Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Aim

The present study aims to identify the synthesis and structural characterization of acyl hydrazone-sulfonamide-containing compounds that were tested on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII.

Methods

Herein, acyl hydrazone derivatives containing the primary sulfonamide moiety were synthesized a three-step synthetic pathway starting from the commercially available 4-sulfamoyl benzoic acid. Structural characterizations of the final compounds were assessed through IR IR, 1H-NMR, 13C-NMR, and elemental analyses. The profiling activity of the final compounds on the Carbonic Anhydrases (CAs; EC 4.2.1.1) I, II, IX, and XII were performed by means of the stopped-flow technique and revealed nanomolar inhibitory potencies on the selected targets. Molecular docking and molecular dynamic simulations afforded a detailed understanding of the binding modes of the most effective compounds.

Results

We reported the synthesis and structural characterization of 25 acyl hydrazone-sulfonamide-containing compounds that were tested on the hCAs I, II, IX, and XII isoforms for their inhibitory features. Overall, all compounds showed nanomolar inhibition potencies on the panel of hCAs considered, and their binding modes were deciphered by means of studies. Molecular docking followed by MD simulations confirmed the stability of -hCA I, -hCA II, -hCA II, -hCA XII, and -hCA XII complexes.

Conclusion

This study presents a deep understanding of the structural determinants influencing the affinity and selectivity of the designed compounds towards different hCAs, thus offering valuable insights for further optimization and development in the field.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206356980250113074705
2025-02-25
2025-10-21
Loading full text...

Full text loading...

References

  1. ÖktenS. EkizM. KoçyiğitÜ.M. TutarA. Çelikİ. AkkurtM. GökalpF. TaslimiP. Gülçinİ. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors.J. Mol. Struct.2019117590691510.1016/j.molstruc.2018.08.063
    [Google Scholar]
  2. OcchipintiR. BoronW.F. Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling.Int. J. Mol. Sci.20192015384110.3390/ijms20153841 31390837
    [Google Scholar]
  3. SupuranC. ScozzafavaA. MincioneF. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents.Curr. Pharm. Des.200814764965410.2174/138161208783877866 18336310
    [Google Scholar]
  4. MbogeM. Y. McKennaR. FrostS. C. Advances in anti-cancer drug development targeting Carbonic anhydrase IX and XII; Bentham Science Publishers eBooks,201634210.2174/9781681083339116050004
    [Google Scholar]
  5. AslanH. RenziG. AngeliA. D’AgostinoI. RoncaR. MassardiM.L. TavaniC. CarradoriS. FerraroniM. GovernaP. ManettiF. CartaF. SupuranC.T. Benzenesulfonamide decorated dihydropyrimidin(thi)ones: Carbonic anhydrase profiling and antiproliferative activity.RSC Med. Chem.20241561929194110.1039/D4MD00101J 38911163
    [Google Scholar]
  6. SupuranC.T. Carbonic anhydrase inhibitors in the treatment and prophylaxis of obesity.Expert Opin. Ther. Pat.200313101545155010.1517/13543776.13.10.1545
    [Google Scholar]
  7. CicconeL. CerriC. NencettiS. OrlandiniE. Carbonic anhydrase inhibitors and epilepsy: State of the art and future perspectives.Molecules20212621638010.3390/molecules26216380 34770789
    [Google Scholar]
  8. CapassoC. SupuranC.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets.Expert Opin. Ther. Targets201519121689170410.1517/14728222.2015.1067685 26235676
    [Google Scholar]
  9. SupuranC.T. ScozzafavaA. Carbonic anhydrases as targets for medicinal chemistry.Bioorg. Med. Chem.200715134336435010.1016/j.bmc.2007.04.020 17475500
    [Google Scholar]
  10. KumarD. KumarM.N. GhoshS. ShahK. Novel bis(indolyl)hydrazide–hydrazones as potent cytotoxic agents.Bioorg. Med. Chem. Lett.201222121221510.1016/j.bmcl.2011.11.031 22123320
    [Google Scholar]
  11. NasrT. BondockS. YounsM. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives.Eur. J. Med. Chem.20147653954810.1016/j.ejmech.2014.02.026 24607878
    [Google Scholar]
  12. Salgın-GökşenU. Gökhan-KelekçiN. GöktaşÖ. KöysalY. KılıçE. IşıkŞ. AktayG. ÖzalpM. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities.Bioorg. Med. Chem.200715175738575110.1016/j.bmc.2007.06.006 17587585
    [Google Scholar]
  13. ŞenkardeşS. Kaushik-BasuN. Durmazİ. ManvarD. BasuA. AtalayR. KüçükgüzelŞ.G. Synthesis of novel diflunisal hydrazide–hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors.Eur. J. Med. Chem.201610830130810.1016/j.ejmech.2015.10.041 26695731
    [Google Scholar]
  14. SettypalliT. ChunduriV.R. MaddineniA.K. BegariN. AllagaddaR. KothaP. ChippadaA.R. Design, synthesis, in silico docking studies and biological evaluation of novel quinoxaline-hydrazide hydrazone-1,2,3-triazole hybrids as α-glucosidase inhibitors and antioxidants.New J. Chem.20194338154351545210.1039/C9NJ02580D
    [Google Scholar]
  15. TahaM. IsmailN.H. BaharudinM.S. LalaniS. MehboobS. KhanK.M. yousuf, S.; Siddiqui, S.; Rahim, F.; Choudhary, M.I. Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential.Med. Chem. Res.20152431310132410.1007/s00044‑014‑1213‑8
    [Google Scholar]
  16. UpeguiY. RiosK. QuiñonesW. EcheverriF. ArchboldR. MurilloJ.D. TorresF. EscobarG. VélezI.D. RobledoS.M. Chroman-4-one hydrazones derivatives: Synthesis, characterization, and in vitro and in vivo antileishmanial effects.Med. Chem. Res.201928122184219910.1007/s00044‑019‑02446‑x
    [Google Scholar]
  17. BiancoG. MeledduR. DistintoS. CottigliaF. GaspariM. MelisC. CoronaA. AngiusR. AngeliA. TavernaD. AlcaroS. LeitansJ. KazaksA. TarsK. SupuranC.T. MaccioniE. N -acylbenzenesulfonamide dihydro-1,3,4-oxadiazole hybrids: Seeking selectivity toward carbonic anhydrase isoforms.ACS Med. Chem. Lett.20178879279610.1021/acsmedchemlett.7b00205 28835790
    [Google Scholar]
  18. EldeebA.H. Abo-AshourM.F. AngeliA. BonardiA. LasheenD.S. ElrazazE.Z. NocentiniA. GratteriP. Abdel-AzizH.A. SupuranC.T. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies.Eur. J. Med. Chem.202122111348610.1016/j.ejmech.2021.113486 33965860
    [Google Scholar]
  19. GüleçÖ. TürkeşC. ArslanM. DemirY. DincerB. EceA. BeydemirŞ. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions.J. Biomol. Struct. Dyn.202442126359637710.1080/07391102.2023.2240889 37540185
    [Google Scholar]
  20. D’AgostinoI. MathewG.E. AngeliniP. VenanzoniR. Angeles FloresG. AngeliA. CarradoriS. MarinacciB. MenghiniL. AbdelgawadM.A. GhoneimM.M. MathewB. SupuranC.T. Biological investigation of N -methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors.J. Enzyme Inhib. Med. Chem.202237198699310.1080/14756366.2022.2055009 35322729
    [Google Scholar]
  21. D’AgostinoI. ZaraS. CarradoriS. De LucaV. CapassoC. KockenC.H.M. ZeemanA.M. AngeliA. CartaF. SupuranC.T. Antimalarial agents targeting Plasmodium falciparum carbonic anhydrase: Towards artesunate hybrid compounds with dual mechanism of action.ChemMedChem20231821e20230026710.1002/cmdc.202300267 37697903
    [Google Scholar]
  22. Yung-ChiC. PrusoffW.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.Biochem. Pharmacol.197322233099310810.1016/0006‑2952(73)90196‑2 4202581
    [Google Scholar]
  23. AngeliA. ChelliI. LucariniL. SgambelloneS. MarriS. VillanoS. FerraroniM. De LucaV. CapassoC. CartaF. SupuranC.T. Novel carbonic anhydrase inhibitors with dual-tail core sulfonamide show potent and lasting effects for glaucoma therapy.J. Med. Chem.20246743066308910.1021/acs.jmedchem.3c02254 38266245
    [Google Scholar]
  24. Schrödinger.1st edNew YorkSchrödinger, LLC2024
    [Google Scholar]
  25. LuC. WuC. GhoreishiD. ChenW. WangL. DammW. RossG.A. DahlgrenM.K. RussellE. Von BargenC.D. AbelR. FriesnerR.A. HarderE.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  26. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  27. Desmond molecular dynamics system. In: Maestro-Desmond Interoperability Tools.New YorkSchrödinger2024
    [Google Scholar]
  28. AbascalJ.L.F. VegaC. A general purpose model for the condensed phases of water: TIP4P/2005.J. Chem. Phys.20051232323450510.1063/1.2121687 16392929
    [Google Scholar]
  29. CoşarE.D. DincelE.D. DemirayS. SucularlıE. TüccaroğluE. ÖzsoyN. Ulusoy-GüzeldemirciN. Anticholinesterase activities of novel indole-based hydrazide-hydrazone derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction.J. Mol. Struct.2022124713139810.1016/j.molstruc.2021.131398
    [Google Scholar]
  30. KucukogluK. GulH.I. TaslimiP. GulcinI. SupuranC.T. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes.Bioorg. Chem.20198631632110.1016/j.bioorg.2019.02.008 30743172
    [Google Scholar]
  31. KhalifahR.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C.J. Biol. Chem.197124682561257310.1016/S0021‑9258(18)62326‑9 4994926
    [Google Scholar]
  32. EceA. SevinF. Exploring QSAR on 4-Cyclohexylmethoxypyrimidines as antitumor agents for their inhibitory activity of CDK2.Lett. Drug Des. Discov.20107962563110.2174/157018010792929612
    [Google Scholar]
  33. ChanK. FrankishN. ZhangT. EceA. CannonA. O’SullivanJ. SheridanH. Bioactive indanes: Insight into the bioactivity of indane dimers related to the lead anti-inflammatory molecule PH46A.J. Pharm. Pharmacol.202072792793710.1111/jphp.13269 32301120
    [Google Scholar]
  34. BaşoğluF. Ulusoy-GüzeldemirciN. Akalın-ÇiftçiG. ÇetinkayaS. EceA. Novel imidazo[2,1‐ b]thiazole‐based anticancer agents as potential focal adhesion kinase inhibitors: Synthesis, in silico and in vitro evaluation.Chem. Biol. Drug Des.202198227028210.1111/cbdd.13896 34021971
    [Google Scholar]
  35. EfeogluC. TaskinS. SelcukO. CelikB. TumkayaE. EceA. SariH. SeferogluZ. AyazF. NuralY. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids.Bioorg. Med. Chem.20239511751010.1016/j.bmc.2023.117510 37926047
    [Google Scholar]
  36. EceA. Computer-aided drug design.BMC Chem.20231712610.1186/s13065‑023‑00939‑w 36964610
    [Google Scholar]
  37. YamaliC. GulH.I. Tugrak SakaryaM. Nurpelin SaglikB. EceA. DemirelG. NenniM. LeventS. Cihat OnerA. Quinazolinone-based benzenesulfonamides with low toxicity and high affinity as monoamine oxidase-A inhibitors: Synthesis, biological evaluation and induced-fit docking studies.Bioorg. Chem.202212410582210.1016/j.bioorg.2022.105822 35500503
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206356980250113074705
Loading
/content/journals/acamc/10.2174/0118715206356980250113074705
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test