Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Radioresistance is the primary cause of treatment failure in esophageal squamous cell carcinoma, emphasizing the importance of identifying effective radiosensitizers.

Objectives

This study aimed to explore the effects and potential mechanisms of Eg5 inhibitor K858 on the radiosensitivity of esophageal squamous cell carcinoma TE-1 and KYSE150 cell lines, as well as xenografts (TE-1 cells).

Methods

Cellular function was assessed using CCK8, wound healing, and transwell invasion assays. Radiosensitivity parameters were derived from colony formation assays. Cell apoptosis and cell cycle were assessed using flow cytometry, whereas protein expression levels were detected using western blotting and immunohistochemistry. The xenograft model was used to observe the growth of tumors.

Results

K858 inhibited the malignant functions of TE-1 and KYSE150 cell lines. Radiosensitivity parameters were reduced after K858 treatment. The combination of K858 and irradiation markedly suppressed cell proliferation, induced apoptosis, and stimulated cell cycle arrest during the irradiation-sensitive phase. Additionally, K858, combined with irradiation, significantly increased the expression of the epithelial-mesenchymal transition marker E-cadherin and decreased the expression of N-cadherin, vimentin, MMP2, and MMP9. K858, combined with irradiation, significantly inhibited tumor growth in xenograft models.

Conclusion

K858 enhanced the radiosensitivity of esophageal squamous cell carcinoma and affected the expression of epithelial-mesenchymal transition-related markers.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206373782250211104402
2025-02-24
2025-09-03
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. ObermannováR. AlsinaM. CervantesA. LeongT. LordickF. NilssonM. van GriekenN.C.T. VogelA. SmythE.C. Oesophageal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up.Ann. Oncol.20223310992100410.1016/j.annonc.2022.07.003 35914638
    [Google Scholar]
  3. AbnetC.C. ArnoldM. WeiW.Q. Epidemiology of esophageal squamous cell carcinoma.Gastroenterology2018154236037310.1053/j.gastro.2017.08.023 28823862
    [Google Scholar]
  4. FengR. SuQ. HuangX. BasnetT. XuX. YeW. Cancer situation in China: What does the China cancer map indicate from the first national death survey to the latest cancer registration?Cancer Commun.2023431758610.1002/cac2.12393 36397729
    [Google Scholar]
  5. YangH. LiuH. ChenY. ZhuC. FangW. YuZ. MaoW. XiangJ. HanY. ChenZ. YangH. WangJ. PangQ. ZhengX. YangH. LiT. LordickF. D’JournoX.B. CerfolioR.J. KorstR.J. NovoaN.M. SwansonS.J. BrunelliA. IsmailM. FernandoH.C. ZhangX. LiQ. WangG. ChenB. MaoT. KongM. GuoX. LinT. LiuM. FuJ. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the Esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial.J. Clin. Oncol.201836272796280310.1200/JCO.2018.79.1483 30089078
    [Google Scholar]
  6. AnL. LiM. JiaQ. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma.Mol. Cancer202322114010.1186/s12943‑023‑01839‑2 37598158
    [Google Scholar]
  7. ChenW. ZhengR. BaadeP.D. ZhangS. ZengH. BrayF. JemalA. YuX.Q. HeJ. Cancer statistics in China, 2015.CA Cancer J. Clin.201666211513210.3322/caac.21338 26808342
    [Google Scholar]
  8. LucanusA.J. YipG.W. Kinesin superfamily: Roles in breast cancer, patient prognosis and therapeutics.Oncogene201837783383810.1038/onc.2017.406 29059174
    [Google Scholar]
  9. WordemanL. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays.Semin. Cell Dev. Biol.201021326026810.1016/j.semcdb.2010.01.018 20109570
    [Google Scholar]
  10. OkiE. HisamatsuY. AndoK. SaekiH. KakejiY. MaeharaY. Clinical aspect and molecular mechanism of DNA aneuploidy in gastric cancers.J. Gastroenterol.201247435135810.1007/s00535‑012‑0565‑4 22402775
    [Google Scholar]
  11. CastilloA. MorseH.C.III GodfreyV.L. NaeemR. JusticeM.J. Overexpression of Eg5 causes genomic instability and tumor formation in mice.Cancer Res.20076721101381014710.1158/0008‑5472.CAN‑07‑0326 17974955
    [Google Scholar]
  12. LiuX.R. CaiY. CaoX. WeiR.C. LiH.L. ZhouX.M. ZhangK.J. WuS. QianQ.J. ChengB. HuangK. LiuX.Y. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti‐tumour effect.J. Cell. Mol. Med.20121661298130910.1111/j.1582‑4934.2011.01396.x 21794078
    [Google Scholar]
  13. AlmeidaA.C. MaiatoH. Chromokinesins.Curr. Biol.20182819R1131R113510.1016/j.cub.2018.07.017 30300593
    [Google Scholar]
  14. ZhouY. XuM.F. ChenJ. ZhangJ.L. WangX.Y. HuangM.H. WeiY.L. SheZ.Y. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest.Exp. Cell Res.2024436111397510.1016/j.yexcr.2024.113975 38367657
    [Google Scholar]
  15. LiS. MaY. WuC. HouX. Knockdown of kinesin family member 2C restricts cell proliferation and induces cell cycle arrest in gastric cancer.Histol. Histopathol.2023388907916 36448588
    [Google Scholar]
  16. ZhangJ. BuranjiangG. MutalifuZ. JinH. YaoL. KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27Kip1 pathway.World J. Surg. Oncol.202220112510.1186/s12957‑022‑02585‑3 35439960
    [Google Scholar]
  17. GuoW. SunS. SanchezJ.E. Lopez-HernandezA.E. AleT.A. ChenJ. AfrinT. QiuW. XieY. LiL. Using a comprehensive approach to investigate the interaction between Kinesin-5/Eg5 and the microtubule.Comput. Struct. Biotechnol. J.2022204305431410.1016/j.csbj.2022.08.020 36051882
    [Google Scholar]
  18. SawinK.E. LeGuellecK. PhilippeM. MitchisonT.J. Mitotic spindle organization by a plus-end-directed microtubule motor.Nature1992359639554054310.1038/359540a0 1406972
    [Google Scholar]
  19. DingS. XingN. LuJ. ZhangH. NishizawaK. LiuS. YuanX. QinY. LiuY. OgawaO. NishiyamaH. Overexpression of Eg5 predicts unfavorable prognosis in non‐muscle invasive bladder urothelial carcinoma.Int. J. Urol.201118643243810.1111/j.1442‑2042.2011.02751.x 21449971
    [Google Scholar]
  20. LiuM. WangX. YangY. LiD. RenH. ZhuQ. ChenQ. HanS. HaoJ. ZhouJ. Ectopic expression of the microtubule‐dependent motor protein Eg5 promotes pancreatic tumourigenesis.J. Pathol.2010221222122810.1002/path.2706 20455257
    [Google Scholar]
  21. CarterB.Z. MakD.H. ShiY. SchoberW.D. WangR.Y. KonoplevaM. KollerE. DeanN.M. AndreeffM. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance.Cell Cycle20065192223222910.4161/cc.5.19.3255 16969080
    [Google Scholar]
  22. HansenG.M. JusticeM.J. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia.Oncogene199918476531653910.1038/sj.onc.1203023 10597256
    [Google Scholar]
  23. LiuL. LiuX. MareM. DumontA.S. ZhangH. YanD. XiongZ. Overexpression of Eg5 correlates with high grade astrocytic neoplasm.J. Neurooncol.20161261778010.1007/s11060‑015‑1954‑3 26456023
    [Google Scholar]
  24. ShaoY.Y. SunN.Y. JengY.M. WuY.M. HsuC. HsuC.H. HsuH.C. ChengA.L. LinZ.Z. Eg5 as a prognostic biomarker and potential therapeutic target for hepatocellular carcinoma.Cells2021107169810.3390/cells10071698 34359867
    [Google Scholar]
  25. SunD. LuJ. DingK. BiD. NiuZ. CaoQ. ZhangJ. DingS. The expression of Eg5 predicts a poor outcome for patients with renal cell carcinoma.Med. Oncol.201330147610.1007/s12032‑013‑0476‑0 23371254
    [Google Scholar]
  26. LuM. ZhuH. WangX. ZhangD. XiongL. XuL. YouY. The prognostic role of Eg5 expression in laryngeal squamous cell carcinoma.Pathology201648321421810.1016/j.pathol.2016.02.008 27020495
    [Google Scholar]
  27. RicciA. CarradoriS. CataldiA. ZaraS. Eg5 and diseases: From the well‐known role in cancer to the less‐known activity in noncancerous pathological conditions.Biochem. Res. Int.202420241364991210.1155/2024/3649912 38939361
    [Google Scholar]
  28. De MonteC. CarradoriS. SecciD. D’AscenzioM. GuglielmiP. MollicaA. MorroneS. ScarpaS. AglianòA.M. GiantulliS. SilvestriI. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treatment of prostate cancer and melanoma.Eur. J. Med. Chem.201510524526210.1016/j.ejmech.2015.10.023 26498571
    [Google Scholar]
  29. WuW. JingboS. XuW. LiuJ. HuangY. ShengQ. LvZ. SS-trityl-L-cysteine, a novel Eg5 inhibitor, is a potent chemotherapeutic strategy in neuroblastoma.Oncol. Lett.20181611023103010.3892/ol.2018.8755 29963178
    [Google Scholar]
  30. DingS. NishizawaK. KobayashiT. OishiS. LvJ. FujiiN. OgawaO. NishiyamaH. A potent chemotherapeutic strategy for bladder cancer: (S)-methoxy-trityl-L-cystein, a novel Eg5 inhibitor.J. Urol.201018431175118110.1016/j.juro.2010.04.073 20663523
    [Google Scholar]
  31. TallmanM.M. ZalenskiA.A. StablI. SchrockM.S. KollinL. de JongE. DeK. GrubbT.M. SummersM.K. VenereM. Improving localized radiotherapy for glioblastoma via small molecule inhibition of KIF11.Cancers20231512317310.3390/cancers15123173 37370783
    [Google Scholar]
  32. NakaiR. IidaS. TakahashiT. TsujitaT. OkamotoS. TakadaC. AkasakaK. IchikawaS. IshidaH. KusakaH. AkinagaS. MurakataC. HondaS. NittaM. SayaH. YamashitaY. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells.Cancer Res.20096993901390910.1158/0008‑5472.CAN‑08‑4373 19351824
    [Google Scholar]
  33. RicciA. CataldiA. CarradoriS. ZaraS. Kinesin Eg5 selective inhibition by newly synthesized molecules as an alternative approach to counteract breast cancer progression: An in vitro study.Biology20221110145010.3390/biology11101450 36290354
    [Google Scholar]
  34. GiantulliS. De IuliisF. TaglieriL. CarradoriS. MenichelliG. MorroneS. ScarpaS. SilvestriI. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells.Anticancer Drugs201829767468110.1097/CAD.0000000000000641 29738338
    [Google Scholar]
  35. NicolaiA. TauroneS. CarradoriS. ArticoM. GrecoA. CostiR. ScarpaS. The kinesin Eg5 inhibitor K858 exerts antiproliferative and proapoptotic effects and attenuates the invasive potential of head and neck squamous carcinoma cells.Invest. New Drugs202240355656410.1007/s10637‑022‑01238‑2 35312942
    [Google Scholar]
  36. TaglieriL. RubinacciG. GiuffridaA. CarradoriS. ScarpaS. The kinesin Eg5 inhibitor K858 induces apoptosis and reverses the malignant invasive phenotype in human glioblastoma cells.Invest. New Drugs2018361283510.1007/s10637‑017‑0517‑1 28965307
    [Google Scholar]
  37. MarconiG.D. CarradoriS. RicciA. GuglielmiP. CataldiA. ZaraS. Kinesin Eg5 targeting inhibitors as a new strategy for gastric adenocarcinoma treatment.Molecules20192421394810.3390/molecules24213948 31683688
    [Google Scholar]
  38. ManiS.A. GuoW. LiaoM.J. EatonE.N. AyyananA. ZhouA.Y. BrooksM. ReinhardF. ZhangC.C. ShipitsinM. CampbellL.L. PolyakK. BriskenC. YangJ. WeinbergR.A. The epithelial-mesenchymal transition generates cells with properties of stem cells.Cell2008133470471510.1016/j.cell.2008.03.027 18485877
    [Google Scholar]
  39. ChenC. WeiY. HummelM. HoffmannT.K. GrossM. KaufmannA.M. AlbersA.E. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma.PLoS One201161e1646610.1371/journal.pone.0016466 21304586
    [Google Scholar]
  40. HuangR. ZongX. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression.Crit. Rev. Oncol. Hematol.2017115132210.1016/j.critrevonc.2017.04.005 28602165
    [Google Scholar]
  41. LeeS.Y. JeongE.K. JuM.K. JeonH.M. KimM.Y. KimC.H. ParkH.G. HanS.I. KangH.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation.Mol. Cancer20171611010.1186/s12943‑016‑0577‑4 28137309
    [Google Scholar]
  42. TheysJ. JuttenB. HabetsR. PaesmansK. GrootA.J. LambinP. WoutersB.G. LammeringG. VooijsM. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells.Radiother. Oncol.201199339239710.1016/j.radonc.2011.05.044 21680037
    [Google Scholar]
  43. NantajitD. LinD. LiJ.J. The network of epithelial–mesenchymal transition: Potential new targets for tumor resistance.J. Cancer Res. Clin. Oncol.2015141101697171310.1007/s00432‑014‑1840‑y 25270087
    [Google Scholar]
  44. SuH. JinX. ZhangX. ZhaoL. LinB. LiL. FeiZ. ShenL. FangY. PanH. XieC. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R.J. Transl. Med.201513110410.1186/s12967‑015‑0464‑6 25888911
    [Google Scholar]
  45. GaoY. ChenZ. WangR. TanX. HuangC. ChenG. ChenZ. LXRα promotes the differentiation of human gastric cancer cells through inactivation of Wnt/β-catenin signaling.J. Cancer201910115616710.7150/jca.28600 30662536
    [Google Scholar]
  46. YangS. LiuY. LiM.Y. NgC.S.H. YangS. WangS. ZouC. DongY. DuJ. LongX. LiuL.Z. WanI.Y.P. MokT. UnderwoodM.J. ChenG.G. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer.Mol. Cancer201716112410.1186/s12943‑017‑0700‑1 28716029
    [Google Scholar]
  47. ColakS. ten DijkeP. Targeting TGF-β signaling in cancer.Trends Cancer201731567110.1016/j.trecan.2016.11.008 28718426
    [Google Scholar]
  48. HeldinC.H. LandströmM. MoustakasA. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition.Curr. Opin. Cell Biol.200921216617610.1016/j.ceb.2009.01.021 19237272
    [Google Scholar]
  49. XieC. WuY. FeiZ. FangY. XiaoS. SuH. MicroRNA‐1275 induces radiosensitization in oesophageal cancer by regulating epithelial‐to‐mesenchymal transition via Wnt/β‐catenin pathway.J. Cell. Mol. Med.202024174775910.1111/jcmm.14784 31733028
    [Google Scholar]
  50. CenturioneL. AielloF.B. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance.Front. Oncol.2016617510.3389/fonc.2016.00175 27500125
    [Google Scholar]
  51. WangJ. XuZ. WangZ. DuG. LunL. TGF-beta signaling in cancer radiotherapy.Cytokine202114815570910.1016/j.cyto.2021.155709 34597918
    [Google Scholar]
  52. Garcia-SaezI. SkoufiasD.A. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance.Biochem. Pharmacol.202118411436410.1016/j.bcp.2020.114364 33310050
    [Google Scholar]
  53. SunL. LuJ. NiuZ. DingK. BiD. LiuS. LiJ. WuF. ZhangH. ZhaoZ. DingS. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer.PLoS One20151012e014448410.1371/journal.pone.0144484 26658059
    [Google Scholar]
  54. MarcusA.I. PetersU. ThomasS.L. GarrettS. ZelnakA. KapoorT.M. GiannakakouP. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells.J. Biol. Chem.200528012115691157710.1074/jbc.M413471200 15653676
    [Google Scholar]
  55. QinW.J. SuY.G. DingX.L. ZhaoR. ZhaoZ.J. WangY.Y. CDK4/6 inhibitor enhances the radiosensitization of esophageal squamous cell carcinoma (ESCC) by activating autophagy signaling via the suppression of mTOR.Am. J. Transl. Res.202214316161627 35422963
    [Google Scholar]
  56. GuM.M. LiM. GaoD. LiuL.H. LangY. YangS.M. OuH. HuangB. ZhouP.K. ShangZ.F. The vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde induces aberrant mitotic progression and enhances radio-sensitivity accompanying suppression the expression of PLK1 in esophageal squamous cell carcinoma.Toxicol. Appl. Pharmacol.2018348768410.1016/j.taap.2018.04.021 29679654
    [Google Scholar]
  57. LiuX.F. XiaY.F. LiM.Z. WangH.M. HeY.X. ZhengM.L. YangH.L. HuangW.L. The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function.Cell Biol. Int.200630328328710.1016/j.cellbi.2005.11.010 16448826
    [Google Scholar]
  58. ThamesH.D. SuitH.D. Tumor radioresponsiveness versus fractionation sensitivity.Int. J. Radiat. Oncol. Biol. Phys.198612468769110.1016/0360‑3016(86)90081‑7 3700173
    [Google Scholar]
  59. BristowR.G. HardyP.A. HillR.P. Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines I: Parameters of in vitro radiosensitivity and endogenous cellular glutathione levels.Int. J. Radiat. Oncol. Biol. Phys.199018113314510.1016/0360‑3016(90)90277‑Q 2298617
    [Google Scholar]
  60. MitsuhashiN. TakahashiT. SakuraiH. NozakiM. AkimotoT. HasegawaM. SaitoY. MatsumotoH. HiguchiK. MaebayashiK. NiibeH. A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rat yolk sac tumour cell line, NMT-1: Differences of early radiation-induced morphological changes, especially apoptosis.Int. J. Radiat. Biol.199669332933610.1080/095530096145887 8613682
    [Google Scholar]
  61. PawlikT.M. KeyomarsiK. Role of cell cycle in mediating sensitivity to radiotherapy.Int. J. Radiat. Oncol. Biol. Phys.200459492894210.1016/j.ijrobp.2004.03.005 15234026
    [Google Scholar]
  62. ParkS. ChoiC. KimH. ShinY.J. OhY. ParkW. ChoW.K. KimN. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons.Breast Cancer Res. Treat.2024203344946110.1007/s10549‑023‑07150‑4 37902934
    [Google Scholar]
  63. SongY. ChengY. LanT. BaiZ. LiuY. BiZ. AluA. ChengD. WeiY. WeiX. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma.Cancer Lett.202355421601210.1016/j.canlet.2022.216012 36470544
    [Google Scholar]
  64. WeigertV. JostT. HechtM. KnippertzI. HeinzerlingL. FietkauR. DistelL.V. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts.BMC Cancer202020177510.1186/s12885‑020‑07190‑9 32811446
    [Google Scholar]
  65. AbalM. KeryerG. BornensM. Centrioles resist forces applied on centrosomes during G2/M transition.Biol. Cell200597642543410.1042/BC20040112 15898952
    [Google Scholar]
  66. HashemiM. AraniH.Z. OroueiS. FallahS. GhorbaniA. KhaledabadiM. KakavandA. TavakolpournegariA. SaebfarH. HeidariH. SalimimoghadamS. EntezariM. TaheriazamA. HushmandiK. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions.Biomed. Pharmacother.202215511377410.1016/j.biopha.2022.113774 36271556
    [Google Scholar]
  67. Marie-EgyptienneD.T. LohseI. HillR.P. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia.Cancer Lett.20133411637210.1016/j.canlet.2012.11.019 23200673
    [Google Scholar]
  68. KanamotoA. NinomiyaI. HaradaS. TsukadaT. OkamotoK. NakanumaS. SakaiS. MakinoI. KinoshitaJ. HayashiH. OyamaK. MiyashitaT. TajimaH. TakamuraH. FushidaS. OhtaT. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma.Int. J. Oncol.20164951859186910.3892/ijo.2016.3712 27826618
    [Google Scholar]
  69. ZangC. LiuX. LiB. HeY. JingS. HeY. WuW. ZhangB. MaS. DaiW. LiS. PengZ. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma.Oncotarget201787112281123810.18632/oncotarget.14495 28061440
    [Google Scholar]
  70. LuoW. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem.Theranostics20231351607163110.7150/thno.82690 37056571
    [Google Scholar]
  71. RajputS. KumarB.N.P. BanikP. ParidaS. MandalM. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells.J. Cell. Physiol.2015230362062910.1002/jcp.24780 25164250
    [Google Scholar]
  72. LiY. ZhouY. ZhaoC. LiuL. HeQ. ShangK. XuX. LuoX. ZhouD. JinF. The circadian clock gene, BMAL1, promotes radiosensitization in nasopharyngeal carcinoma by inhibiting the epithelial-to-mesenchymal transition via the TGF-β1/Smads/Snail1 axis.Oral Oncol.202415210679810.1016/j.oraloncology.2024.106798 38615583
    [Google Scholar]
  73. EmonsG. SpitznerM. ReinekeS. MöllerJ. AuslanderN. KramerF. HuY. BeissbarthT. WolffH.A. Rave-FränkM. HeßmannE. GaedckeJ. GhadimiB.M. JohnsenS.A. RiedT. GradeM. Chemoradiotherapy resistance in colorectal cancer cells is mediated by Wnt/β-catenin signaling.Mol. Cancer Res.201715111481149010.1158/1541‑7786.MCR‑17‑0205 28811361
    [Google Scholar]
  74. Barcellos-HoffM.H. The radiobiology of TGFβ.Semin. Cancer Biol.202286Pt 385786710.1016/j.semcancer.2022.02.001 35122974
    [Google Scholar]
  75. WangY. YaoN. SunJ. Upregulation of miR-194-5p or silencing of PRC1 enhances radiotherapy sensitivity in esophageal squamous carcinoma cells.Heliyon2023912e2228210.1016/j.heliyon.2023.e22282 38046164
    [Google Scholar]
  76. LuY. MaJ. LiY. HuangJ. ZhangS. YinZ. RenJ. HuangK. WuG. YangK. XuS. CDP138 silencing inhibits TGF-β/Smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer.Cell Death Dis.201789e303610.1038/cddis.2017.434 28880265
    [Google Scholar]
  77. DuS. BouquetS. LoC.H. PellicciottaI. BolourchiS. ParryR. Barcellos-HoffM.H. Attenuation of the DNA damage response by transforming growth factor-beta inhibitors enhances radiation sensitivity of non-small-cell lung cancer cells in vitro and in vivo.Int. J. Radiat. Oncol. Biol. Phys.2015911919910.1016/j.ijrobp.2014.09.026 25835621
    [Google Scholar]
  78. MassaguéJ. TGFβ in cancer.Cell2008134221523010.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  79. WuM.Y. HillC.S. Tgf-beta superfamily signaling in embryonic development and homeostasis.Dev. Cell200916332934310.1016/j.devcel.2009.02.012 19289080
    [Google Scholar]
  80. MassaguéJ. TGFβ signalling in context.Nat. Rev. Mol. Cell Biol.2012131061663010.1038/nrm3434 22992590
    [Google Scholar]
  81. ShiJ. XingH. WangY. ZhangX. ZhanQ. GengM. DingJ. MengL. PI3Kα inhibitors sensitize esophageal squamous cell carcinoma to radiation by abrogating survival signals in tumor cells and tumor microenvironment.Cancer Lett.201945914515510.1016/j.canlet.2019.05.040 31173854
    [Google Scholar]
  82. RicciA. GalloriniM. Del BufaloD. CataldiA. D’AgostinoI. CarradoriS. ZaraS. Negative modulation of the angiogenic cascade induced by Allosteric Kinesin Eg5 inhibitors in a gastric adenocarcinoma in vitro model.Molecules202227395710.3390/molecules27030957 35164221
    [Google Scholar]
  83. LiZ. YuB. QiF. LiF. KIF11 serves as an independent prognostic factor and therapeutic target for patients with lung adenocarcinoma.Front. Oncol.20211167021810.3389/fonc.2021.670218 33968780
    [Google Scholar]
  84. HouY. LiJ. YuA. DengK. ChenJ. WangZ. HuangL. MaS. DaiX. FANCI is associated with poor prognosis and immune infiltration in liver hepatocellular carcinoma.Int. J. Med. Sci.202320791893210.7150/ijms.83760 37324186
    [Google Scholar]
  85. LinX. LiuJ. ZhangN. ZhouD. LiuY. Decoding the immune microenvironment: Unveiling CD8+ T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment.Cancer Cell Int.202424133110.1186/s12935‑024‑03517‑9 39354483
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206373782250211104402
Loading
/content/journals/acamc/10.2174/0118715206373782250211104402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test