Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Cervical cancer encompasses highly invasive and metastatic malignant tumors with poor prognoses. Recently, microneedles have gained significant attention as a novel, non-invasive drug delivery method, offering unique advantages in tumor treatment.

Objective

This study aims to develop an ulvan-based microneedle delivery system encapsulating the photosensitizer 5-aminolevulinic acid (5-ALA-UMNs) and to investigate its inhibitory effects on the growth of human cervical cancer Hela cells.

Methods

The 5-ALA-UMNs and UMNs (without photosensitizer) were fabricated using a two-step casting technique. The microneedles' morphology, puncture performance, and mechanical strength were assessed. Hela cells were treated with 5-ALA-UMNs, and the cellular uptake of the photosensitizer was observed using inverted fluorescence microscopy. Cell viability was determined by the CCK-8 assay to identify the optimal drug concentration. Additionally, the anti-tumor efficacy of 5-ALA-UMNs, induced photodynamic therapy, was evaluated by Live-Dead staining and flow cytometry.

Results

The microneedles exhibited a uniform quadrangular pyramidal shape, orderly arrangement, intact needle tips, and robust mechanical strength. Inverted fluorescence microscopy confirmed the successful uptake of the photosensitizer by Hela cells, which enzymatically converted it to the fluorescent compound protoporphyrin IX. CCK-8 assays demonstrated that 5-ALA-UMNs displayed favorable cytocompatibility and safety. Liver-dead staining revealed Hela cell survival rates as follows: 99.55% in the control group, 99.37% in the control microneedle group, 99.41% in the 5-ALA-UMNs group without light exposure, and 57.35% in the 5-ALA-UMNs group with light exposure (all < 0.05). Flow cytometry results corroborated the live-dead staining findings, confirming the cytotoxic effect of 5-ALA-UMNs on tumor cells.

Conclusion

These results indicate that 5-ALA-UMNs hold promise as a tumor-targeting therapeutic.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206358815250224043946
2025-03-06
2025-10-13
Loading full text...

Full text loading...

References

  1. WuS. JiaoJ. YueX. WangY. Cervical cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with England and India based on the global burden of disease study 2019.Front. Public Health202412135843310.3389/fpubh.2024.1358433 38510348
    [Google Scholar]
  2. QiuH. CaoS. XuR. Cancer incidence, mortality, and burden in China: A time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020.Cancer Commun.202141101037104810.1002/cac2.12197 34288593
    [Google Scholar]
  3. BurmeisterC.A. KhanS.F. SchäferG. MbataniN. AdamsT. MoodleyJ. PrinceS. Cervical cancer therapies: Current challenges and future perspectives.Tumour Virus Res.20221320023810.1016/j.tvr.2022.200238 35460940
    [Google Scholar]
  4. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  5. Abu-RustumN.R. YasharC.M. ArendR. BarberE. BradleyK. BrooksR. CamposS.M. ChinoJ. ChonH.S. CrispensM.A. DamastS. FisherC.M. FrederickP. GaffneyD.K. GaillardS. GiuntoliR. GlaserS. HolmesJ. HowittB.E. LeaJ. Mantia-SmaldoneG. MarianiA. MutchD. NagelC. NekhlyudovL. PodollM. RodabaughK. SalaniR. SchorgeJ. SiedelJ. SisodiaR. SolimanP. UedaS. UrbanR. WyseE. McMillianN.R. AggarwalS. EspinosaS. NCCN Guidelines® Insights: Cervical cancer, Version 1.2024.J. Natl. Compr. Canc. Netw.202321121224123310.6004/jnccn.2023.0062 38081139
    [Google Scholar]
  6. GirdaE. RandallL.M. ChinoF. MonkB.J. FarleyJ.H. O’CearbhaillR.E. Cervical cancer treatment update: A society of gynecologic oncology clinical practice statement.Gynecol. Oncol.202317911512210.1016/j.ygyno.2023.10.017 37980766
    [Google Scholar]
  7. BentivegnaE. GouyS. MaulardA. ChargariC. LearyA. MoriceP. Oncological outcomes after fertility-sparing surgery for cervical cancer: A systematic review.Lancet Oncol.2016176e240e25310.1016/S1470‑2045(16)30032‑8 27299280
    [Google Scholar]
  8. MiyakoshiK. ItakuraA. AbeT. KondohE. TeraoY. TabataT. HamadaH. TanakaK. TanakaM. KanayamaN. TakedaS. Risk of preterm birth after the excisional surgery for cervical lesions: A propensity-score matching study in Japan.J. Matern. Fetal Neonatal Med.202134684585110.1080/14767058.2019.1619687 31092078
    [Google Scholar]
  9. CarobeliL.R. MeirellesL.E.F. DamkeG.M.Z.F. DamkeE. SouzaM.V.F. MariN.L. MashibaK.H. Shinobu-MesquitaC.S. SouzaR.P. SilvaV.R.S. GonçalvesR.S. CaetanoW. ConsolaroM.E.L. Phthalocyanine and its formulations: A promising photosensitizer for cervical cancer phototherapy.Pharmaceutics20211312205710.3390/pharmaceutics13122057 34959339
    [Google Scholar]
  10. ZhuZ. LiuQ. ZhuK. WangK. LinL. ChenY. ShaoF. QianR. SongY. GaoY. YangB. JiangD. LanX. AnR. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment.Acta Biomater.202316751953310.1016/j.actbio.2023.06.009 37328041
    [Google Scholar]
  11. JiB. WeiM. YangB. Recent advances in nanomedicines for photodynamic therapy (PDT)-Driven cancer immunotherapy.Theranostics202212143445810.7150/thno.67300 34987658
    [Google Scholar]
  12. JuarranzÁ. GilaberteY. GonzálezS. Photodynamic therapy (PDT) in oncology.Cancers20201211334110.3390/cancers12113341 33198063
    [Google Scholar]
  13. HeoS.Y. LeeY. KimT.H. HeoS.J. ShinH. LeeJ. YiM. KangH.W. JungW.K. Anti-cancer effect of chlorophyllin-assisted photodynamic therapy to induce apoptosis through oxidative stress on human cervical cancer.Int. J. Mol. Sci.202324141156510.3390/ijms241411565 37511323
    [Google Scholar]
  14. RazlogR. KrugerC.A. AbrahamseH. Cytotoxic effects of combinative ZnPcS4 photosensitizer photodynamic therapy (PDT) and cannabidiol (CBD) on a cervical cancer cell line.Int. J. Mol. Sci.2023247615110.3390/ijms24076151 37047123
    [Google Scholar]
  15. AfanasievM.S. DushkinA.D. GrishachevaT.G. AfanasievS.K. AcademicianA.V. Photodynamic therapy for early-stage cervical cancer treatment.Photodiagn. Photodyn. Ther.20223710262010.1016/j.pdpdt.2021.102620 34752947
    [Google Scholar]
  16. GilyadovaA. IshchenkoA. IshenkoA. SamoilovaS. ShiryaevA. KiselevaA. PetukhovaN. EfendievK. AlekseevaP. StranadkoE. LoschenovV. ReshetovI. Analysis of the results of severe intraepithelial squamous cell lesions and preinvasive cervical cancer phototheranostics in women of reproductive age.Biomedicines20221010252110.3390/biomedicines10102521 36289783
    [Google Scholar]
  17. BhattacharyaS. PrajapatiB.G. SinghS. AnjumM.M. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications.J. Cancer Res. Clin. Oncol.202314919176071763410.1007/s00432‑023‑05429‑z 37776358
    [Google Scholar]
  18. YangJ. ChuZ. JiangY. ZhengW. SunJ. XuL. MaY. WangW. ShaoM. QianH. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc‐based composites for accelerating diabetes wound healing.Adv. Healthc. Mater.20231224230072510.1002/adhm.202300725 37086396
    [Google Scholar]
  19. HeY. ChenN. ZangM. ZhangJ. ZhangY. LuH. ZhaoQ. MaoY. YuanY. WangS. GaoY. Glucose-responsive insulin microneedle patches for long-acting delivery and release visualization.J. Control. Release202436843044310.1016/j.jconrel.2024.03.001 38447813
    [Google Scholar]
  20. XiaT. ZhuY. LiK. HaoK. ChaiY. JiangH. LouC. YuJ. YangW. WangJ. DengJ. WangZ. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis.J. Nanobiotechnol.202422110310.1186/s12951‑024‑02374‑y 38468261
    [Google Scholar]
  21. WangR. ZhongT. BianQ. ZhangS. MaX. LiL. XuY. GuY. YuanA. HuW. QinC. GaoJ. PROTAC degraders of androgen receptor‐integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration.Small Methods202371220129310.1002/smtd.202201293 36538748
    [Google Scholar]
  22. LiuY. ZhaoZ.Q. LiangL. JingL.Y. WangJ. DaiY. ChenB.Z. GuoX.D. Toward a solid microneedle patch for rapid and enhanced local analgesic action.Drug Deliv. Transl. Res.20241471810181910.1007/s13346‑023‑01486‑6 38236507
    [Google Scholar]
  23. Lopez-RamirezM.A. SotoF. WangC. RuedaR. ShuklaS. Silva-LopezC. KuporD. McBrideD.A. PokorskiJ.K. NourhaniA. SteinmetzN.F. ShahN.J. WangJ. Built ‐in active microneedle patch with enhanced autonomous drug delivery.Adv. Mater.2020321190574010.1002/adma.201905740 31682039
    [Google Scholar]
  24. BhatnagarS. BankarN.G. KulkarniM.V. VenugantiV.V.K. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model.Int. J. Pharm.201955626327510.1016/j.ijpharm.2018.12.022 30557681
    [Google Scholar]
  25. AdigwemeI. YisaM. OokoM. AkpaluE. BruceA. DonkorS. JarjuL.B. DansoB. MendyA. JeffriesD. Segonds-PichonA. NjieA. CrookeS. El-BadryE. JohnstoneH. RoyalsM. GoodsonJ.L. PrausnitzM.R. McAllisterD.V. RotaP.A. HenryS. ClarkeE. A measles and rubella vaccine microneedle patch in The Gambia: A phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial.Lancet2024403104391879189210.1016/S0140‑6736(24)00532‑4 38697170
    [Google Scholar]
  26. LeeJ. BeukemaM. ZaplatynskaO.A. O’MahonyC. HinrichsW.L.J. HuckriedeA.L.W. BouwstraJ.A. van der MaadenK. Efficient fabrication of thermo-stable dissolving microneedle arrays for intradermal delivery of influenza whole inactivated virus vaccine.Biomater. Sci.202311206790680010.1039/D3BM00377A 37622228
    [Google Scholar]
  27. McAllisterD.V. WangP.M. DavisS.P. ParkJ.H. CanatellaP.J. AllenM.G. PrausnitzM.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies.Proc. Natl. Acad. Sci. USA200310024137551376010.1073/pnas.2331316100 14623977
    [Google Scholar]
  28. LeeY. KangT. ChoH.R. LeeG.J. ParkO.K. KimS. LeeB. KimH.M. ChaG.D. ShinY. LeeW. KimM. KimH. SongY.M. ChoiS.H. HyeonT. KimD.H. Localized delivery of theranostic nanoparticles and high‐energy photons using microneedles on bioelectronics.Adv. Mater.20213324210042510.1002/adma.202100425 33955598
    [Google Scholar]
  29. MontaseriH. KrugerC.A. AbrahamseH. Targeted photodynamic therapy using alloyed nanoparticle-conjugated 5-aminolevulinic acid for breast cancer.Pharmaceutics2021139137510.3390/pharmaceutics13091375 34575450
    [Google Scholar]
  30. ZhangL. GuoR. WangS. YangX. LingG. ZhangP. Fabrication, evaluation and applications of dissolving microneedles.Int. J. Pharm.202160412074910.1016/j.ijpharm.2021.120749 34051319
    [Google Scholar]
  31. DonT.M. ChenM. LeeI.C. HuangY.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system.Int. J. Biol. Macromol.2022207909910.1016/j.ijbiomac.2022.02.127 35218808
    [Google Scholar]
  32. CarobeliL.R. SantosA.B.C. MartinsL.B.M. DamkeE. ConsolaroM.E.L. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: A systematic review.Expert Rev. Anticancer Ther.202424526328210.1080/14737140.2024.2337259 38549400
    [Google Scholar]
  33. SabriA.H. KimY. MarlowM. ScurrD.J. SegalJ. BangaA.K. KaganL. LeeJ.B. Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery.Adv. Drug Deliv. Rev.202015319521510.1016/j.addr.2019.10.004 31634516
    [Google Scholar]
  34. AndoD. MiyatsujiM. SakodaH. YamamotoE. MiyazakiT. KoideT. SatoY. IzutsuK. Mechanical characterization of dissolving microneedles: Factors affecting physical strength of needles.Pharmaceutics202416220010.3390/pharmaceutics16020200 38399254
    [Google Scholar]
  35. KhuanekkaphanM. NetsomboonK. FristiohadyA. AsasutjaritR. Development of quercetin solid dispersion-loaded dissolving microneedles and in vitro investigation of their anti-melanoma activities.Pharmaceutics20241610127610.3390/pharmaceutics16101276 39458607
    [Google Scholar]
  36. ColditzM.J. JeffreeR.L. Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies.J. Clin. Neurosci.201219111471147410.1016/j.jocn.2012.03.009 22959448
    [Google Scholar]
  37. ShrikyB. BabenkoM. WhitesideB.R. Dissolving and swelling hydrogel-based microneedles: An overview of their materials, fabrication, characterization methods, and challenges.gels202391080610.3390/gels9100806 37888379
    [Google Scholar]
  38. AndranillaR.K. AnjaniQ.K. HartriantiP. DonnellyR.F. RamadonD. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: Polymer materials and solvent casting micromoulding method.Pharm. Dev. Technol.202328101016103110.1080/10837450.2023.2285498 37987717
    [Google Scholar]
  39. LiC. TangT. DuY. JiangL. YaoZ. NingL. ZhuB. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications.Bioresour. Bioprocess.20231016610.1186/s40643‑023‑00690‑z 38647949
    [Google Scholar]
  40. NingL. YaoZ. ZhuB. Ulva (Enteromorpha) polysaccharides and oligosaccharides: A potential functional food source from green-tide-forming macroalgae.Mar. Drugs202220320210.3390/md20030202 35323501
    [Google Scholar]
  41. LiC. TangT. JiangJ. YaoZ. ZhuB. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides.Glycobiology2023331083784510.1093/glycob/cwad068 37593920
    [Google Scholar]
  42. Flórez-FernándezN. Rodríguez-CoelloA. LatireT. BourgougnonN. TorresM.D. BujánM. MuíñosA. MuiñosA. Meijide-FaíldeR. BlancoF.J. Vaamonde-GarcíaC. DomínguezH. Anti-inflammatory potential of ulvan.Int. J. Biol. Macromol.2023253Pt 412693610.1016/j.ijbiomac.2023.126936 37722645
    [Google Scholar]
  43. MorelliA. ChielliniF. Ulvan as a new type of biomaterial from renewable res-ources: Functionalization and hydrogel preparation.Macromol. Chem. Phys.2010211782183210.1002/macp.200900562
    [Google Scholar]
  44. MadanyM.A. Abdel-KareemM.S. Al-OufyA.K. HarounM. SheweitaS.A. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication.Int. J. Biol. Macromol.202117740141210.1016/j.ijbiomac.2021.02.047 33577821
    [Google Scholar]
  45. IaconisiG.N. LunettiP. GalloN. CappelloA.R. FiermonteG. DolceV. CapobiancoL. Hyaluronic acid: A powerful biomolecule with wide-ranging applications—A comprehensive review.Int. J. Mol. Sci.202324121029610.3390/ijms241210296 37373443
    [Google Scholar]
  46. LiM. SunJ. ZhangW. ZhaoY. ZhangS. ZhangS. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy.Carbohydr. Polym.202125111710310.1016/j.carbpol.2020.117103 33142641
    [Google Scholar]
  47. BhattacharyyaM. JariyalH. SrivastavaA. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer.Carbohydr. Polym.202331712108110.1016/j.carbpol.2023.121081 37364954
    [Google Scholar]
  48. RonnanderP. SimonL. SpilgiesH. KochA. Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles.Eur. J. Pharm. Sci.2018125546310.1016/j.ejps.2018.09.010 30223035
    [Google Scholar]
  49. FrancoP. De MarcoI. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review.Polymers2020125111410.3390/polym12051114 32414187
    [Google Scholar]
  50. RonnanderP. SimonL. KochA. Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles.Eur. J. Pharm. Biopharm.2020146324010.1016/j.ejpb.2019.11.007 31786322
    [Google Scholar]
  51. MangangK.N. ThakranP. HalderJ. YadavK.S. GhoshG. PradhanD. RathG. RaiV.K. PVP-microneedle array for drug delivery: Mechanical insight, biodegradation, and recent advances.J. Biomater. Sci. Polym. Ed.2023347986101710.1080/09205063.2022.2155778 36541167
    [Google Scholar]
  52. LiuH. ZhouX. NailA. YuH. YuZ. SunY. WangK. BaoN. MengD. ZhuL. LiH. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery.J. Control. Release202436811513010.1016/j.jconrel.2024.02.023 38367865
    [Google Scholar]
  53. DuB. JiaS. WangQ. DingX. LiuY. YaoH. ZhouJ. A self-targeting, dual ROS/pH-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer.Biomacromolecules20181931026103610.1021/acs.biomac.8b00012 29455519
    [Google Scholar]
  54. KangY. KongN. OuM. WangY. XiaoQ. MeiL. LiuB. ChenL. ZengX. JiX. A novel cascaded energy conversion system inducing efficient and precise cancer therapy.Bioact. Mater.20232066367610.1016/j.bioactmat.2022.07.007 35891799
    [Google Scholar]
  55. LeeY.J. YiY.C. LinY.C. ChenC.C. HungJ.H. LinJ.Y. NgI.S. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells.Bioresour. Bioprocess.2022916810.1186/s40643‑022‑00557‑9 38647835
    [Google Scholar]
  56. PignatelliP. UmmeS. D’AntonioD.L. PiattelliA. CuriaM.C. Reactive oxygen species produced by 5-aminolevulinic acid photodynamic therapy in the treatment of cancer.Int. J. Mol. Sci.20232410896410.3390/ijms24108964 37240309
    [Google Scholar]
  57. HerbstJ. PangX. RolingL. GrimmB. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis.J. Exp. Bot.20247572027204510.1093/jxb/erad491 38070484
    [Google Scholar]
  58. JacksonL.K. DaileyT.A. AnderleB. WarrenM.J. BergoniaH.A. DaileyH.A. PhillipsJ.D. Exploiting differences in heme biosynthesis between bacterial species to screen for novel antimicrobials.Biomolecules20231310148510.3390/biom13101485 37892169
    [Google Scholar]
  59. ShiL. WangH. ChenK. YanJ. YuB. WangS. YinR. NongX. ZouX. ChenZ. LiC. Chinese guidelines on the clinical application of 5-aminolevulinic acid-based photodynamic therapy in dermatology (2021 edition).Photodiagn. Photodyn. Ther.20213510234010.1016/j.pdpdt.2021.102340 33991660
    [Google Scholar]
  60. ChenM. ZhouA. KhachemouneA. Photodynamic therapy in treating a subset of basal cell carcinoma: Strengths, shortcomings, comparisons with surgical modalities, and potential role as adjunctive therapy.Am. J. Clin. Dermatol.20242519911810.1007/s40257‑023‑00829‑w 38042767
    [Google Scholar]
  61. JhankerY. MbanoM.N. PontoT. EsparteroL.J.L. YamadaM. ProwT. BensonH.A.E. Comparison of physical enhancement technologies in the skin permeation of methyl amino levulinic acid (mALA).Int. J. Pharm.202161012125810.1016/j.ijpharm.2021.121258 34740760
    [Google Scholar]
  62. BianQ. HuangL. XuY. WangR. GuY. YuanA. MaX. HuJ. RaoY. XuD. WangH. GaoJ. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect.ACS Nano20211512194681947910.1021/acsnano.1c06225 34859990
    [Google Scholar]
  63. ZhuangJ. RaoF. WuD. HuangY. XuH. GaoW. ZhangJ. SunJ. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery.Eur. J. Pharm. Biopharm.2020157667310.1016/j.ejpb.2020.10.002 33059004
    [Google Scholar]
  64. HoeslyF.J. BorovickaJ. GordonJ. NardoneB. HolbrookJ.S. PaceN. IbrahimO. BolotinD. WarychaM. KwasnyM. WestD. AlamM. Safety of a novel microneedle device applied to facial skin: A subject- and rater-blinded, sham-controlled, randomized trial.Arch. Dermatol.2012148671171710.1001/archdermatol.2012.280 22431712
    [Google Scholar]
  65. MinH.S. KimY. NamJ. AhnH. KimM. KangG. JangM. YangH. JungH. Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery.Biomater. Adv.202314521324810.1016/j.bioadv.2022.213248 36610239
    [Google Scholar]
  66. DingY.W. LiY. ZhangZ.W. DaoJ.W. WeiD.X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment.Bioact. Mater.2024389510810.1016/j.bioactmat.2024.04.020 38699241
    [Google Scholar]
  67. JeongH.R. LeeH.S. ChoiI.J. ParkJ.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety.J. Drug Target.2017251294010.1080/1061186X.2016.1200589 27282644
    [Google Scholar]
  68. HuangS. LiuH. HuangS. FuT. XueW. GuoR. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma.Carbohydr. Polym.202024611665010.1016/j.carbpol.2020.116650 32747282
    [Google Scholar]
  69. BuiV.D. SonS. XavierW. NguyenV.Q. JungJ.M. LeeJ. ShinS. UmW. AnJ.Y. KimC.H. SongY. LiY. ParkJ.H. Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles.Biomaterials202228712164410.1016/j.biomaterials.2022.121644 35772350
    [Google Scholar]
  70. SartawiZ. BlackshieldsC. FaisalW. Dissolving microneedles: Applications and growing therapeutic potential.J. Control. Release202234818620510.1016/j.jconrel.2022.05.045 35662577
    [Google Scholar]
  71. LuX. SunY. HanM. ChenD. HeX. WangS. SunK. Triptorelin nanoparticle-loaded microneedles for use in assisted reproductive technology.Drug Deliv.2023301222636710.1080/10717544.2023.2226367 37387211
    [Google Scholar]
  72. XiaoM. TangQ. ZengS. YangQ. YangX. TongX. ZhuG. LeiL. LiS. Emerging biomaterials for tumor immunotherapy.Biomater. Res.20232714710.1186/s40824‑023‑00369‑8 37194085
    [Google Scholar]
  73. ZhangX.P. HeY.T. LiW.X. ChenB.Z. ZhangC.Y. CuiY. GuoX.D. An update on biomaterials as microneedle matrixes for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.202210326059607710.1039/D2TB00905F 35916308
    [Google Scholar]
  74. BarnumL. QuintJ. DerakhshandehH. SamandariM. AghabaglouF. FarzinA. AbbasiL. BencherifS. MemicA. MostafaluP. TamayolA. TamayolA. 3D printed hydrogel‐filled microneedle arrays.Adv. Healthc. Mater.20211013200192210.1002/adhm.202001922 34050600
    [Google Scholar]
  75. LohJ.M. LimY.J.L. TayJ.T. ChengH.M. TeyH.L. LiangK. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.Bioact. Mater.20243222224110.1016/j.bioactmat.2023.09.022 37869723
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206358815250224043946
Loading
/content/journals/acamc/10.2174/0118715206358815250224043946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test