeamatiN. MuangsinN. Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line by novel anthracene-9,10-dione derivatives.Bioorg. Med. Chem. Lett.201323226156616010.1016/j.bmcl.2013.09.00424095089
    [Google Scholar]
  49. TuH.Y. HuangA.M. TengC.H. HourT.C. YangS.C. PuY.S. LinC.N. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells.Bioorg. Med. Chem.201119185670567810.1016/j.bmc.2011.07.02121852140
    [Google Scholar]
  50. ShchekotikhinA.E. GlazunovaV.A. DezhenkovaL.G. ShevtsovaE.K. Traven’V.F. BalzariniJ. HuangH.S. ShtilA.A. PreobrazhenskayaM.N. The first series of 4,11-bis[(2-aminoethyl)amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proliferative characteristics.Eur. J. Med. Chem.201146142342810.1016/j.ejmech.2010.11.01721144624
    [Google Scholar]
  51. LeeC.C. HuangK.F. LinP.Y. HuangF.C. ChenC.L. ChenT.C. GuhJ.H. LinJ.J. HuangH.S. Synthesis, antiproliferative activities and telomerase inhibition evaluation of novel asymmetrical 1,2-disubstituted amidoanthraquinone derivatives.Eur. J. Med. Chem.201247132333610.1016/j.ejmech.2011.10.05922100139
    [Google Scholar]
  52. TaherA.T. HegazyG.H. Synthesis of novel bis-anthraquinone derivatives and their biological evaluation as antitumor agents.Arch. Pharm. Res.201336557357810.1007/s12272‑013‑0074‑x23471561
    [Google Scholar]
  53. LeeY.R. ChenT.C. LeeC.C. ChenC.L. AliA.A.A. TikhomirovA. GuhJ.H. YuD.S. HuangH.S. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents.Eur. J. Med. Chem.201510266167610.1016/j.ejmech.2015.07.05226344783
    [Google Scholar]
  54. MohamadzadehM. ZareiM. Anticancer activity and evaluation of apoptotic genes expression of 2-azetidinones containing anthraquinone moiety.Mol. Divers.20212542429243910.1007/s11030‑020‑10142‑x32944866
    [Google Scholar]
  55. NiedziałkowskiP. CzaczykE. JaroszJ. WcisłoA. BiałobrzeskaW. WietrzykJ. OssowskiT. Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents.J. Mol. Struct.2019117548849510.1016/j.molstruc.2018.07.070
    [Google Scholar]
  56. ArrousseN. HarrasM.F. KadiriE.S. HaldharR. IchouH. BoustaD. GrafovA. RaisZ. TalebM. New anthraquinone drugs and their anticancer activities: Cytotoxicity, DFT, docking and ADMET properties.Results Chem.2023610099610.1016/j.rechem.2023.100996
    [Google Scholar]
  57. VolodinaY.L. TikhomirovA.S. DezhenkovaL.G. RamonovaA.A. KononovaA.V. AndreevaD.V. KaluzhnyD.N. ScholsD. MoisenovichM.M. ShchekotikhinA.E. ShtilA.A. Thiophene-2-carboxamide derivatives of anthraquinone: A new potent antitumor chemotype.Eur. J. Med. Chem.202122111352110.1016/j.ejmech.2021.11352134082225
    [Google Scholar]
  58. LinS. ZhangY. WangZ. ZhangS. LiY. FanY. LiD. LiS. BaiY. Preparation of novel anthraquinone-based aspirin derivatives with anti-cancer activity.Eur. J. Pharmacol.202190017402010.1016/j.ejphar.2021.17402033741381
    [Google Scholar]
  59. SinghM. MalhotraL. HaqueM.A. KumarM. TikhomirovA. LitvinovaV. KorolevA.M. EthayathullaA.S. DasU. ShchekotikhinA.E. KaurP. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B.Biochimie202118215216510.1016/j.biochi.2020.12.02433417980
    [Google Scholar]
  60. ChenT.C. GuhJ.H. HsuH.W. ChenC.L. LeeC.C. WuC.L. LeeY.R. LinJ.J. YuD.S. HuangH.S. Synthesis and biological evaluation of anthra[1,9-cd]pyrazol-6(2H)-one scaffold derivatives as potential anticancer agents.Arab. J. Chem.20191282864288110.1016/j.arabjc.2015.06.017
    [Google Scholar]
  61. TikhomirovA.S. TsvetkovV.B. VolodinaY.L. LitvinovaV.A. AndreevaD.V. DezhenkovaL.G. KaluzhnyD.N. TreshalinI.D. ShtilA.A. ShchekotikhinA.E. Heterocyclic ring expansion yields anthraquinone derivatives potent against multidrug resistant tumor cells.Bioorg. Chem.202212710592510.1016/j.bioorg.2022.10592535728293
    [Google Scholar]
  62. Claudio Viegas-Junior DanuelloA. da Silva BolzaniV. BarreiroE.J. FragaC.A. Molecular hybridization: A useful tool in the design of new drug prototypes.Curr. Med. Chem.200714171829185210.2174/09298670778105880517627520
    [Google Scholar]
  63. BérubéG. An overview of molecular hybrids in drug discovery.Expert Opin. Drug Discov.201611328130510.1517/17460441.2016.113512526727036
    [Google Scholar]
  64. ShaliniK.V. KumarV. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on?Expert Opin. Drug Discov.202116433536310.1080/17460441.2021.185068633305635
    [Google Scholar]
  65. LiuG.H. ChenT. ZhangX. MaX.L. ShiH.S. Small molecule inhibitors targeting the cancers.MedComm202234e18110.1002/mco2.18136254250
    [Google Scholar]
  66. DeckerM. Ed.; In Design of hybrid molecules for drug development.Amsterdam, NetherlandsElsevier20171338
    [Google Scholar]
  67. SoltanO.M. ShomanM.E. Abdel-AzizS.A. NarumiA. KonnoH. Abdel-AzizM. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy.Eur. J. Med. Chem.202122511376810.1016/j.ejmech.2021.11376834450497
    [Google Scholar]
  68. FujiiH. Twin and triplet drugs in opioid research.Chemistry of Opioids.ChamSpringer2011239275
    [Google Scholar]
  69. MorphyR. RankovicZ. Multi-target drugs: Strategies and challenges for medicinal chemists.The Prac. Med. Chem.; Elsevier:200854957110.1016/B978‑0‑12‑374194‑3.00027‑5
    [Google Scholar]
  70. SflakidouE. LeonidisG. ForoglouE. SiokatasC. SarliV. Recent advances in natural product-based hybrids as anti-cancer agents.Molecules20222719663210.3390/molecules2719663236235168
    [Google Scholar]
  71. Dechy-CabaretO. Benoit-VicalF. RobertA. MeunierB. Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline.Chem. Bio. Chem.20001428128310.1002/1439‑7633(20001117)1:4<281::AID‑CBIC281>3.0.CO;2‑W11828420
    [Google Scholar]
  72. AlmutairiM. HegazyG. HaibaM. AliH. KhalifaN. SolimanA. Synthesis, docking and biological activities of novel hybrids celecoxib and anthraquinone analogs as potent cytotoxic agents.Int. J. Mol. Sci.20141512225802260310.3390/ijms15122258025490139
    [Google Scholar]
  73. MarkovićV. DebeljakN. StanojkovićT. KolundžijaB. SladićD. VujčićM. JanovićB. TanićN. PerovićM. TešićV. AntićJ. JoksovićM.D. Anthraquinone–chalcone hybrids: Synthesis, preliminary antiproliferative evaluation and DNA-interaction studies.Eur. J. Med. Chem.20158940141010.1016/j.ejmech.2014.10.05525462255
    [Google Scholar]
  74. RiccardisD.F. IzzoI. FilippoD.M. SodanoG. D’AcquistoF. CarnuccioR. Synthesis and cytotoxic activity of steroid-anthraquinone hybrids.Tetrahedron19975331108711088210.1016/S0040‑4020(97)00693‑5
    [Google Scholar]
  75. LiangD. SuZ. TianW. LiJ. LiZ. WangC. LiD. HouH. Synthesis and screening of novel anthraquinone-quinazoline multitarget hybrids as promising anticancer candidates.Future Med. Chem.202012211112610.4155/fmc‑2019‑023031718309
    [Google Scholar]
  76. ArbaM. IhsanS. RamadhanL.O.A.N. TjahjonoD.H. In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor.Comput. Biol. Chem.20176791410.1016/j.compbiolchem.2016.12.00528024230
    [Google Scholar]
  77. LongX. YangP. ChenL. ZhongW. ChenS. LiY. LinS. TianW. Novel aloe emodin–hydroxyethyl piperazine hybrid dihydrochloride induces oral cancer CAL-27 cells apoptosis through ROS production, DNA damage and mitochondrial pathways.Med. Chem. Res.202332122549256110.1007/s00044‑023‑03157‑0
    [Google Scholar]
  78. BansalR. AcharyaP.C. Man-made cytotoxic steroids: Exemplary agents for cancer therapy.Chem. Rev.2014114146986700510.1021/cr400293524869712
    [Google Scholar]
  79. van der ZandenS.Y. QiaoX. NeefjesJ. New insights into the activities and toxicities of the old anticancer drug doxorubicin.FEBS J.2021288216095611110.1111/febs.1558333022843
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206374787250227064528
Loading
/content/journals/acamc/10.2174/0118715206374787250227064528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test