Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.

Objective

This study aims to synthesize and evaluate novel derivatives derived from the 1,2,4-triazole scaffold for their potential as anticancer agents. Molecular docking techniques are employed to investigate the interactions between the designed derivatives and specific cancer-related targets, providing insights into potential underlying mechanisms.

Methods

The synthesis involves a three-step process to produce 5-oxo-1,2,4-triazole-3-carboxamide derivatives. Various analytical techniques, including NMR and HRMS, validate the successful synthesis. Molecular docking studies utilize X-ray crystal structures of EGFR and CDK-4 obtained from the Protein Data Bank, employing the Schrödinger suite for ligand preparation and Glide's extra-precision docking modes for scoring.

Results

The synthesis yields compounds with moderate to good yields, supported by detailed characterization. Molecular docking scores for the derivatives against EGFR and CDK-4 revealed diverse affinities influenced by distinct substituents. Compounds with hydroxyl, and halogen, substitutions exhibited notable binding affinities, while alkyl and amino substitutions showed varying effects. The 1,2,4-triazole derivatives demonstrated potential for targeted cancer therapy.

Conclusion

The study highlights the successful synthesis of 5-oxo-1,2,4-triazole-3-carboxamides and their diverse interactions with cancer-related targets. The findings emphasized the potential of these derivatives as candidates for further development as anticancer agents, offering insights into structure-activity relationships. The 1,2,4-triazole scaffold stands out as a promising platform for advancing cancer treatment with enhanced precision and efficacy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206315373241014101856
2025-01-06
2025-11-06
Loading full text...

Full text loading...

References

  1. MithoowaniH. FebbraroM. Non-small-cell lung cancer in 2022. A review for general practitioners in oncology.Curr. Oncol.20222931828183910.3390/curroncol29030150 35323350
    [Google Scholar]
  2. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  3. van den BoogaardW.M.C. KomninosD.S.J. VermeijW.P. Chemotherapy side-effects: Not all DNA damage is equal.Cancers (Basel)202214362710.3390/cancers14030627 35158895
    [Google Scholar]
  4. KaurR. Ranjan DwivediA. KumarB. KumarV. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review.Anticancer. Agents Med. Chem.201616446548910.2174/1871520615666150819121106 26286663
    [Google Scholar]
  5. BonandiE. ChristodoulouM.S. FumagalliG. PerdicchiaD. RastelliG. PassarellaD. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry.Drug Discov. Today201722101572158110.1016/j.drudis.2017.05.014 28676407
    [Google Scholar]
  6. MurrayJ. YoungO.E. RenshawL. WhiteS. WilliamsL. EvansD.B. ThomasJ.S.J. DowsettM. DixonJ.M. A randomised study of the effects of letrozole and anastrozole on oestrogen receptor positive breast cancers in postmenopausal women.Breast Cancer Res. Treat.2009114349550110.1007/s10549‑008‑0027‑0 18438705
    [Google Scholar]
  7. ShahzadS.A. YarM. KhanZ.A. ShahzadiL. NaqviS.A.R. MahmoodA. UllahS. ShaikhA.J. SheraziT.A. BaleA.T. KukułowiczJ. BajdaM. Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs.Bioorg. Chem.20198520922010.1016/j.bioorg.2019.01.005 30634096
    [Google Scholar]
  8. BeraH. TanB.J. SunL. DolzhenkoA.V. ChuiW.K. ChiuG.N.C. A structure–activity relationship study of 1,2,4-triazolo[1,5-a][1,3,5]triazin-5,7-dione and its 5-thioxo analogues on anti-thymidine phosphorylase and associated anti-angiogenic activities.Eur. J. Med. Chem.20136732533410.1016/j.ejmech.2013.06.051 23871912
    [Google Scholar]
  9. SongZ. LiuY. DaiZ. LiuW. ZhaoK. ZhangT. HuY. ZhangX. DaiY. Synthesis and aromatase inhibitory evaluation of 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives.Bioorg. Med. Chem.201624194723473010.1016/j.bmc.2016.08.014 27567077
    [Google Scholar]
  10. BatranR.Z. DawoodD.H. El-SeginyS.A. AliM.M. MaherT.J. GugnaniK.S. Rondon-OrtizA.N. New coumarin derivatives as anti‐breast and anti‐cervical cancer agents targeting VEGFR‐2 and p38α MAPK.Arch. Pharm.20173509170006410.1002/ardp.201700064 28787092
    [Google Scholar]
  11. QinM. YanS. WangL. ZhangH. ZhaoY. WuS. WuD. GongP. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents.Eur. J. Med. Chem.201611511310.1016/j.ejmech.2016.02.071 26991938
    [Google Scholar]
  12. LiuJ. NieM. WangY. HuJ. ZhangF. GaoY. LiuY. GongP. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors.Eur. J. Med. Chem.201612343144610.1016/j.ejmech.2016.07.059 27490023
    [Google Scholar]
  13. HanM.İ. BekçiH. UbaA.I. YıldırımY. KarasuluE. CumaoğluA. KarasuluH.Y. YelekçiK. YılmazÖ. KüçükgüzelŞ.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4‐triazole containing hydrazide–hydrazones derived from (S)‐naproxen.Arch. Pharm.20193526180036510.1002/ardp.201800365 31115928
    [Google Scholar]
  14. EissaI.H. MetwalyA.M. BelalA. MehanyA.B.M. AyyadR.R. El-AdlK. MahdyH.A. TaghourM.S. El-GamalK.M.A. El-SawahM.E. ElmetwallyS.A. ElhendawyM.A. RadwanM.M. ElSohlyM.A. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors.Arch. Pharm.201935211190012310.1002/ardp.201900123 31463953
    [Google Scholar]
  15. IbrahimM.K. TaghourM.S. MetwalyA.M. BelalA. MehanyA.B.M. ElhendawyM.A. RadwanM.M. YassinA.M. El-DeebN.M. HafezE.E. ElSohlyM.A. EissaI.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors.Eur. J. Med. Chem.201815511713410.1016/j.ejmech.2018.06.004 29885574
    [Google Scholar]
  16. Sáez-CalvoG. SharmaA. BalaguerF.A. BarasoainI. Rodríguez-SalarichsJ. OliericN. Muñoz-HernándezH. BerbísM.Á. WendebornS. PeñalvaM.A. MatesanzR. CanalesÁ. ProtaA.E. Jímenez-BarberoJ. AndreuJ.M. LamberthC. SteinmetzM.O. DíazJ.F. Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin.Cell Chem. Biol.2017246737750.e610.1016/j.chembiol.2017.05.016 28579361
    [Google Scholar]
  17. AlswahM. BayoumiA. ElgamalK. ElmorsyA. IhmaidS. AhmedH. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects.Molecules20172314810.3390/molecules23010048 29280968
    [Google Scholar]
  18. SzumilakM. Wiktorowska-OwczarekA. StanczakA. Hybrid drugs—A strategy for overcoming anticancer drug resistance?Molecules2021269260110.3390/molecules26092601 33946916
    [Google Scholar]
  19. LiN. ChenC. zhu, H.; Shi, Z.; Sun, J.; Chen, L. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis.Bioorg. Chem.202111110486710.1016/j.bioorg.2021.104867 33845380
    [Google Scholar]
  20. GrebenkinaL.E. MatveevA.V. ChudinovM.V. Parallel synthesis of derivatives of 1H-1,2,4-triazole-3-carboxylic acids with heterocyclic substituents at position 5.Chem. Heterocycl. Compd.20205691173117910.1007/s10593‑020‑02794‑2
    [Google Scholar]
  21. ParkJ. YoonY.J. KimB. LeeH.G. KangS.B. SungG. KimJ.J. LeeS.G. Tert-butoxide-assisted amidation of esters under green conditions.Synthesis2012441e1e110.1055/s‑0031‑1289625
    [Google Scholar]
  22. BenderB.J. GahbauerS. LuttensA. LyuJ. WebbC.M. SteinR.M. FinkE.A. BaliusT.E. CarlssonJ. IrwinJ.J. ShoichetB.K. A practical guide to large-scale docking.Nat. Protoc.202116104799483210.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  23. RissT.L. MoravecR.A. NilesA.L. Cell Viability Assays.Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences2016
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206315373241014101856
Loading
/content/journals/acamc/10.2174/0118715206315373241014101856
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 1,2,4-triazole; carboxamides; CDK-4; EGFR; molecular docking; MTT assay
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test