Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objectives

According to the data, mutations in EGFR-related genes are the main cause of Non-Small Cell Lung Cancer (NSCLC), necessitating the development of new drug constructs for EGFR-TKIs particularly important. This study aimed to screen potential third-generation EGFR-TKIs to address the emerging drug resistance challenges in NSCLC.

Methods

In this study, virtual screening, molecular dynamics modeling, and bioactivity evaluation were carried out to find a potential EGFR inhibitor that could overcome the L858R/T790M mutation. At first, 12 potential compounds were screened step by step from about 250,000 structures by virtual screening. These 12 compounds were subjected to MTT antitumor activity evaluation and kinase inhibition assay to select compounds with strong antiproliferative effects on cancer cells. Then, the preferred compounds were subjected to time-dependent assay, scratch assay, AO staining assay, and hemolysis assay. Finally, the preferred compound was subjected to molecular docking and molecular dynamics simulation with 5HG7 protein.

Result

The IC of T22306 on H1975 cells was 9.17 μM. In further kinase evaluation, the kinase inhibition of EGFRL858R/T790M was 69.17%. In addition, time-dependent experiments and scratch and AO staining assays confirmed the potential of T22306 as an EGFR-TKI inhibitor, while hemolysis assays demonstrated no significant toxicity. Finally, molecular docking revealed the formation of critical hydrogen bonds between T22306 and LEU-718. Furthermore, molecular dynamics simulations showed that the T22306-5HG7 complex has a low binding energy (-117.73 ± 18.69 kJ/mol), thus suggesting that T22306 binds tightly to the target protein 5HG7.

Conclusion

In this study, we rapidly screened potential compounds against NSCLC with the help of virtual screening technology. Further experiments demonstrated that T22306 successfully overcame the L858R/T790M mutation and could be a potential epidermal growth factor receptor inhibitor.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206362954250203103859
2025-02-07
2025-09-02
Loading full text...

Full text loading...

References

  1. ChenP. LiuY. WenY. ZhouC. Non‐small cell lung cancer in China.Cancer Commun.2022421093797010.1002/cac2.12359 36075878
    [Google Scholar]
  2. NiX. JiangX. YuS. WuF. ZhouJ. MaoD. WangH. LiuY. JinF. Triptonodiol, a diterpenoid extracted from Tripterygium wilfordii, inhibits the migration and invasion of non-small-cell lung cancer.Molecules20232812470810.3390/molecules28124708 37375263
    [Google Scholar]
  3. YangY. LiS. WangY. ZhaoY. LiQ. Protein tyrosine kinase inhibitor resistance in malignant tumors: Molecular mechanisms and future perspective.Signal Transduct. Target. Ther.20227132910.1038/s41392‑022‑01168‑8 36115852
    [Google Scholar]
  4. YamanashiY. TezukaT. YokoyamaK. Activation of receptor protein-tyrosine kinases from the cytoplasmic compartment.J. Biochem.2012151435335910.1093/jb/mvs013 22343747
    [Google Scholar]
  5. LiuX. WangP. ZhangC. MaZ. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer.Oncotarget2017830502095022010.18632/oncotarget.16854 28430586
    [Google Scholar]
  6. LemmonM.A. SchlessingerJ. FergusonK.M. The EGFR family: Not so prototypical receptor tyrosine kinases.Cold Spring Harb. Perspect. Biol.201464a02076810.1101/cshperspect.a020768 24691965
    [Google Scholar]
  7. ChenJ. ZengF. ForresterS.J. EguchiS. ZhangM.Z. HarrisR.C. Expression and function of the epidermal growth factor receptor in physiology and disease.Physiol. Rev.20169631025106910.1152/physrev.00030.2015 33003261
    [Google Scholar]
  8. ShiK. WangG. PeiJ. ZhangJ. WangJ. OuyangL. WangY. LiW. Emerging strategies to overcome resistance to third-generation EGFR inhibitors.J. Hematol. Oncol.20221519410.1186/s13045‑022‑01311‑6 35840984
    [Google Scholar]
  9. MadedduC. DonisiC. LisciaN. LaiE. ScartozziM. MacciòA. EGFR-mutated non-small cell lung cancer and resistance to immunotherapy: Role of the tumor microenvironment.Int. J. Mol. Sci.20222312648910.3390/ijms23126489 35742933
    [Google Scholar]
  10. HeJ. ZhouZ. SunX. YangZ. ZhengP. XuS. ZhuW. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation.Eur. J. Med. Chem.202121011299510.1016/j.ejmech.2020.112995 33243531
    [Google Scholar]
  11. LeeC. KimM. KimD.W. KimT.M. KimS. ImS.W. JeonY.K. KeamB. KuJ.L. HeoD.S. Acquired resistance mechanism of EGFR kinase domain duplication to EGFR TKIs in non–small cell lung cancer.Cancer Res. Treat.202254114014910.4143/crt.2021.385 33940786
    [Google Scholar]
  12. NanX. XieC. YuX. LiuJ. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer.Oncotarget2017843757127572610.18632/oncotarget.20095 29088904
    [Google Scholar]
  13. BarkerA.J. GibsonK.H. GrundyW. GodfreyA.A. BarlowJ.J. HealyM.P. WoodburnJ.R. AshtonS.E. CurryB.J. ScarlettL. HenthornL. RichardsL. Studies leading to the identification of ZD1839 (iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer.Bioorg. Med. Chem. Lett.200111141911191410.1016/S0960‑894X(01)00344‑4 11459659
    [Google Scholar]
  14. MoyerJ.D. BarbacciE.G. IwataK.K. ArnoldL. BomanB. CunninghamA. DiOrioC. DotyJ. MorinM.J. MoyerM.P. NeveuM. PollackV.A. PustilnikL.R. ReynoldsM.M. SloanD. ThelemanA. MillerP. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase.Cancer Res.1997572148384848[J]. 9354447
    [Google Scholar]
  15. ShiY. ZhangL. LiuX. ZhouC. ZhangL. ZhangS. WangD. LiQ. QinS. HuC. ZhangY. ChenJ. ChengY. FengJ. ZhangH. SongY. WuY.L. XuN. ZhouJ. LuoR. BaiC. JinY. LiuW. WeiZ. TanF. WangY. DingL. DaiH. JiaoS. WangJ. LiangL. ZhangW. SunY. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): A randomised, double-blind phase 3 non-inferiority trial.Lancet Oncol.2013141095396110.1016/S1470‑2045(13)70355‑3 23948351
    [Google Scholar]
  16. ShiraishiK. MimuraK. IzawaS. InoueA. ShibaS. MaruyamaT. WatanabeM. KawaguchiY. InoueM. FujiiH. KonoK. Lapatinib acts on gastric cancer through both antiproliferative function and augmentation of trastuzumab-mediated antibody-dependent cellular cytotoxicity.Gastric Cancer201316457158010.1007/s10120‑012‑0219‑5 23187882
    [Google Scholar]
  17. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms24032651 36768973
    [Google Scholar]
  18. FukuokaM. YanoS. GiacconeG. TamuraT. NakagawaK. DouillardJ.Y. NishiwakiY. VansteenkisteJ. KudohS. RischinD. EekR. HoraiT. NodaK. TakataI. SmitE. AverbuchS. MacleodA. FeyereislovaA. DongR.P. BaselgaJ. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected].J. Clin. Oncol.200321122237224610.1200/JCO.2003.10.038 12748244
    [Google Scholar]
  19. ShepherdF.A. Rodrigues PereiraJ. CiuleanuT. TanE.H. HirshV. ThongprasertS. CamposD. MaoleekoonpirojS. SmylieM. MartinsR. van KootenM. DediuM. FindlayB. TuD. JohnstonD. BezjakA. ClarkG. SantabárbaraP. SeymourL. Erlotinib in previously treated non-small-cell lung cancer.N. Engl. J. Med.2005353212313210.1056/NEJMoa050753 16014882
    [Google Scholar]
  20. TanF. ShenX. WangD. XieG. ZhangX. DingL. HuY. HeW. WangY. WangY. Icotinib (BPI-2009H), a novel EGFR tyrosine kinase inhibitor, displays potent efficacy in preclinical studies.Lung Cancer201276217718210.1016/j.lungcan.2011.10.023 22112293
    [Google Scholar]
  21. CristofanilliM. JohnstonS.R.D. ManikhasA. GomezH.L. GladkovO. ShaoZ. SafinaS. BlackwellK.L. AlvarezR.H. RubinS.D. RanganathanS. RedhuS. TrudeauM.E. A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer.Breast Cancer Res. Treat.2013137247148210.1007/s10549‑012‑2369‑x 23239151
    [Google Scholar]
  22. HeQ. LiuJ. CaiX. HeM. LiC. LiangH. ChengB. XiaX. GuoM. LiangP. ZhongR. LiF. YuZ. ZhaoY. OuL. XiongS. LiJ. ZhangJ. HeJ. LiangW. Comparison of first-generation EGFR-TKIs (gefitinib, erlotinib, and icotinib) as adjuvant therapy in resected NSCLC patients with sensitive EGFR mutations.Transl. Lung Cancer Res.202110114120412910.21037/tlcr‑21‑649 35004243
    [Google Scholar]
  23. YunC.H. MengwasserK.E. TomsA.V. WooM.S. GreulichH. WongK.K. MeyersonM. EckM.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.Proc. Natl. Acad. Sci. USA200810562070207510.1073/pnas.0709662105 18227510
    [Google Scholar]
  24. Marquez-MedinaD. PopatS. Afatinib: A second-generation EGF receptor and ErbB tyrosine kinase inhibitor for the treatment of advanced non-small-cell lung cancer.Future Oncol.201511182525254010.2217/fon.15.183 26314834
    [Google Scholar]
  25. YuH.A. PaoW. Afatinib—new therapy option for EGFR-mutant lung cancer.Nat. Rev. Clin. Oncol.2013101055155210.1038/nrclinonc.2013.154 23959269
    [Google Scholar]
  26. SantarpiaM. MenisJ. ChaibI. Gonzalez CaoM. RosellR. Dacomitinib for the first-line treatment of patients with EGFR-mutated metastatic non-small cell lung cancer.Expert Rev. Clin. Pharmacol.201912983184010.1080/17512433.2019.1649136 31356117
    [Google Scholar]
  27. WuY.L. ChengY. ZhouX. LeeK.H. NakagawaK. NihoS. TsujiF. LinkeR. RosellR. CorralJ. MigliorinoM.R. PluzanskiA. SbarE.I. WangT. WhiteJ.L. NadanacivaS. SandinR. MokT.S. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial.Lancet Oncol.201718111454146610.1016/S1470‑2045(17)30608‑3 28958502
    [Google Scholar]
  28. RabindranS.K. DiscafaniC.M. RosfjordE.C. BaxterM. FloydM.B. GolasJ. HallettW.A. JohnsonB.D. NilakantanR. OverbeekE. ReichM.F. ShenR. ShiX. TsouH.R. WangY.F. WissnerA. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase.Cancer Res.200464113958396510.1158/0008‑5472.CAN‑03‑2868 15173008
    [Google Scholar]
  29. WangS. LiJ. Second-generation EGFR and ErbB tyrosine kinase inhibitors as first-line treatments for non-small cell lung cancer.OncoTargets Ther.2019126535654810.2147/OTT.S198945 31496745
    [Google Scholar]
  30. TanC.S. KumarakulasingheN.B. HuangY.Q. AngY.L.E. ChooJ.R.E. GohB.C. SooR.A. Third generation EGFR TKIs: Current data and future directions.Mol. Cancer20181712910.1186/s12943‑018‑0778‑0 29455654
    [Google Scholar]
  31. SongZ. GeY. WangC. HuangS. ShuX. LiuK. ZhouY. MaX. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer.J. Med. Chem.201659146580659410.1021/acs.jmedchem.5b00840 26882288
    [Google Scholar]
  32. SchwartzP.A. KuzmicP. SolowiejJ. BergqvistS. BolanosB. AlmadenC. NagataA. RyanK. FengJ. DalvieD. KathJ.C. XuM. WaniR. MurrayB.W. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance.Proc. Natl. Acad. Sci. USA2014111117317810.1073/pnas.1313733111 24347635
    [Google Scholar]
  33. CrossD.A.E. AshtonS.E. GhiorghiuS. EberleinC. NebhanC.A. SpitzlerP.J. OrmeJ.P. FinlayM.R.V. WardR.A. MellorM.J. HughesG. RahiA. JacobsV.N. BrewerM.R. IchiharaE. SunJ. JinH. BallardP. Al-KadhimiK. RowlinsonR. KlinowskaT. RichmondG.H.P. CantariniM. KimD.W. RansonM.R. PaoW. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer.Cancer Discov.2014491046106110.1158/2159‑8290.CD‑14‑0337 24893891
    [Google Scholar]
  34. GreigS.L. Osimertinib: First global approval.Drugs201676226327310.1007/s40265‑015‑0533‑4 26729184
    [Google Scholar]
  35. SakumaY. YamazakiY. NakamuraY. YoshiharaM. MatsukumaS. NakayamaH. YokoseT. KamedaY. KoizumeS. MiyagiY. WZ4002, a third-generation EGFR inhibitor, can overcome anoikis resistance in EGFR-mutant lung adenocarcinomas more efficiently than Src inhibitors.Lab. Invest.201292337138310.1038/labinvest.2011.187 22157722
    [Google Scholar]
  36. WangS. CangS. LiuD. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.J. Hematol. Oncol.2016913410.1186/s13045‑016‑0268‑z 27071706
    [Google Scholar]
  37. ZhaoH.Y. XiX.X. XinM. ZhangS.Q. Overcoming C797S mutation: The challenges and prospects of the fourth-generation EGFR-TKIs.Bioorg. Chem.202212810605710.1016/j.bioorg.2022.106057 35964503
    [Google Scholar]
  38. ChengH. NairS.K. MurrayB.W. AlmadenC. BaileyS. BaxiS. BehennaD. Cho-SchultzS. DalvieD. DinhD.M. EdwardsM.P. FengJ.L. FerreR.A. GajiwalaK.S. HemkensM.D. Jackson-FisherA. JalaieM. JohnsonT.O. KaniaR.S. KephartS. LafontaineJ. LunneyB. LiuK.K.C. LiuZ. MatthewsJ. NagataA. NiessenS. OrnelasM.A. OrrS.T.M. PairishM. PlankenS. RenS. RichterD. RyanK. SachN. ShenH. SmealT. SolowiejJ. SuttonS. TranK. TsengE. VernierW. WallsM. WangS. WeinrichS.L. XinS. XuH. YinM.J. ZientekM. ZhouR. KathJ.C. Discovery of 1-(3 R, 4 R)-3-[(5-Chloro-2-[(1-methyl-1 H -pyrazol-4-yl)amino]-7 H -pyrrolo[2,3- d]pyrimidin-4-yloxy)methyl]-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants.J. Med. Chem.20165952005202410.1021/acs.jmedchem.5b01633 26756222
    [Google Scholar]
  39. ShenJ. ZhangT. ZhuS.J. SunM. TongL. LaiM. ZhangR. XuW. WuR. DingJ. YunC.H. XieH. LuX. DingK. Structure-based design of 5-Methylpyrimidopyridone derivatives as new wild-type sparing inhibitors of the epidermal growth factor receptor triple mutant (EGFR L858R/T790M/C797S).J. Med. Chem.201962157302730810.1021/acs.jmedchem.9b00576 31298540
    [Google Scholar]
  40. FlochN. FinlayM.R.V. BiancoA. Evaluation of the therapeutic potential of phosphine oxide pyrazole inhibitors in tumors harboring EGFR C797S mutation.Cancer Res.201979134451
    [Google Scholar]
  41. PanwarU. MuraliA. KhanM.A. SelvarajC. SinghS.K. Virtual screening process: A guide in modern drug designing.Methods Mol. Biol.20242714213110.1007/978‑1‑0716‑3441‑7_2 37676591
    [Google Scholar]
  42. WangL. AnY. WeiX. HuangX. TuY. QiaoL. ZhuW. In silico screening combined with bioactivity evaluation to identify AMI-1 as a novel anticancer compound by targeting AXL.J. Biomol. Struct. Dyn.202442157686769810.1080/07391102.2023.2255654 37691424
    [Google Scholar]
  43. ZhangQ. LiuX. GanW. WuJ. ZhouH. YangZ. ZhangY. LiaoM. YuanP. XuS. ZhengP. ZhuW. Discovery of Triazolo-pyridazine/-pyrimidine derivatives bearing aromatic (Heterocycle)-coupled azole units as class II c-Met inhibitors.ACS Omega2020527164821649010.1021/acsomega.0c00838 32685812
    [Google Scholar]
  44. WangL. FanD. RuanW. HuangX. ZhuW. TuY. ZhengP. T6496 targeting EGFR mediated by T790M or C797S mutant: Machine learning, virtual screening and bioactivity evaluation study.J. Biomol. Struct. Dyn.202411210.1080/07391102.2023.2300756 38174383
    [Google Scholar]
  45. BadarM.S. ShamsiS. AhmedJ. AlamM.A. Molecular dynamics simulations: Concept, methods, and applications.Transdisciplinarity. Integrated Science RezaeiN. Springer: Cham2022513115110.1007/978‑3‑030‑94651‑7_7
    [Google Scholar]
  46. WangL. XieZ. RuanW. LanF. QinQ. TuY. ZhuW. ZhaoJ. ZhengP. In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study.Naunyn Schmiedebergs Arch. Pharmacol.202410.1007/s00210‑024‑03276‑4 39043879
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206362954250203103859
Loading
/content/journals/acamc/10.2174/0118715206362954250203103859
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biological activity; EGFR; EGFR inhibitors; evaluation; NSCLC; ROC; Virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test