Skip to content
2000
Volume 24, Issue 20
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Due to its high degree of aggressiveness, diffuse large B-cell lymphoma (DLBCL) presents a treatment challenge because 30% to 50% of patients experience resistance or relapse following standard chemotherapy. FN-1501 is an effective inhibitor of cyclin-dependent kinases and Fms-like receptor tyrosine kinase 3.

Objective

This study aimed to examine the anti-tumor impact of FN-1501 on DLBCL and clarify its molecular mechanism.

Methods

This study used the cell counting kit-8 assay to evaluate cell proliferation, along with western blotting and flow cytometry to analyze cell cycle progression and apoptosis influenced by FN-1501 . Afterward, the effectiveness of FN-1501 was evaluated utilizing the xenograft tumor model. In addition, we identified the potential signaling pathways and performed rescue studies using western blotting and flow cytometry.

Results

We found that FN-1501 inhibited cell proliferation and induced cell cycle arrest and apoptosis in DLBCL cells . Its anti-proliferative effects were shown to be time- and dose-dependent. The effect on cell cycle progression resulted in G1/S phase arrest, and the apoptosis induction was found to be caspase-dependent. FN-1501 treatment also reduced tumor volumes and weights and was associated with a prolonged progression-free survival . Mechanistically, the MAPK and PI3K/AKT/mTOR pathways were significantly inhibited by FN-1501. Additional pathway inhibitors examination reinforced that FN-1501 may regulate cell cycle arrest and apoptosis through these pathways.

Conclusion

FN-1501 shows promising anti-tumor activity against DLBCL and , suggesting its potential as a new therapeutic option for patients with refractory or relapsed DLBCL.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206345788240902062910
2024-12-01
2025-10-03
Loading full text...

Full text loading...

References

  1. ThandraK.C. BarsoukA. SaginalaK. PadalaS.A. BarsoukA. RawlaP. Epidemiology of non-hodgkin’s lymphoma.Med. Sci.20219151310.3390/medsci901000533573146
    [Google Scholar]
  2. de LevalL. JaffeE.S. Lymphoma classification.Cancer J.202026317618510.1097/PPO.000000000000045132496451
    [Google Scholar]
  3. PolettoS. NovoM. ParuzzoL. FrascioneP.M.M. VitoloU. Treatment strategies for patients with diffuse large B-cell lymphoma.Cancer Treat. Rev.202211010244310.1016/j.ctrv.2022.10244335933930
    [Google Scholar]
  4. ChapuyB. StewartC. DunfordA.J. KimJ. KamburovA. ReddR.A. LawrenceM.S. RoemerM.G.M. LiA.J. ZiepertM. StaigerA.M. WalaJ.A. DucarM.D. LeshchinerI. RheinbayE. Taylor-WeinerA. CoughlinC.A. HessJ.M. PedamalluC.S. LivitzD. RosebrockD. RosenbergM. TracyA.A. HornH. van HummelenP. FeldmanA.L. LinkB.K. NovakA.J. CerhanJ.R. HabermannT.M. SiebertR. RosenwaldA. ThornerA.R. MeyersonM.L. GolubT.R. BeroukhimR. WulfG.G. OttG. RodigS.J. MontiS. NeubergD.S. LoefflerM. PfreundschuhM. TrümperL. GetzG. ShippM.A. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.Nat. Med.201824567969010.1038/s41591‑018‑0016‑829713087
    [Google Scholar]
  5. SehnL.H. SallesG. Diffuse large B-cell lymphoma.N. Engl. J. Med.2021384984285810.1056/NEJMra202761233657296
    [Google Scholar]
  6. SwerdlowS.H. CampoE. PileriS.A. HarrisN.L. SteinH. SiebertR. AdvaniR. GhielminiM. SallesG.A. ZelenetzA.D. JaffeE.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms.Blood2016127202375239010.1182/blood‑2016‑01‑64356926980727
    [Google Scholar]
  7. NowakowskiG.S. FeldmanT. RimszaL.M. WestinJ.R. WitzigT.E. ZinzaniP.L. Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma.Blood Cancer J.2019964810.1038/s41408‑019‑0208‑631097684
    [Google Scholar]
  8. Susanibar-AdaniyaS. BartaS.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management.Am. J. Hematol.202196561762910.1002/ajh.2615133661537
    [Google Scholar]
  9. LewisW.D. LillyS. JonesK.L. Lymphoma: Diagnosis and Treatment.Am. Fam. Physician20201011344131894937
    [Google Scholar]
  10. LvY. DuY. LiK. MaX. WangJ. DuT. MaY. TengY. TangW. MaR. WuJ. WuJ. FengJ. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkin’s lymphoma tumor growth by promoting apoptosis and autophagy.Cell Commun. Signal.2023211163210.1186/s12964‑022‑01031‑x36691066
    [Google Scholar]
  11. MelchardtT. EgleA. GreilR. How I treat diffuse large B-cell lymphoma.ESMO Open20238110075010.1016/j.esmoop.2022.10075036634531
    [Google Scholar]
  12. WangL. LiL. YoungK.H. New agents and regimens for diffuse large B cell lymphoma.J. Hematol. Oncol.202013117510.1186/s13045‑020‑01011‑z33317571
    [Google Scholar]
  13. HeM.Y. KridelR. Treatment resistance in diffuse large B-cell lymphoma.Leukemia20213582151216510.1038/s41375‑021‑01285‑334017074
    [Google Scholar]
  14. Davoodi-MoghaddamZ. Jafari-RaddaniF. NooriM. BashashD. A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe?Transl. Oncol.20233010163610.1016/j.tranon.2023.10163636773442
    [Google Scholar]
  15. RosenthalA.C. MunozJ.L. VillasboasJ.C. Clinical advances in epigenetic therapies for lymphoma.Clin. Epigenetics2023151395110.1186/s13148‑023‑01452‑636871057
    [Google Scholar]
  16. XuW. BerningP. LenzG. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma.Blood2021138131110111910.1182/blood.202000678434320160
    [Google Scholar]
  17. LuT. ZhangJ. Xu-MonetteZ.Y. YoungK.H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma.Exp. Hematol. Oncol.20231217210.1186/s40164‑023‑00432‑z37580826
    [Google Scholar]
  18. HanlonA. BranderD.M. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors.Hematology (Am. Soc. Hematol. Educ. Program)20202020134635610.1182/hematology.202000011933275709
    [Google Scholar]
  19. WangX. WuS. ChenY. ShaoE. ZhuangT. LuL. ChenX. Fatal adverse events associated with programmed cell death ligand 1 inhibitors: A systematic review and meta-analysis.Front. Pharmacol.20201151610.3389/fphar.2020.0000532076409
    [Google Scholar]
  20. KiyoiH. KawashimaN. IshikawaY. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development.Cancer Sci.2020111231232210.1111/cas.1427431821677
    [Google Scholar]
  21. RoskoskiR.Jr The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias.Pharmacol. Res.202015510472510.1016/j.phrs.2020.10472532109580
    [Google Scholar]
  22. KaziJ.U. RönnstrandL. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications.Physiol. Rev.20199931433146610.1152/physrev.00029.201831066629
    [Google Scholar]
  23. ShortN.J. NguyenD. RavandiF. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors.Blood Cancer J.202313114210.1038/s41408‑023‑00911‑w37696819
    [Google Scholar]
  24. BystromR. LevisM.J. An update on FLT3 in acute myeloid leukemia: Pathophysiology and therapeutic landscape.Curr. Oncol. Rep.202325436937810.1007/s11912‑023‑01389‑236808557
    [Google Scholar]
  25. KayserS. LevisM.J. The clinical impact of the molecular landscape of acute myeloid leukemia.Haematologica2023108230832010.3324/haematol.2022.28080136722402
    [Google Scholar]
  26. ZhaoJ.C. AgarwalS. AhmadH. AminK. BewersdorfJ.P. ZeidanA.M. A review of FLT3 inhibitors in acute myeloid leukemia.Blood Rev.20225210090510.1016/j.blre.2021.10090534774343
    [Google Scholar]
  27. DaverN. VenugopalS. RavandiF. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm.Blood Cancer J.202111510410.1038/s41408‑021‑00495‑334045454
    [Google Scholar]
  28. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  29. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: a changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc260219238148
    [Google Scholar]
  30. FischerM. SchadeA.E. BraniganT.B. MüllerG.A. DeCaprioJ.A. Coordinating gene expression during the cell cycle.Trends Biochem. Sci.202247121009102210.1016/j.tibs.2022.06.00735835684
    [Google Scholar]
  31. MughalM.J. BhadreshaK. KwokH.F. CDK inhibitors from past to present: A new wave of cancer therapy.Semin. Cancer Biol.20238810612210.1016/j.semcancer.2022.12.00636565895
    [Google Scholar]
  32. LeeD.J. ZeidnerJ.F. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach.Expert Opin. Investig. Drugs20192811989100110.1080/13543784.2019.167858331612739
    [Google Scholar]
  33. SenderowiczA.M. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies.Leukemia20011511910.1038/sj.leu.240199411243375
    [Google Scholar]
  34. WangY. ZhiY. JinQ. LuS. LinG. YuanH. YangT. WangZ. YaoC. LingJ. GuoH. LiT. JinJ. LiB. ZhangL. ChenY. LuT. Discovery of 4-((7 H -Pyrrolo[2,3- d ]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia.J. Med. Chem.20186141499151810.1021/acs.jmedchem.7b0126129357250
    [Google Scholar]
  35. LinB. LiY. WangT. QiuY. ChenZ. ZhaoK. LuN. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK.Oncogene202039376024604010.1038/s41388‑020‑01412‑x32778769
    [Google Scholar]
  36. RichardsonG.E. Al-RajabiR. UpretyD. HamidA. WilliamsonS.K. BarandaJ. MamdaniH. LeeY.L. Nitika LiL. WangX. DongX. A multicenter, open-label, phase I/II study of FN-1501 in patients with advanced solid tumors.Cancers (Basel)20231592553256210.3390/cancers1509255337174019
    [Google Scholar]
  37. BuryM. Le CalvéB. FerbeyreG. BlankV. LessardF. New insights into CDK regulators: Novel opportunities for cancer therapy.Trends Cell Biol.202131533134410.1016/j.tcb.2021.01.01033676803
    [Google Scholar]
  38. PerroneS. OttoneT. ZhdanovskayaN. MolicaM. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication?Cancer Drug Resist.20236222323810.20517/cdr.2022.13037457126
    [Google Scholar]
  39. KongD. YamoriT. Phosphatidylinositol 3‐kinase inhibitors: promising drug candidates for cancer therapy.Cancer Sci.20089991734174010.1111/j.1349‑7006.2008.00891.x18616528
    [Google Scholar]
  40. YouY. NiuY. ZhangJ. HuangS. DingP. SunF. WangX. U0126: Not only a MAPK kinase inhibitor.Front. Pharmacol.20221392708310.3389/fphar.2022.92708336091807
    [Google Scholar]
  41. Lopez-SantillanM. Lopez-LopezE. Alvarez-GonzalezP. MartinezG. Arzuaga-MendezJ. Ruiz-DiazI. Guerra-MerinoI. Gutierrez-CaminoA. Martin-GuerreroI. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review.Crit. Rev. Oncol. Hematol.202116510343010.1016/j.critrevonc.2021.10343034339834
    [Google Scholar]
  42. TakaharaT. NakamuraS. TsuzukiT. SatouA. The Immunology of DLBCL.Cancers (Basel)202315383510.3390/cancers1503083536765793
    [Google Scholar]
  43. CillessenS.A.G.M. MeijerC.J.L.M. NotoyaM. OssenkoppeleG.J. OudejansJ.J. Molecular targeted therapies for diffuse large B‐cell lymphoma based on apoptosis profiles.J. Pathol.2010220550952010.1002/path.267020087881
    [Google Scholar]
  44. HiltonL.K. ScottD.W. MorinR.D. Biological heterogeneity in diffuse large B-cell lymphoma.Semin. Hematol.202360526727610.1053/j.seminhematol.2023.11.00638151380
    [Google Scholar]
  45. HumeS. DianovG.L. RamadanK. A unified model for the G1/S cell cycle transition.Nucleic Acids Res.20204822124831250110.1093/nar/gkaa100233166394
    [Google Scholar]
  46. YuanK. WangX. DongH. MinW. HaoH. YangP. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs.Acta Pharm. Sin. B2021111305410.1016/j.apsb.2020.05.00133532179
    [Google Scholar]
  47. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑334508254
    [Google Scholar]
  48. LiuJ. PengY. WeiW. Cell cycle on the crossroad of tumorigenesis and cancer therapy.Trends Cell Biol.2022321304410.1016/j.tcb.2021.07.00134304958
    [Google Scholar]
  49. DangF. NieL. WeiW. Ubiquitin signaling in cell cycle control and tumorigenesis.Cell Death Differ.202128242743810.1038/s41418‑020‑00648‑033130827
    [Google Scholar]
  50. ZhengC. TangY.D. The emerging roles of the CDK/cyclin complexes in antiviral innate immunity.J. Med. Virol.20229462384238710.1002/jmv.2755434964486
    [Google Scholar]
  51. EttlT. SchulzD. BauerR. The renaissance of cyclin dependent kinase inhibitors.Cancers (Basel)202214229310.3390/cancers1402029335053461
    [Google Scholar]
  52. XieZ. HouS. YangX. DuanY. HanJ. WangQ. LiaoC. Lessons learned from past cyclin-dependent kinase drug discovery efforts.J. Med. Chem.20226596356638910.1021/acs.jmedchem.1c0219035235745
    [Google Scholar]
  53. KnudsenE.S. KumarasamyV. NambiarR. PearsonJ.D. VailP. RosenheckH. WangJ. EngK. BremnerR. SchramekD. RubinS.M. WelmA.L. WitkiewiczA.K. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities.Cell Rep.202238911044810.1016/j.celrep.2022.11044835235778
    [Google Scholar]
  54. BedouiS. HeroldM.J. StrasserA. Emerging connectivity of programmed cell death pathways and its physiological implications.Nat. Rev. Mol. Cell Biol.2020211167869510.1038/s41580‑020‑0270‑832873928
    [Google Scholar]
  55. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  56. ParkH.A. HaydenM.M. BannermanS. JansenJ. Crowe-WhiteK.M. Anti-apoptotic effects of carotenoids in neurodegeneration.Molecules20202515345310.3390/molecules2515345332751250
    [Google Scholar]
  57. DailahH.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review.Molecules20222721720710.3390/molecules2721720736364033
    [Google Scholar]
  58. LiM. WangZ.W. FangL.J. ChengS.Q. WangX. LiuN.F. Programmed cell death in atherosclerosis and vascular calcification.Cell Death Dis.202213546710.1038/s41419‑022‑04923‑535585052
    [Google Scholar]
  59. LinX. OuyangS. ZhiC. LiP. TanX. MaW. YuJ. PengT. ChenX. LiL. XieW. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis.Arch. Biochem. Biophys.202271510909810.1016/j.abb.2021.10909834856194
    [Google Scholar]
  60. NewtonK. StrasserA. KayagakiN. DixitV.M. Cell death.Cell2024187223525610.1016/j.cell.2023.11.04438242081
    [Google Scholar]
  61. SinghR. LetaiA. SarosiekK. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins.Nat. Rev. Mol. Cell Biol.201920317519310.1038/s41580‑018‑0089‑830655609
    [Google Scholar]
  62. NowakK.L. EdelsteinC.L. Apoptosis and autophagy in polycystic kidney disease (PKD).Cell. Signal.20206810951810.1016/j.cellsig.2019.10951831881325
    [Google Scholar]
  63. SanzA.B. Sanchez-NiñoM.D. RamosA.M. OrtizA. Regulated cell death pathways in kidney disease.Nat. Rev. Nephrol.202319528129910.1038/s41581‑023‑00694‑036959481
    [Google Scholar]
  64. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117420510.1186/s13045‑022‑01392‑336482419
    [Google Scholar]
  65. DasS. ShuklaN. SinghS.S. KushwahaS. ShrivastavaR. Mechanism of interaction between autophagy and apoptosis in cancer.Apoptosis2021269-1051253310.1007/s10495‑021‑01687‑934510317
    [Google Scholar]
  66. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y32203277
    [Google Scholar]
  67. Profitós-PelejàN. SantosJ.C. Marín-NieblaA. RouéG. RibeiroM.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas.Cancers (Basel)202214486010.3390/cancers1404086035205606
    [Google Scholar]
  68. DeshotelsL. SafaF. SabaN. Notch signaling in mantle cell lymphoma: Biological and clinical implications.Int. J. Mol. Sci.202324121028010.3390/ijms24121028037373427
    [Google Scholar]
  69. SteinbergG.R. CarlingD. AMP-activated protein kinase: the current landscape for drug development.Nat. Rev. Drug Discov.201918752755110.1038/s41573‑019‑0019‑230867601
    [Google Scholar]
  70. PiM. KuangH. YueC. YangQ. WuA. LiY. AssarafY.G. YangD.H. WuS. Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma.Drug Resist. Updat.20226110082210.1016/j.drup.2022.10082235257981
    [Google Scholar]
  71. LiB. WanQ. LiZ. ChngW.J. Janus kinase signaling: Oncogenic criminal of lymphoid cancers.Cancers (Basel)20211320514710.3390/cancers1320514734680295
    [Google Scholar]
  72. ZhangY. WangX. Targeting the Wnt/β-catenin signaling pathway in cancer.J. Hematol. Oncol.202013116510.1186/s13045‑020‑00990‑333276800
    [Google Scholar]
  73. TewariD. PatniP. BishayeeA. SahA.N. BishayeeA. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy.Semin. Cancer Biol.20228011710.1016/j.semcancer.2019.12.00831866476
    [Google Scholar]
  74. YangJ. FriedmanR. Synergy and antagonism between azacitidine and FLT3 inhibitors.Comput. Biol. Med.202416910788910.1016/j.compbiomed.2023.10788938199214
    [Google Scholar]
  75. ZhangM. HuangM.N. DongX.D. CuiQ.B. YanY. SheM.L. FengW.G. ZhaoX.S. WangD.T. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: in vitro and in vivo characterization.Am. J. Cancer Res.202313126026603738187048
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206345788240902062910
Loading
/content/journals/acamc/10.2174/0118715206345788240902062910
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-tumor; apoptosis; cell cycle; Diffuse large B-cell lymphoma; FN-1501; MAPK; PI3K/AKT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test