Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction/Objective

Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health. Royal jelly (RJ) is also being studied as a potential therapeutic agent for cancer and other chronic diseases. It is effective in reducing tumor growth and stimulating immunity.

Methods

In this study, we investigated the effects of royal jelly on cancerous A549 cells and healthy MRC-5 cells at various doses ranging from 1.25 to 10 mg/mL. Royal jelly's anti-proliferative effect was evaluated by MTT and SRB assay for 48 h. The induction of necrosis and apoptosis was assessed by flow cytometry as well. The relative amounts of major molecules in Royal jelly were determined by FTIR spectroscopy to identify key functional groups and molecular structures. In addition, this technique was used for the first time to detect changes in the macromolecular composition of lung cells treated with royal jelly. Thus, it provided insights into the relative abundance of proteins, lipids, and carbohydrates, which could correlate with their bioactive properties.

Results

The antiproliferative effect of Royal jelly was found to be selective on A549 cells in a dose-dependent manner with an IC of 9.26 mg/mL, with no cytotoxic effects on normal MRC-5 cells. Moreover, Royal jelly induced predominantly necrotic cell death in A549 cells, %39.10 at 4 mg/mL and %57.88 at 10 mg/mL concentrations. However, the necrosis rate in MRC-5 cells was quite low, at 9.16% and 20.44% at the same doses. Royal jelly showed dose-dependent selective cytotoxicity toward A549 cells, whereas it exhibited no apparent cytotoxicity in MRC-5 cells. In order to identify the biomolecular changes induced by royal jelly, we used two unsupervised chemometric pattern recognition algorithms (PCA and HCA) on the preprocessed sample FTIR spectra to determine the effects of royal jelly on cell biochemistry. According to PCA and HCA results, RJ treatments especially affected biomolecules in A549 cells. The total spectral band variances in the PCA loading spectra were calculated for understanding biomolecular alterations. These plots revealed profound changes in the lipid, protein, and nucleic acid content of RJ-applied lung cells, primarily identifying RJ and HO treated groups for A549 cells.

Conclusion

Ultimately, the selective cytotoxicity of royal jelly toward A549 cancerous cells suggests that royal jelly may be a promising therapeutic agent for identifying innovative lung cancer treatment strategies. Additionally, understanding the molecular alterations induced by royal jelly could guide the development of novel cancer treatments that exploit its bioactive properties. This could lead to more effective and safer therapies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206355400241112084611
2025-01-09
2025-11-06
Loading full text...

Full text loading...

References

  1. KocotJ. KiełczykowskaM. Luchowska-KocotD. KurzepaJ. MusikI. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application.Oxid. Med. Cell. Longev.201820181707420910.1155/2018/7074209 29854089
    [Google Scholar]
  2. WytrychowskiM. ChenavasS. DanieleG. CasabiancaH. BatteauM. GuibertS. BrionB. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding.J. Food Compos. Anal.201329212613310.1016/j.jfca.2012.12.002
    [Google Scholar]
  3. ButtstedtA. MureşanC.I. LilieH. HauseG. IhlingC.H. SchulzeS.H. PietzschM. MoritzR.F.A. How honeybees defy gravity with royal jelly to raise queens.Curr. Biol.201828710951100.e310.1016/j.cub.2018.02.022 29551410
    [Google Scholar]
  4. CornaraL. BiagiM. XiaoJ. BurlandoB. Therapeutic properties of bioactive compounds from different honeybee products.Front. Pharmacol.2017841210.3389/fphar.2017.00412 28701955
    [Google Scholar]
  5. CollazoN. CarpenaM. Nuñez-EstevezB. OteroP. Simal-GandaraJ. PrietoM.A. Health promoting properties of bee royal jelly: Food of the queens.Nutrients202113254310.3390/nu13020543 33562330
    [Google Scholar]
  6. IbrahimA.A.E.M. Immunomodulatory effects of royal jelly on aorta CD3, CD68 and eNOS expression in hypercholesterolaemic rats.J. Basic Appl. Zool.201467414014810.1016/j.jobaz.2014.08.006
    [Google Scholar]
  7. López-GutiérrezN. Aguilera-LuizM.M. Romero-GonzálezR. VidalJ.L.M. FrenichG. A. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography–Orbitrap high resolution mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014973172810.1016/j.jchromb.2014.09.038 25464090
    [Google Scholar]
  8. FilipičB. GradišnikL. RiharK. ŠoošE. PereyraA. PotokarJ. The influence of royal jelly and human interferon-alpha (HuIFN-αN3) on proliferation, glutathione level and lipid peroxidation in human colorectal adenocarcinoma cells in vitro.Arh. Hig. Rada Toksikol.2015664
    [Google Scholar]
  9. ChenY.F. WangK. ZhangY.Z. ZhengY.F. HuF.L. In vitro anti-inflammatory effects of three fatty acids from royal jelly.Mediators Inflamm.2016201613583684 27847405
    [Google Scholar]
  10. FratiniF. CiliaG. ManciniS. FelicioliA. Royal Jelly: An ancient remedy with remarkable antibacterial properties.Microbiol. Res.201619213014110.1016/j.micres.2016.06.007 27664731
    [Google Scholar]
  11. ChiuH.F. ChenB.K. LuY.Y. HanY.C. ShenY.C. VenkatakrishnanK. GolovinskaiaO. WangC.K. Hypocholesterolemic efficacy of royal jelly in healthy mild hypercholesterolemic adults.Pharm. Biol.201755149750210.1080/13880209.2016.1253110 27937077
    [Google Scholar]
  12. AlmeerR.S. AlBasherG.I. AlarifiS. AlkahtaniS. AliD. A Moneim, A.E. Royal jelly attenuates cadmium-induced nephrotoxicity in male mice.Sci. Rep.201991582510.1038/s41598‑019‑42368‑7 30967588
    [Google Scholar]
  13. PanY. XuJ. JinP. YangQ. ZhuK. YouM. HuF. ChenM. Royal jelly ameliorates behavioral deficits, cholinergic system deficiency, and autonomic nervous dysfunction in ovariectomized cholesterol-fed rabbits.Molecules2019246114910.3390/molecules24061149 30909491
    [Google Scholar]
  14. MokayaH.O. NjeruL.K. LattorffH.M.G. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties.Food Biosci.20203710073310.1016/j.fbio.2020.100733
    [Google Scholar]
  15. YouM.M. LiuY.C. ChenY.F. PanY.M. MiaoZ.N. ShiY.Z. SiJ.J. ChenM.L. HuF.L. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats.J. Food Biochem.2020443e1313810.1111/jfbc.13138 31894585
    [Google Scholar]
  16. YoshidaM. HayashiK. WatadaniR. OkanoY. TanimuraK. KotohJ. SasakiD. MatsumotoK. MaedaA. Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice.J. Vet. Med. Sci.201779229930710.1292/jvms.16‑0458 27890887
    [Google Scholar]
  17. GhanbariE. KhazaeiM.R. KhazaeiM. NejatiV. Royal jelly promotes ovarian follicles growth and increases steroid hormones in immature rats.Int. J. Fertil. Steril.2018114263269 29043701
    [Google Scholar]
  18. YoonB.K. ChinJ. KimJ.W. ShinM.H. AhnS. LeeD.Y. SeoS.W. NaD.L. Menopausal hormone therapy and mild cognitive impairment: A randomized, placebo-controlled trial.Menopause201825887087610.1097/GME.0000000000001140 29846283
    [Google Scholar]
  19. SharifS.N. DarsarehF. Effect of royal jelly on menopausal symptoms: A randomized placebo-controlled clinical trial.Complement. Ther. Clin. Pract.201937475010.1016/j.ctcp.2019.08.006 31470366
    [Google Scholar]
  20. YouM. PanY. LiuY. ChenY. WuY. SiJ. WangK. HuF. Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis.Front. Aging Neurosci.20191042810.3389/fnagi.2018.00428 30687079
    [Google Scholar]
  21. AhmadS. CamposM.G. FratiniF. AltayeS.Z. LiJ. New insights into the biological and pharmaceutical properties of royal jelly.Int. J. Mol. Sci.202021238210.3390/ijms21020382 31936187
    [Google Scholar]
  22. ShirakawaT. MiyawakiA. MatsubaraT. OkumuraN. OkamotoH. NakaiN. RojasawasthienT. MorikawaK. InoueA. GotoA. WashioA. TsujisawaT. KawamotoT. KokabuS. Daily oral administration of protease-treated royal jelly protects against denervation-induced skeletal muscle atrophy.Nutrients20201210308910.3390/nu12103089 33050588
    [Google Scholar]
  23. TsuchiyaY. HayashiM. NagamatsuK. OnoT. KamakuraM. IwataT. NakashimaT. The key royal jelly component 10-hydroxy-2-decenoic acid protects against bone loss by inhibiting NF-κB signaling downstream of FFAR4.J. Biol. Chem.202029534122241223210.1074/jbc.RA120.013821 32647011
    [Google Scholar]
  24. LinY. ShaoQ. ZhangM. LuC. FlemingJ. SuS. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model.BMC Complement. Altern. Med.201919117510.1186/s12906‑019‑2592‑7 31299973
    [Google Scholar]
  25. Kurek-GóreckaA. GóreckiM. Rzepecka-StojkoA. BalwierzR. StojkoJ. Bee products in dermatology and skin care.Molecules202025355610.3390/molecules25030556 32012913
    [Google Scholar]
  26. SiavashM. ShokriS. HaghighiS. MohammadiM. ShahtalebiM.A. FarajzadehganZ. The efficacy of topical Royal Jelly on diabetic foot ulcers healing: A case series.J. Res. Med. Sci.2011167904909 22279458
    [Google Scholar]
  27. VirgiliouC. KanelisD. PinaA. GikaH. TananakiC. ZotouA. TheodoridisG. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of Royal Jelly.J. Chromatogr. A2020161646078310.1016/j.chroma.2019.460783 31952813
    [Google Scholar]
  28. BalkanskaR. MladenovaE. KaradjovaI. Quantification of selected trace and mineral elements in royal jelly from Bulgaria by ICP-OES and etaas.J. Apic. Sci.2017612223
    [Google Scholar]
  29. KamyabS. GharachorlooM. HonarvarM. GhavamiM. Quantitative analysis of bioactive compounds present in Iranian royal jelly.J. Apic. Res.2020591425210.1080/00218839.2019.1673964
    [Google Scholar]
  30. BílikovaK. HuangS.C. LinI.P. ŠimuthJ. PengC.C. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera.Peptides20156819019610.1016/j.peptides.2015.03.001 25784287
    [Google Scholar]
  31. AltuntasS. CinarA. AltuntasV.X. Modelling of Listeria monocytogenes growth and survival in presence of royal jelly, a promising anti-biofilm agent.J. Food Nutr. Res.2020591
    [Google Scholar]
  32. XuX. GaoY. Isolation and characterization of proteins and lipids from honeybee (Apis mellifera L.) queen larvae and royal jelly.Food Res. Int.201354133033710.1016/j.foodres.2013.07.030
    [Google Scholar]
  33. GuoH. KouzumaY. YonekuraM. Structures and properties of antioxidative peptides derived from royal jelly protein.Food Chem.2009113123824510.1016/j.foodchem.2008.06.081
    [Google Scholar]
  34. LiuY. LiuJ. ZhenL.I. CaoZ. BaiH. YuA.N. FangX. YangQ. HuiL.I. NaL.I. Inhibitory effect of royal jelly acid on proliferation of human colon cancer SW620 cells and its network pharmacological analysis.J. Jilin Univ.2024501150160
    [Google Scholar]
  35. KaradenizA. SimsekN. KarakusE. YildirimS. KaraA. CanI. KisaF. EmreH. TurkeliM. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin.Oxid. Med. Cell. Longev.2011201111010.1155/2011/981793 21904651
    [Google Scholar]
  36. OsamaH. AbdullahA. GamalB. EmadD. SayedD. HusseinE. MahfouzE. TharwatJ. SayedS. MedhatS. BahaaT. AbdelrahimM.E.A. Effect of honey and Royal Jelly against cisplatin-induced nephrotoxicity in patients with cancer.J. Am. Coll. Nutr.201736534234610.1080/07315724.2017.1292157 28548561
    [Google Scholar]
  37. AlnomasyS.F. Al ShehriZ.S. Anti-cancer and cell toxicity effects of royal jelly and its cellular mechanisms against human hepatoma cells.Pharmacogn. Mag.20221879635640
    [Google Scholar]
  38. HasanA.E.Z. AndriantoD. NurfadhilahK. Anticancer activity of royal jelly Apis mellifera against WiDr cell line and Hela cell line.Agrikultura Cri2021212435
    [Google Scholar]
  39. GismondiA. TrionferaE. CanutiL. Di MarcoG. CaniniA. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells.Oncol. Rep.20173831833184410.3892/or.2017.5851 28737831
    [Google Scholar]
  40. MaY. WangH. HuX. ZouH. XuT. WangZ. JuX. HeR. Inhibitory effects of royal jelly and its functional components on the proliferation of MKN-28 gastric cancer cells.J. Agric. Food Chem.20247238209182092910.1021/acs.jafc.4c03367 39262347
    [Google Scholar]
  41. JovanovićM.M. ŠeklićD.S. RakobradovićJ.D. PlanojevićN.S. VukovićN.L. VukićM.D. MarkovićS.D. Royal jelly and trans-10-hydroxy-2-decenoic acid inhibit migration and invasion of colorectal carcinoma cells.Food Technol. Biotechnol.202260221322410.17113/ftb.60.02.22.7495 35910272
    [Google Scholar]
  42. MiyataY. SakaiH. Anti-cancer and protective effects of royal jelly on therapy-induced toxicities in malignancies.Int. J. Mol. Sci.20181910327010.3390/ijms19103270 30347885
    [Google Scholar]
  43. AlbalawiA.E. AlthobaitiN.A. AlrdaheS.S. AlhasaniR.H. AlaryaniF.S. BinMowyna, M.N. Antitumor activity of royal jelly and its cellular mechanisms against Ehrlich solid tumor in mice.BioMed Res. Int.2022202217233997 35528154
    [Google Scholar]
  44. KumarR. ThakurA. KumarS. HajamY.A. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review.Heliyon20241017e3713810.1016/j.heliyon.2024.e37138 39296128
    [Google Scholar]
  45. ShakibK.M. HosseiniS.M. KazemiS. In vitro and in vivo antioxidant and anticancer potentials of royal jelly for dimethylhydrazine-induced colorectal cancer in wistar rats.Oxid. Med. Cell. Longev.20222022111110.1155/2022/9506026 35910834
    [Google Scholar]
  46. OršolićN. Jazvinšćak JembrekM. Royal jelly: Biological action and health benefits.Int. J. Mol. Sci.20242511602310.3390/ijms25116023 38892209
    [Google Scholar]
  47. AlsharifF.H. MazanecS.R. The use of complementary and alternative medicine among women with breast cancer in Saudi Arabia.Appl. Nurs. Res.201948758010.1016/j.apnr.2019.05.019 31266612
    [Google Scholar]
  48. AbandansariR.M. ParsianH. KazerouniF. PorbagherR. ZabihiE. RahimipourA. Effect of simultaneous treatment with royal jelly and doxorubicin on the survival of the prostate cancer cell line (PC3): An in vitro study.Int. J. Cancer Manag.201811413780
    [Google Scholar]
  49. SantosF. MagalhaesS. HenriquesM.C. FardilhaM. NunesA. Spectroscopic features of cancer cells: FTIR spectroscopy as a tool for early diagnosis.Curr. Metabolomics20186210311110.2174/2213235X06666180521084551
    [Google Scholar]
  50. BlagosklonnyM.V. Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells.Oncotarget202314119320610.18632/oncotarget.28382 36913303
    [Google Scholar]
  51. NakayaM. OndaH. SasakiK. YukiyoshiA. TachibanaH. YamadaK. Effect of royal jelly on bisphenol A-induced proliferation of human breast cancer cells.Biosci. Biotechnol. Biochem.200771125325510.1271/bbb.60453 17213647
    [Google Scholar]
  52. SalamaS. ShouQ. Abd El-WahedA.A. EliasN. XiaoJ. SwillamA. UmairM. GuoZ. DagliaM. WangK. KhalifaS.A.M. El-SeediH.R. Royal Jelly: Beneficial properties and synergistic effects with chemotherapeutic drugs with particular emphasis in anticancer strategies.Nutrients20221419416610.3390/nu14194166 36235818
    [Google Scholar]
  53. BotezanS. BaciG.M. BagameriL. PașcaC. DezmireanD.S. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects.Molecules2023283151010.3390/molecules28031510 36771175
    [Google Scholar]
  54. LinX.M. LiuS.B. LuoY.H. XuW.T. ZhangY. ZhangT. XueH. ZuoW.B. LiY.N. LuB.X. JinC.H. 10-HDA induces ROS-mediated apoptosis in A549 human lung cancer cells by regulating the MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways.BioMed Res. Int.20202020111510.1155/2020/3042636 33376719
    [Google Scholar]
  55. JiangC. LiuX. LiC. QianH. ChenD. LaiC. ShenL. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line.J. Zhejiang Univ. Sci. B2018191296097210.1631/jzus.B1800257 30507079
    [Google Scholar]
  56. KamiyaT. WatanabeM. HaraH. MitsugiY. YamaguchiE. ItohA. AdachiT. Induction of human-lung-cancer-A549-cell apoptosis by 4-hydroperoxy-2-decenoic acid ethyl ester through intracellular ROS accumulation and the induction of proapoptotic CHOP expression.J. Agric. Food Chem.20186641107411074710.1021/acs.jafc.8b04424 30296076
    [Google Scholar]
  57. Abu-SerieM.M. HabashyN.H. Major royal jelly proteins elicited suppression of SARS-CoV-2 entry and replication with halting lung injury.Int. J. Biol. Macromol.202322871573110.1016/j.ijbiomac.2022.12.251 36584778
    [Google Scholar]
  58. SusilowatiH. MurakamiK. YumotoH. AmohT. HiraoK. HirotaK. MatsuoT. MiyakeY. Royal jelly inhibits Pseudomonas aeruginosa adherence and reduces excessive inflammatory responses in human epithelial cells.BioMed Res. Int.2017201713191752 29075644
    [Google Scholar]
  59. CihanY.B. OzturkA. GokalpS.S. Protective role of royal jelly against radiation-induced oxidative stress in rats.Int. J. Hematol. Oncol.2013232798710.4999/uhod.11016
    [Google Scholar]
  60. Khani-EshratabadiM. TalebpuorA. BagherzadehA. MehranfarP. KhanmiriJ.M. GhorbaniM. Abtahi-EivaryS.H. Potential anti-apoptotic impacts and telomerase activity of royal jelly on different tissues of rats.Arch. Med. Lab. Sci.20228118
    [Google Scholar]
  61. AslanA. GokO. BeyazS. CanM.I. ParlakG. GundogduR. OzercanI.H. BaspinarS. Royal jelly regulates the caspase, Bax and COX-2, TNF-α protein pathways in the fluoride exposed lung damage in rats.Tissue Cell20227610175410.1016/j.tice.2022.101754 35158127
    [Google Scholar]
  62. TasdoganA.M. KilicE.T. PancarZ. OzdalM. A folk remedy: Royal jelly improves lung capacity in smokers.Prog. Nutr.2020221297303
    [Google Scholar]
  63. CebiN. BozkurtF. YilmazM.T. SagdicO. An evaluation of FTIR spectroscopy for prediction of royal jelly content in hive products.J. Apic. Res.202059214615510.1080/00218839.2019.1707009
    [Google Scholar]
  64. PucciB. KastenM. GiordanoA. Cell cycle and apoptosis.Neoplasia20002429129910.1038/sj.neo.7900101 11005563
    [Google Scholar]
  65. BonnierF. ByrneH.J. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems.Analyst (Lond.)2012137232233210.1039/C1AN15821J 22114757
    [Google Scholar]
  66. SevercanF. GorguluG. GorguluS.T. GurayT. Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: Evidence from rat liver microsomal membranes.Anal. Biochem.20053391364010.1016/j.ab.2005.01.011 15766707
    [Google Scholar]
  67. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.20192019111310.1155/2019/5080843 31737171
    [Google Scholar]
  68. Simsek OzekN. Exploring the in vitro potential of royal jelly against glioblastoma and neuroblastoma: Impact on cell proliferation, apoptosis, cell cycle, and the biomolecular content.Analyst (Lond.)202414961872188410.1039/D3AN01840G 38349213
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206355400241112084611
Loading
/content/journals/acamc/10.2174/0118715206355400241112084611
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): flow cytometry; FTIR spectroscopy; lung cancer treatment; MTT; Royal jelly; SRB assay
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test