Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.

Objective

The present study was designed to determine the suppression of proliferation and induction of apoptosis activities and phenolic content of methanol extract (OsME) on lung cancer cells (A549).

Methods

For this purpose, the cell viability of A549 cells exposed to OsME was first determined. The morphological changes of the cell were observed by an inverted phase contrast microscope. Moreover, the percentage of apoptotic and necrotic cells was determined by FACS with AnnexinV/Propodium iodide staining. Additionally, proapoptotic Bax and antiapoptotic Bcl-2 mRNA levels were determined by Real-time PCR. Phenolic compounds of OsME were detected by LC-MS-MS.

Results

It was observed that the viability and proliferation of lung cancer cells decreased after the treatment of different concentrations of OsME. At a concentration of 200 mg/ml of OsME, most of the cell membrane structures were observed to disintegrate. Meanwhile, a 25 µg/ml concentration of OsME increased the Bax expression and percentage of late apoptotic cells. Vanillic acid and luteolin were identified as the main phenolic compounds of OsME.

Conclusion

OsME exhibited antiproliferation activity on A549 cells and induced apoptosis at low doses.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206333509241112060647
2025-01-09
2025-09-05
Loading full text...

Full text loading...

References

  1. SarkarS. HornG. MoultonK. OzaA. BylerS. KokolusS. LongacreM. Cancer development, progression, and therapy: An epigenetic overview.Int. J. Mol. Sci.20131410210872111310.3390/ijms141021087 24152442
    [Google Scholar]
  2. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  4. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  5. CangırA.K. YumukP.F. SakS.D. AkyürekS. EralpY. YılmazÜ. Lung cancer in Turkey.Elsevier202211581170
    [Google Scholar]
  6. SchabathM.B. CoteM.L. Cancer progress and priorities: Lung cancer.Cancer Epidemiol. Biomarkers Prev.201928101563157910.1158/1055‑9965.EPI‑19‑0221 31575553
    [Google Scholar]
  7. MinnaJ.D. RothJ.A. GazdarA.F. Focus on lung cancer.Cancer Cell200211495210.1016/S1535‑6108(02)00027‑2 12086887
    [Google Scholar]
  8. ZappaC. MousaS.A. Non-small cell lung cancer: Current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.07 27413711
    [Google Scholar]
  9. HoyH. LynchT. BeckM. Surgical treatment of lung cancer.Crit. Care Nursing Clin.2019313303313 31351552
    [Google Scholar]
  10. IslamK.M. AnggondowatiT. DevianyP.E. RyanJ.E. FetrickA. BagendaD. CopurM.S. TolentinoA. VaziriI. McKeanH.A. DunderS. GrayJ.E. HuangC. GantiA.K. Patient preferences of chemotherapy treatment options and tolerance of chemotherapy side effects in advanced stage lung cancer.BMC Cancer201919183510.1186/s12885‑019‑6054‑x 31455252
    [Google Scholar]
  11. KimE.S. Chemotherapy resistance in lung cancer.Adv. Exp. Med. Biol.201689318920910.1007/978‑3‑319‑24223‑1_10
    [Google Scholar]
  12. Phenolic compounds that modulate multi drug resistance through inhibiting of P-glycoprotein encoded by gene ABCB1Eurasian J Bio Chem Sci20225Ek sayı 1162165
    [Google Scholar]
  13. SalehiB. ZuccaP. Sharifi-RadM. PezzaniR. RajabiS. SetzerW.N. VaroniE.M. IritiM. KobarfardF. Sharifi-RadJ. Phytotherapeutics in cancer invasion and metastasis.Phytother. Res.20183281425144910.1002/ptr.6087 29672977
    [Google Scholar]
  14. Sharifi-RadM. B YılmazY. AntikaG. SalehiB. TumerT.B. Kulandaisamy VenilC. DasG. PatraJ.K. KarazhanN. AkramM. IqbalM. ImranM. SenS. AcharyaK. DeyA Sharifi-RadJ. Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum.Phytother. Res.20213519512110.1002/ptr.6785 32789910
    [Google Scholar]
  15. MarrelliM. StattiG.A. ConfortiF. Origanum spp.: An update of their chemical and biological profiles.Phytochem. Rev.201817487388810.1007/s11101‑018‑9566‑0
    [Google Scholar]
  16. EmireZ. YabalakE. Can Origanum be a hope for cancer treatment? A review on the potential of Origanum species in preventing and treating cancers.Int. J. Environ. Health Res.202333989491010.1080/09603123.2022.2064437 35414316
    [Google Scholar]
  17. YarlılarŞ.G. YabalakE. YetkinD. GizirA.M. MazmancıB. Anticancer potential of Origanum munzurense extract against MCF-7 breast cancer cell.Int. J. Environ. Health Res.202333660060810.1080/09603123.2022.2042495 35188839
    [Google Scholar]
  18. YumrutaşÖ YumrutasP PehlivanM KahramanD KorkmazM DoğanM. Anticancer activity of Origanum vulgare on lung cancer: Antiproliferative, morphological, and apoptotic effectsIJNPR2024153357363
    [Google Scholar]
  19. BenslamaA. DaciS. NabtiL.Z. BendifH. HarrarA. Assessment of polyphenols contents, antibacterial and antioxidant activities of Origanum majorana extracts.Eur. J. Biol. Res.2021114509518
    [Google Scholar]
  20. ElshafieH.S. ManciniE. SakrS. De MartinoL. MattiaC.A. De FeoV. CameleI. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit.J. Med. Food201518892993410.1089/jmf.2014.0167 25599273
    [Google Scholar]
  21. HanX. ParkerT.L. Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model.Biochim. Open20174737710.1016/j.biopen.2017.02.005 29450144
    [Google Scholar]
  22. MesmarJ. AbdallahR. BadranA. MarescaM. BaydounE. Origanum syriacum phytochemistry and pharmacological properties: A comprehensive review.Molecules20222713427210.3390/molecules27134272 35807517
    [Google Scholar]
  23. FarhatM. TóthJ. HéthelyiB. SzarkaS. CzigleS. Analysis of the essential oil compounds of Origanum syriacum L.Eur. Pharm. J.2012592614
    [Google Scholar]
  24. AlKahloutA. FardounM. MesmarJ. AbdallahR. BadranA. NasserS.A. BaydounS. KobeissyF. ShaitoA. IratniR. MuhammadK. BaydounE. EidA.H. Origanum syriacum L. Attenuates the malignant phenotype of MDA-mb231 breast cancer cells.Front. Oncol.20221292219610.3389/fonc.2022.922196 35847867
    [Google Scholar]
  25. MesmarJ. AbdallahR. HamadeK. BaydounS. Al-ThaniN. ShaitoA. MarescaM. BadranA. BaydounE. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties.Front. Pharmacol.20221399402510.3389/fphar.2022.994025 36299882
    [Google Scholar]
  26. AldisiS.S. JaganjacM. EidA.H. GoktepeI. Evaluation of apoptotic, antiproliferative, and antimigratory activity of Origanum syriacum against metastatic colon cancer cells.J. Herbs Spices Med. Plants201925320221710.1080/10496475.2019.1587674
    [Google Scholar]
  27. IjazS. AkhtarN. KhanM.S. HameedA. IrfanM. ArshadM.A. AliS. AsrarM. Plant derived anticancer agents: A green approach towards skin cancers.Biomed. Pharmacother.20181031643165110.1016/j.biopha.2018.04.113 29864953
    [Google Scholar]
  28. YumrutasO. BozgeyikI. Anticancer activity of Inula graveolensby induction of ROS-independent apoptosis and suppression of IL6-IL8 in cervical cancer cells.Bol. Latinoam. Caribe Plantas Med. Aromat.202322331432510.37360/blacpma.23.22.3.23
    [Google Scholar]
  29. CocelliG. PehlivanM. YumrutasO. BonfanteR. ParlarA. Sideritis perfoliata inhibits cell proliferation, induces apoptosis and exhibits cellular antioxidant activity in cervical cancer cells.Bol. Latinoam. Caribe Plantas Med. Aromat.202120439440510.37360/blacpma.21.20.4.29
    [Google Scholar]
  30. Al-KalaldehJ.Z. Abu-DahabR. AfifiF.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells.Nutr. Res.201030427127810.1016/j.nutres.2010.04.001 20534330
    [Google Scholar]
  31. EsawyS.H. El-HadidyE.M. Abdel-SalamM. Antioxidant content and cytotoxicity of Origanum syriacum L.Adv. Food Sci.20143625864
    [Google Scholar]
  32. LetaiA. Apoptosis and cancer.Annu. Rev. Cancer Biol.20171127529410.1146/annurev‑cancerbio‑050216‑121933
    [Google Scholar]
  33. SegawaK. NagataS. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure.Trends Cell Biol.2015251163965010.1016/j.tcb.2015.08.003 26437594
    [Google Scholar]
  34. KryskoD.V. Vanden BergheT. D’HerdeK. VandenabeeleP. Apoptosis and necrosis: Detection, discrimination and phagocytosis.Methods200844320522110.1016/j.ymeth.2007.12.001 18314051
    [Google Scholar]
  35. ZhouH. LiuL. MaX. WangJ. YangJ. ZhouX. YangY. LiuH. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage.Mol. Cell. Biochem.202147621233124310.1007/s11010‑020‑03985‑3 33247805
    [Google Scholar]
  36. VelliS. SundaramJ. MuruganM. BalaramanG. ThiruvengadamD. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice.J. Biochem. Mol. Toxicol.20193310e2238210.1002/jbt.22382 31468657
    [Google Scholar]
  37. MojibiR. MehrzadJ. SharifzadehA. NikaeinD. Apoptotic effects of caffeic acid phenethyl ester and matricaria chamomilla essential oil on A549 non-small cell lung cancer cells.Iran. J. Vet. Med.2022164
    [Google Scholar]
  38. VejselovaD. KutluH.M. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability.Turk. J. Biol.20153911510.3906/biy‑1401‑7
    [Google Scholar]
  39. ChenQ. LiuS. ChenJ. ZhangQ. LinS. ChenZ. Luteolin induces mitochondria-dependent apoptosis in human lung adenocarcinoma cell.Nat. Prod. Commun.201271293210.1177/1934578X1200700111
    [Google Scholar]
  40. WangX. WangD. ZhaoY. Effect and mechanism of resveratrol on the apoptosis of lung adenocarcinoma cell line A549.Cell Biochem. Biophys.201573252753110.1007/s12013‑015‑0696‑3 27352348
    [Google Scholar]
  41. MukherjeeA. Khuda-BukhshA.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549.J. Pharmacopuncture2015181192610.3831/KPI.2015.18.002 25830055
    [Google Scholar]
  42. MinJ. ShenH. XiW. WangQ. YinL. ZhangY. YuY. YangQ. WangZ. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro.Cell. Physiol. Biochem.20184841433144210.1159/000492253 30064123
    [Google Scholar]
  43. KleczkaA. KubinaR. DzikR. JasikK. StojkoJ. CholewaK. Kabała-DzikA. Caffeic acid phenethyl ester (CAPE) induced apoptosis in serous ovarian cancer OV7 cells by deregulation of BCL2/BAX genes.Molecules20202515351410.3390/molecules25153514 32752091
    [Google Scholar]
  44. VenkidasamyB. SubramanianU. AlmoallimH.S. AlharbiS.A. LakshmikumarR.R.C. ThiruvengadamM. Vanillic acid nanocomposite: Synthesis, characterization analysis, antimicrobial, and anticancer potentials.Molecules20242913309810.3390/molecules29133098 38999050
    [Google Scholar]
  45. ParkJ. ChoS.Y. KangJ. ParkW.Y. LeeS. JungY. KangM.W. KwakH.J. UmJ.Y. Vanillic acid improves comorbidity of cancer and obesity through stat3 regulation in high-fat-diet-induced obese and b16bl6 melanoma-injected mice.Biomolecules2020108109810.3390/biom10081098 32722030
    [Google Scholar]
  46. KimK.M. SongJ.J. AnJ.Y. KwonY.T. LeeY.J. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression.J. Biol. Chem.200528049410474105610.1074/jbc.M503713200 16199534
    [Google Scholar]
  47. XuQ.B. ChenX.F. FengJ. MiaoJ.F. LiuJ. LiuF.T. NiuB.X. CaiJ.Y. HuangC. ZhangY. LingY. Design, synthesis and biological evaluation of hybrids of β-carboline and salicylic acid as potential anticancer and apoptosis inducing agents.Sci. Rep.2016613623810.1038/srep36238 27824091
    [Google Scholar]
  48. CaiX. YeT. LiuC. LuW. LuM. ZhangJ. WangM. CaoP. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells.Toxicol. In Vitro20112571385139110.1016/j.tiv.2011.05.009 21601631
    [Google Scholar]
  49. MengG. ChaiK. LiX. ZhuY. HuangW. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway.Chem. Biol. Interact.2016257263410.1016/j.cbi.2016.07.028 27474067
    [Google Scholar]
  50. AlamS. MohammadT. PadderR.A. HassanM.I. HusainM. Thymoquinone and quercetin induce enhanced apoptosis in non‐small cell lung cancer in combination through the Bax/Bcl2 cascade.J. Cell. Biochem.2022123225927410.1002/jcb.30162 34636440
    [Google Scholar]
  51. KimY.A. LeeW.H. ChoiT.H. RheeS-H. ParkK-Y. ChoiY.H. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells.Int. J. Oncol.200323411431149 12963997
    [Google Scholar]
  52. MaL. LiW. WangR. NanY. WangQ. LiuW. JinF. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis.Int. J. Oncol.20154741460146810.3892/ijo.2015.3124 26314326
    [Google Scholar]
  53. ZhangY.X. YuP.F. GaoZ.M. YuanJ. ZhangZ. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential.Eur. Rev. Med. Pharmacol. Sci.201721716651671 28429338
    [Google Scholar]
  54. Klimaszewska-WiśniewskaA. Hałas-WiśniewskaM. IzdebskaM. GagatM. GrzankaA. GrzankaD. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton.Acta Histochem.201711929911210.1016/j.acthis.2016.11.003 27887793
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206333509241112060647
Loading
/content/journals/acamc/10.2174/0118715206333509241112060647
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antiproliferation; apoptosis; BAX/BCL2; lung cancer cells; necrosis; Origanum syriacum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test