Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Breast cancer (BC) remains a predominant cause of mortality among women, with early diagnosis and ongoing monitoring being crucial for effective management. Integrating nuclear medicine with radiological modalities offers non-invasive anatomical and functional information, enabling precise target localization and quantification. This approach guided the selection of the most appropriate personalized treatment and predicted its efficacy, reducing the use of unnecessary drugs and lowering patient management costs. Since 2020, significant breakthroughs have been made in the development of radiopharmaceuticals, which are different in importantly targeting agents and radionuclides, with a focus on their efficacy in preclinical studies. This review accentuates the central role of radiopharmaceuticals in recent advancements for both imaging and therapeutic applications in BC. We discussed various receptor-targeted radiopharmaceutical therapy (RPT) agents currently utilized in clinical and preclinical settings with their chemical structures, along with the challenges faced in their implementation, including angiotensin II type 1 receptor (AT1 receptor), integrins αvβ3, chemokine receptor (CXCR4), and trophoblast cell-surface antigen-2 (TROP2), cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor, and epithelial cell adhesion molecule (EpCAM)-targeted, epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), fibroblast activation protein inhibitor (FAPI), and mucin 1 (MUC1). While numerous promising RPT agents were still in preclinical stages, this review underscored the potential of tailored radiopharmaceuticals to enhance BC diagnosis and treatment, providing novel avenues for personalized medicine.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206357095250306051714
2025-03-28
2025-10-25
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. GrimmL.J. AveryC.S. HendrickE. BakerJ.A. Benefits and risks of mammography screening in women ages 40 to 49 years.J. Prim. Care Community Health2022132150132721105832210.1177/2150132721105832235068237
    [Google Scholar]
  3. PivaR. TicconiF. CerianiV. ScalorbiF. FizF. CapitanioS. BaucknehtM. CittadiniG. SambucetiG. MorbelliS. Comparative diagnostic accuracy of 18F-FDG PET/CT for breast cancer recurrence.Breast Cancer (Dove Med. Press)2017946147110.2147/BCTT.S11109828740429
    [Google Scholar]
  4. BhushanA. GonsalvesA. MenonJ.U. Current state of breast cancer diagnosis, treatment, and theranostics.Pharmaceutics202113572310.3390/pharmaceutics1305072334069059
    [Google Scholar]
  5. FarrellK. BennettD.L. SchwartzT.L. Screening for breast cancer: What you need to know.Mo. Med.2020117213313532308238
    [Google Scholar]
  6. SankaranarayananR. PeilJ. VoggA. BolmC. TerhorstS. ClassenA. BauwensM. MaurerJ. MottaghyF. MorgenrothA. Auger emitter conjugated parp inhibitor for therapy in triple negative breast cancers: A comparative in-vitro study.Cancers202214123010.3390/cancers1401023035008392
    [Google Scholar]
  7. ŠimečekJ. HermannP. SeidlC. BruchertseiferF. MorgensternA. WesterH.J. NotniJ. Efficient formation of inert Bi-213 chelates by tetraphosphorus acid analogues of DOTA: Towards improved alpha-therapeutics.EJNMMI Res.2018817810.1186/s13550‑018‑0431‑330091088
    [Google Scholar]
  8. WickstroemK. KarlssonJ. EllingsenC. CrucianiV. KristianA. HagemannU.B. BjerkeR.M. RyanO.B. LindenL. MumbergD. BrandsM. CuthbertsonA. Synergistic effect of a HER2 targeted thorium-227 conjugate in combination with olaparib in a BRCA2 deficient xenograft model.Pharmaceuticals201912415510.3390/ph1204015531618864
    [Google Scholar]
  9. DhoundiyalS. SrivastavaS. KumarS. SinghG. AshiqueS. PalR. MishraN. Taghizadeh-HesaryF. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation.Eur. J. Med. Res.20242912610.1186/s40001‑023‑01627‑038183131
    [Google Scholar]
  10. LiH. LiuZ. YuanL. FanK. ZhangY. CaiW. LanX. Radionuclide-based imaging of breast cancer: State of the art.Cancers20211321545910.3390/cancers1321545934771622
    [Google Scholar]
  11. BackhausP. BurgM.C. RollW. BütherF. BreyholzH.J. WeigelS. HeindelW. PixbergM. BarthP. TioJ. SchäfersM. Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer.Radiology20223021394710.1148/radiol.202120467734636633
    [Google Scholar]
  12. RahmimA. ZaidiH. PET versus SPECT: Strengths, limitations and challenges.Nucl. Med. Commun.200829319320710.1097/MNM.0b013e3282f3a51518349789
    [Google Scholar]
  13. GüleçB.A YurtF. Treatment with radiopharmaceuticals and radionuclides in breast cancer: Current options.Eur. J. Breast Health202117321421910.4274/ejbh.galenos.2021.2021‑3‑434263148
    [Google Scholar]
  14. ParkE.A. GravesS.A. MendaY. The impact of radiopharmaceutical therapy on renal function.Semin. Nucl. Med.202252446747410.1053/j.semnuclmed.2022.02.00435314056
    [Google Scholar]
  15. LiuQ. WangC. LiP. LiuJ. HuangG. SongS. The Role of Corrigendum to “the role of 18 F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: A systematic review and meta-analysis”.BioMed Res. Int.20162016123542910.1155/2016/123542926981529
    [Google Scholar]
  16. XieX.F. ZhangQ.Y. HuangJ.Y. ChenL.P. LanX.F. BaiX. SongL. XiongS.L. GuoS.J. DuC.W. Pyrotinib combined with trastuzumab and chemotherapy for the treatment of human epidermal growth factor receptor 2-positive metastatic breast cancer: A single-arm exploratory phase II trial.Breast Cancer Res. Treat.202319719310110.1007/s10549‑022‑06770‑636309908
    [Google Scholar]
  17. WangJ. WuS.G. Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives.Breast Cancer (Dove Med. Press)20231572173010.2147/BCTT.S43252637881514
    [Google Scholar]
  18. LiB. WongM. PavlakisN. Treatment and prevention of bone metastases from breast cancer: A comprehensive review of evidence for clinical practice.J. Clin. Med.20143112410.3390/jcm301000126237249
    [Google Scholar]
  19. YangF. HeQ. DaiX. ZhangX. SongD. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies.Front. Pharmacol.202314114310210.3389/fphar.2023.114310236909177
    [Google Scholar]
  20. MusketA. DavernS. ElamB.M. MusichP.R. MoormanJ.P. JiangY. The application of radionuclide therapy for breast cancer.Front. Nucl. Med.20243132351410.3389/fnume.2023.1323514
    [Google Scholar]
  21. TurnerK.M. YeoS.K. HolmT.M. ShaughnessyE. GuanJ.L. Heterogeneity within molecular subtypes of breast cancer.Am. J. Physiol. Cell Physiol.20213212C343C35410.1152/ajpcell.00109.202134191627
    [Google Scholar]
  22. Orrantia-BorundaE.A-N. Subtypes of Breast CancerExon PublicationsBrisbane (AU)2022
    [Google Scholar]
  23. NahedA.S. ShaimaaM.Y. Ki-67 as a prognostic marker according to breast cancer molecular subtype.Cancer Biol. Med.201613449650410.20892/j.issn.2095‑3941.2016.006628154782
    [Google Scholar]
  24. GowrishankarS. MeermiraD. SwainM. Study of Ki-67 index in the molecular subtypes of breast cancer: Inter-observer variability and automated scoring.Indian J. Cancer202057328929510.4103/ijc.IJC_719_1832769300
    [Google Scholar]
  25. DaveyM.G. HynesS.O. KerinM.J. MillerN. LoweryA.J. Ki-67 as a prognostic biomarker in invasive breast cancer.Cancers20211317445510.3390/cancers1317445534503265
    [Google Scholar]
  26. HowladerN. CroninK.A. KurianA.W. AndridgeR. Differences in breast cancer survival by molecular subtypes in the United States.Cancer Epidemiol. Biomarkers Prev.201827661962610.1158/1055‑9965.EPI‑17‑062729593010
    [Google Scholar]
  27. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  28. BustreoS. Osella-AbateS. CassoniP. DonadioM. AiroldiM. PedaniF. PapottiM. SapinoA. CastellanoI. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: A large case series study with a long-term follow-up.Breast Cancer Res. Treat.2016157236337110.1007/s10549‑016‑3817‑927155668
    [Google Scholar]
  29. BraginaO.D. DeyevS.M. ChernovV.I. TolmachevV.M. The evolution of targeted radionuclide diagnosis of HER2-positive breast cancer.Acta Nat. (Engl. Ed.)202214241535923562
    [Google Scholar]
  30. ThieleN.A. WilsonJ.J. Actinium-225 for targeted α therapy: Coordination chemistry and current chelation approaches.Cancer Biother. Radiopharm.201833833634810.1089/cbr.2018.249429889562
    [Google Scholar]
  31. YangH. WilsonJ.J. OrvigC. LiY. WilburD.S. RamogidaC.F. RadchenkoV. SchafferP. Harnessing α -emitting radionuclides for therapy: Radiolabeling method review.J. Nucl. Med.202263151310.2967/jnumed.121.26268734503958
    [Google Scholar]
  32. SpecklinS. CailléF. RocheM. KuhnastB. Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and AgrochemicalsAcademic Press2019
    [Google Scholar]
  33. IngridD. StijnM.A. MatthiasB. TilmanM.H. Radiopharmaceuticals.IntechOpen2021425458
    [Google Scholar]
  34. ShaghaghiZ. J ZefreiF. SalariA. HojjatiS.A. Fakhr MousaviS.A. FarzipourS. Promising radiopharmaceutical tracers for detection of cardiotoxicity in cardio-oncology.Curr. Radiopharm.202316317118410.2174/187447101666623022810223136852813
    [Google Scholar]
  35. DaveyP.R.W.J. PatersonB.M. Modern developments in bifunctional chelator design for gallium radiopharmaceuticals.Molecules202228120310.3390/molecules2801020336615397
    [Google Scholar]
  36. LiuS. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides.Adv. Drug Deliv. Rev.200860121347137010.1016/j.addr.2008.04.00618538888
    [Google Scholar]
  37. SunX. KangC.S. SinI. ZhangS. RenS. WangH. LiuD. LewisM.R. ChongH.S. New bifunctional chelator 3p- C -NEPA for potential applications in Lu(III) and Y(III) radionuclide therapy and imaging.ACS Omega2020544286152862010.1021/acsomega.0c0355133195913
    [Google Scholar]
  38. LuoT.Y. TangI.C. WuY.L. HsuK.L. LiuS.W. KungH.C. LaiP.S. LinW.J. Evaluating the potential of 188Re-SOCTA–trastuzumab as a new radioimmunoagent for breast cancer treatment.Nucl. Med. Biol.2009361818810.1016/j.nucmedbio.2008.10.01419181272
    [Google Scholar]
  39. TsionouM.I. KnappC.E. FoleyC.A. MunteanuC.R. CakebreadA. ImbertiC. EykynT.R. YoungJ.D. PatersonB.M. BlowerP.J. MaM.T. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling.RSC Advances2017778495864959910.1039/C7RA09076E29308192
    [Google Scholar]
  40. D’HuyvetterM. VinckeC. XavierC. AertsA. ImpensN. BaatoutS. De RaeveH. MuyldermansS. CaveliersV. DevoogdtN. LahoutteT. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.Theranostics20144770872010.7150/thno.815624883121
    [Google Scholar]
  41. KangC.S. SunX. JiaF. SongH.A. ChenY. LewisM. ChongH.S. Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy.Bioconjug. Chem.20122391775178210.1021/bc200696b22881720
    [Google Scholar]
  42. GuarrochenaX. KronbergerJ. TieberM. CiesielskiP. MindtT.L. FeinerI.V.J. Straightforward synthesis of DFO* ‐ An octadentate chelator for zirconium‐89.ChemMedChem2024193e20230049510.1002/cmdc.20230049538102942
    [Google Scholar]
  43. VaalavirtaL. RasulovaN. PartanenK. JoensuuT. KairemoK. [18F]-Estradiol PET/CT imaging in breast cancer patients.J. Diagn. Imaging Ther.201411597210.17229/jdit.2014‑1007‑004
    [Google Scholar]
  44. BoersJ. LoudiniN. de HaasR.J. WillemsenA.T.M. van der VegtB. de VriesE.G.E. HospersG.A.P. SchröderC.P. GlaudemansA.W.J.M. de VriesE.F.J. Analyzing the estrogen receptor status of liver metastases with [18F]-FES-PET in patients with breast cancer.Diagnostics20211111201910.3390/diagnostics1111201934829366
    [Google Scholar]
  45. UlanerG.A. CarrasquilloJ.A. RiedlC.C. YehR. HatzoglouV. RossD.S. JhaveriK. ChandarlapatyS. HymanD.M. ZeglisB.M. LyashchenkoS.K. LewisJ.S. Identification of HER2-positive metastases in patients with HER2-negative primary breast cancer by using HER2-targeted 89 Zr-Pertuzumab PET/CT.Radiology2020296237037810.1148/radiol.202019282832515679
    [Google Scholar]
  46. MakrypidiK. KiritsisC. RoupaI. TriantopoulouS. SheganiA. Paravatou-PetsotasM. ChiotellisA. PelecanouM. PapadopoulosM. PirmettisI. Evaluation of rhenium and technetium-99m complexes bearing quinazoline derivatives as potential EGFR agents.Molecules2023284178610.3390/molecules2804178636838773
    [Google Scholar]
  47. ChuA. HoF. ChanC. ChenS. RadchenkoV. ReillyR. DaveyP. Cytotoxicity of auger electron-emitting [197Hg]Hg-Panitumumab radioimmunoconjugates on EGFR-positive human breast cancer cells.J. Nucl. Med.202465Suppl. 2241617
    [Google Scholar]
  48. CavaliereA. SunS. LeeS. BodnerJ. LiZ. HuangY. MooresS.L. Marquez-NostraB. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer.Eur. J. Nucl. Med. Mol. Imaging202148238339410.1007/s00259‑020‑04978‑632770372
    [Google Scholar]
  49. KwonL.Y. ScollardD.A. ReillyR.M. 64 Cu-labeled trastuzumab Fab-PEG 24 -EGF radioimmunoconjugates bispecific for HER2 and EGFR: Pharmacokinetics, biodistribution, and tumor imaging by PET in comparison to monospecific agents.Mol. Pharm.201714249250110.1021/acs.molpharmaceut.6b0096328049295
    [Google Scholar]
  50. AlçınG. ArslanE. AksoyT. CinM. Erol FenercioğluÖ. BeyhanE. ErgülN. ÇermikT.F. 68Ga-FAPI-04 PET/CT in selected breast cancer patients with low FDG affinity.Clin. Nucl. Med.2023489e420e43010.1097/RLU.000000000000475137351868
    [Google Scholar]
  51. BackhausP. BurgM.C. AsmusI. PixbergM. BütherF. BreyholzH.J. YehR. WeigelS.B. StichlingP. HeindelW. BobeS. BarthP. TioJ. SchäfersM. Initial results of 68 Ga-FAPI-46 PET/MRI to assess response to neoadjuvant chemotherapy in breast cancer.J. Nucl. Med.202364571772310.2967/jnumed.122.26487136396458
    [Google Scholar]
  52. Al JammazI. Al-OtaibiB. Al-MalkiY. AbousekhrahA. OkarviS.M. Fast Fluorine-18 labeling and preclinical evaluation of novel Mucin1 and its Folate hybrid peptide conjugate for targeting breast carcinoma.EJNMMI Radiopharm. Chem.2021611210.1186/s41181‑021‑00127‑y33738611
    [Google Scholar]
  53. KellyV.J. WuS. GottumukkalaV. CoelhoR. PalmerK. NairS. ErickT. PuriR. IlovichO. MukherjeeP. Preclinical evaluation of an 111 In/ 225 Ac theranostic targeting transformed MUC1 for triple negative breast cancer.Theranostics202010156946695810.7150/thno.3823632550914
    [Google Scholar]
  54. JosefssonA. CortezA.G. YuJ. MajumdarS. BhiseA. HobbsR.F. NedrowJ.R. Evaluation of targeting αVβ3 in breast cancers using RGD peptide-based agents.Nucl. Med. Biol.2024128-12910888010.1016/j.nucmedbio.2024.10888038330637
    [Google Scholar]
  55. LiH. LiX. SunL. HeY. WangL. GaoY. ZengD. PangX. XuJ. 18 F-radiolabeling and evaluation of an AMD3465 derivative for PET imaging of CXCR4 in a mouse breast tumor model.Bioconjug. Chem.202435556757410.1021/acs.bioconjchem.4c0016738634516
    [Google Scholar]
  56. WuY. ZhuH. ZhangX. YuP. GuiY. XuZ. ZhangJ. TianJ. Synthesis and evaluation of [99mTc]TcAMD3465 as a SPECT tracer for CXCR4 receptor imaging.J. Radioanal. Nucl. Chem.2021327262763310.1007/s10967‑020‑07532‑8
    [Google Scholar]
  57. WuY. liT. ZhangX. JingH. LiF. HuoL. Preclinical evaluation of the theranostic potential of 89Zr/177Lu-labeled anti-TROP-2 antibody in triple-negative breast cancer model.EJNMMI Radiopharm. Chem.202491510.1186/s41181‑023‑00235‑x38194043
    [Google Scholar]
  58. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  59. HuangY. YangZ. LiF. ZhaoH. LiC. YuN. HamiltonD.J. LiZ. 64 Cu/ 177 Lu-DOTA-diZD, a small-molecule-based theranostic pair for triple-negative breast cancer.J. Med. Chem.20216452705271310.1021/acs.jmedchem.0c0195733646782
    [Google Scholar]
  60. FaccaV.J. CaiZ. GopalN.E.K. ReillyR.M. Panitumumab-DOTA- 111 In: An epidermal growth factor receptor targeted theranostic for SPECT/CT imaging and meitner–auger electron radioimmunotherapy of triple-negative breast cancer.Mol. Pharm.202219103652366310.1021/acs.molpharmaceut.2c0045735926098
    [Google Scholar]
  61. Ganji ArjenakiR. SamieepourG. S EbrahimiS.E. Pirali HamedaniM. SaffariM. SeyedhamzehM. KamaliA.N. NajdianA. S ArdestaniM. Development of novel radiolabeled antibody-conjugated graphene quantum dots for targeted in vivo breast cancer imaging and biodistribution studies.Arab. J. Chem.202417210551810.1016/j.arabjc.2023.105518
    [Google Scholar]
  62. NurmikM. UllmannP. RodriguezF. HaanS. LetellierE. In search of definitions: Cancer‐associated fibroblasts and their markers.Int. J. Cancer2020146489590510.1002/ijc.3219330734283
    [Google Scholar]
  63. KömekH. CanC. GüzelY. OruçZ. GündoğanC. YildirimÖ.A. Kaplanİ. ErdurE. YıldırımM.S. ÇakabayB. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: A comparative pilot study with the 18F-FDG PET/CT.Ann. Nucl. Med.202135674475210.1007/s12149‑021‑01616‑533934311
    [Google Scholar]
  64. YadavM.P. BallalS. MartinM. RoeschF. SatapathyS. MoonE.S. TripathiM. GogiaA. BalC. Therapeutic potential of [177Lu]Lu-DOTAGA-FAPi dimers in metastatic breast cancer patients with limited treatment options: efficacy and safety assessment.Eur. J. Nucl. Med. Mol. Imaging202451380581910.1007/s00259‑023‑06482‑z37932560
    [Google Scholar]
  65. GilardiL. A FarullaL.S. DemirciE. ClericiI. Omodeo SalèE. CeciF. Imaging cancer-associated fibroblasts (CAFs) with FAPi PET.Biomedicines202210352310.3390/biomedicines1003052335327325
    [Google Scholar]
  66. FerdinandusJ. CostaP.F. KesslerL. WeberM. HirmasN. KostbadeK. BauerS. SchulerM. AhrensM. SchildhausH-U. RischplerC. GrafeH. SivekeJ.T. HerrmannK. FendlerW.P. HamacherR. Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced-stage solid tumors: A case series of 9 patients.J. Nucl. Med.202263572773434385340
    [Google Scholar]
  67. MeyerC. DahlbomM. LindnerT. VauclinS. MonaC. SlavikR. CzerninJ. HaberkornU. CalaisJ. Radiation dosimetry and biodistribution of 68 Ga-FAPI-46 pet imaging in cancer patients.J. Nucl. Med.20206181171117710.2967/jnumed.119.23678631836685
    [Google Scholar]
  68. FarzipourS. JalaliF. AlvandiM. ShaghaghiZ. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease.Cardiovasc. Hematol. Agents Med. Chem.202321129
    [Google Scholar]
  69. AlvandiM. FarzipourS. ShaghaghiZ. RaeispourM. JalaliF. YazdiA. Evaluation of the effect of chelating arms and carrier agents on t he radiotoxicity of TAT agents.Curr. Radiopharm.202316122210.2174/187447101566622051016104735538822
    [Google Scholar]
  70. MeredithR.F. TorgueJ. AzureM.T. ShenS. SaddekniS. BanagaE. CarliseR. BunchP. YoderD. AlvarezR. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients.Cancer Biother. Radiopharm.2014291121710.1089/cbr.2013.153124229395
    [Google Scholar]
  71. MahdavimanshadiM. AnarakiM.G. MowlaiM. AhmadiradZ. 2024 Systems and Information Engineering Design Symposium (SIEDS)Charlottesville, VA, USA, 2024, pp. 382-387
    [Google Scholar]
  72. BeylergilV. MorrisP.G. Smith-JonesP.M. ModiS. SolitD. HudisC.A. LuY. O’DonoghueJ. LyashchenkoS.K. CarrasquilloJ.A. LarsonS.M. AkhurstT.J. Pilot study of 68Ga-DOTA-F(ab′)2-trastuzumab in patients with breast cancer.Nucl. Med. Commun.201334121157116510.1097/MNM.0b013e328365d99b24100444
    [Google Scholar]
  73. AltaiM. WållbergH. HonarvarH. StrandJ. OrlovaA. VarastehZ. SandströmM. LöfblomJ. LarssonE. StrandS.E. LubberinkM. StåhlS. TolmachevV. 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors: Preclinical assessment.J. Nucl. Med.201455111842184810.2967/jnumed.114.14019425278516
    [Google Scholar]
  74. UedaM. HisadaH. TemmaT. ShimizuY. KimuraH. OnoM. NakamotoY. TogashiK. SajiH. Gallium-68-labeled anti-HER2 single-chain Fv fragment: Development and in vivo monitoring of HER2 expression.Mol. Imaging Biol.201517110211010.1007/s11307‑014‑0769‑525049073
    [Google Scholar]
  75. ZhaoL. GongJ. QiQ. LiuC. SuH. XingY. ZhaoJ. 131I-labeled Anti-HER2 nanobody for targeted radionuclide therapy of HER2-positive breast cancer.Int. J. Nanomedicine20231819151925
    [Google Scholar]
  76. VarmiraK. HosseinimehrS.J. NoaparastZ. AbediS.M. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers.J. Drug Target.201422211612210.3109/1061186X.2013.83968824098950
    [Google Scholar]
  77. SongW. SongY. LiQ. FanC. LanX. JiangD. Advances in aptamer-based nuclear imaging.Eur. J. Nucl. Med. Mol. Imaging20224982544255910.1007/s00259‑022‑05782‑035394153
    [Google Scholar]
  78. AltunayB. MorgenrothA. BeheshtiM. VoggA. WongN.C.L. TingH.H. BiersackH.J. StickelerE. MottaghyF.M. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging.Eur. J. Nucl. Med. Mol. Imaging20214851371138910.1007/s00259‑020‑05094‑133179151
    [Google Scholar]
  79. GeramiR. AltafiM. ShahparZ. IzadpanahE. SoltaniS. NaderlooO. TarighatniaA. Recent advances and future perspectives in radiolabeled antibody fragments for breast cancer molecular imaging.Front. Biomed. Technol.2024114677691
    [Google Scholar]
  80. VorobyevaA. BraginaO. AltaiM. MitranB. OrlovaA. ShulgaA. ProshkinaG. ChernovV. TolmachevV. DeyevS. Comparative evaluation of radioiodine and technetium-labeled DARPin 9_29 for radionuclide molecular imaging of HER2 expression in malignant tumors.Contrast Media Mol. Imaging20182018111110.1155/2018/693042529977173
    [Google Scholar]
  81. BraginaO. ChernovV. SchulgaA. KonovalovaE. GarbukovE. VorobyevaA. OrlovaA. TashirevaL. SörensenJ. ZelchanR. MedvedevaA. DeyevS. TolmachevV. PhaseI. Phase I trial of 99m Tc-(HE) 3 -G3, a DARPin-based probe for imaging of HER2 expression in breast cancer.J. Nucl. Med.202263452853510.2967/jnumed.121.26254234385343
    [Google Scholar]
  82. RinneS.S. LeitaoC.D. MitranB. BassT.Z. AnderssonK.G. TolmachevV. StåhlS. LöfblomJ. OrlovaA. Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111.Sci. Rep.20199165510.1038/s41598‑018‑36827‑w30679757
    [Google Scholar]
  83. B ArdakaniJ. AkhlaghiM. NikkholghB. HosseinimehrS.J. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer.Bioorg. Chem.202110610447410.1016/j.bioorg.2020.10447433246602
    [Google Scholar]
  84. ZhouN. LiuC. GuoX. XuY. GongJ. QiC. ZhangX. YangM. ZhuH. ShenL. YangZ. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring.Eur. J. Nucl. Med. Mol. Imaging202148116117510.1007/s00259‑020‑04898‑532564171
    [Google Scholar]
  85. KarlssonJ. HagemannU.B. CrucianiV. SchatzC.A. GrantD. EllingsenC. KristianA. KatooziS. MihaylovaD. UranS.R. SuominenM. BjerkeR.M. RyanO.B. CuthbertsonA. Efficacy of a HER2-targeted thorium-227 conjugate in a HER2-positive breast cancer bone metastasis model.Cancers20231513341910.3390/cancers1513341937444529
    [Google Scholar]
  86. CędrowskaE. PruszyńskiM. GawędaW. ŻukM. KrysińskiP. BruchertseiferF. MorgensternA. KarageorgouM.A. BouziotisP. BilewiczA. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225Ac as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer.Molecules2020255102510.3390/molecules2505102532106568
    [Google Scholar]
  87. P KetchemenJ. NjotuF.N. BabekerH. AhenkorahS. TikumA.F. NwangeleE. HenningN. CleerenF. FongeH. Effectiveness of [67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer.Eur. J. Nucl. Med. Mol. Imaging20245172070208410.1007/s00259‑024‑06648‑338376808
    [Google Scholar]
  88. D’HuyvetterM. VosJ.D. CaveliersV. VaneyckenI. HeemskerkJ. DuhouxF.P. FontaineC. VanhoeijM. WindhorstA.D. AaF. HendrikseN.H. EerselsJ.L.E. EveraertH. GykiereP. DevoogdtN. RaesG. LahoutteT. KeyaertsM. PhaseI. Phase I trial of 131 I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients.J. Nucl. Med.20216281097110510.2967/jnumed.120.25567933277400
    [Google Scholar]
  89. DuS. LuoC. YangG. GaoH. WangY. LiX. ZhaoH. LuoQ. MaX. ShiJ. WangF. Developing PEGylated reversed D-peptide as a novel HER2-targeted SPECT imaging probe for breast cancer detection.Bioconjug. Chem.20203181971198010.1021/acs.bioconjchem.0c0033432660241
    [Google Scholar]
  90. Ávila-SánchezM. Ferro-FloresG. Jiménez-MancillaN. Ocampo-GarcíaB. Bravo-VillegasG. Luna-GutiérrezM. Santos-CuevasC. Azorín-VegaE. Aranda-LaraL. Isaac-OlivéK. Melendez-AlafortL. Synthesis and preclinical evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting.J. Radioanal. Nucl. Chem.20203241213210.1007/s10967‑020‑07043‑6
    [Google Scholar]
  91. KonradM. RinscheidA. WienandG. NittbaurB. WesterH.J. JanzenT. LapaC. PfobC.H. SchotteliusM. [99mTc]Tc-PentixaTec: development, extensive pre-clinical evaluation, and first human experience.Eur. J. Nucl. Med. Mol. Imaging202350133937394810.1007/s00259‑023‑06395‑x37597009
    [Google Scholar]
  92. MikaeiliA. ErfaniM. GoudarziM. SabzevariO. Breast tumor targeting in mice bearing 4T1 tumor with labeled CXCR4 antagonist analogue.Int. J. Pept. Res. Ther.20212742449245710.1007/s10989‑021‑10264‑2
    [Google Scholar]
  93. LiZ. YangD. GuoT. LinM. Advances in MUC1-mediated breast cancer immunotherapy.Biomolecules202212795210.3390/biom1207095235883508
    [Google Scholar]
  94. YousefniaH. ZolghadriS. AlirezapourB. Human absorbed dose estimation of 111in-DOTA-PR81 as a novel high potential agent for breast cancer imaging.J. Med. Phys.202247219420010.4103/jmp.jmp_72_2136212201
    [Google Scholar]
  95. JuneauD. SaadF. BerlinA. MetserU. PuzanovI. LamonicaD. SparksR. BurakE. SimmsR. RhodenJ. CreedenL. WatsonC. ArmorT. KazakinJ. LearyJ. BeauregardJ-M. Chenard-PoirierM. Preliminary dosimetry results from a first-in-human phase I study evaluating the efficacy and safety of [225Ac]-FPI-1434 in patients with IGF-1R expressing solid tumors.J. Nucl. Med.202162Suppl. 174
    [Google Scholar]
  96. Pandit-TaskarN. WongJ. SubbiahV. Chenard-PoirierM. PrymaD. BerlinA. JuergensR. PuzanovI. JaceneH. SchindlerJ. KazakinJ. NawazA.O. RhodenJ. BrownM. ScottA. YeeD. Dose-escalation study of [225Ac]-FPI-1434 (FPI-1434) in patients (pts) with IGF-1R expressing advanced solid tumors: Preliminary pharmacology and dosimetry results</strong&gt.J. Nucl. Med.202364Suppl. 1630
    [Google Scholar]
  97. MenzA. LonyN. LennartzM. Dwertmann RicoS. SchlichterR. KindS. ReiswichV. ViehwegerF. DumD. LuebkeA.M. KluthM. GorbokonN. Hube-MaggC. BernreutherC. SimonR. ClauditzT.S. SauterG. HinschA. JacobsenF. MarxA.H. SteurerS. MinnerS. BurandtE. KrechT. LebokP. WeidemannS. Epithelial cell adhesion molecule (EpCAM) expression in human tumors: A comparison with pan-cytokeratin and TROP2 in 14,832 tumors.Diagnostics20241410104410.3390/diagnostics1410104438786342
    [Google Scholar]
  98. LiuC. MaG. ZhangJ. ChengJ. YangZ. SongS. 18F-FES and 18F-FDG PET/CT imaging as a predictive biomarkers for metastatic breast cancer patients undergoing cyclin-dependent 4/6 kinase inhibitors with endocrine treatment.Ann. Nucl. Med.2023371267568410.1007/s12149‑023‑01871‑837787851
    [Google Scholar]
  99. RamosN. Baquero-BuitragoJ. Ben Youss GirondaZ. WadghiriY.Z. ReinerT. BoadaF.E. CarlucciG. Noninvasive PET imaging of CDK4/6 activation in breast cancer.J. Nucl. Med.202061343744210.2967/jnumed.119.23260331481582
    [Google Scholar]
  100. HuangC.H. KhanP. XuS. CohenJ. GeorgakisG.V. TurkmanN. Development of a radiolabeled cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor for brain and cancer PET imaging.Int. J. Mol. Sci.20242513687010.3390/ijms2513687038999983
    [Google Scholar]
  101. VorobyevaA. BezverkhniaiaE. KonovalovaE. SchulgaA. GarousiJ. VorontsovaO. AbouzayedA. OrlovaA. DeyevS. TolmachevV. Radionuclide molecular imaging of EpCAM expression in triple-negative breast cancer using the scaffold protein DARPin Ec1.Molecules20202520471910.3390/molecules2520471933066684
    [Google Scholar]
  102. OkarviS.M. Preparation, radiolabeling with 68Ga/177Lu and preclinical evaluation of novel angiotensin peptide analog: A new class of peptides for breast cancer targeting.Pharmaceuticals20231611155010.3390/ph1611155038004416
    [Google Scholar]
  103. LiuC. YangZ. LiuM. WangX. SongS. XuX. YangZ. Gallium-68 labeling of the cyclin-dependent kinase 4/6 inhibitors as positron emission tomography radiotracers for tumor imaging.ACS Omega2021647322533226110.1021/acsomega.1c0507334870045
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206357095250306051714
Loading
/content/journals/acamc/10.2174/0118715206357095250306051714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test