Skip to content
2000
Volume 24, Issue 20
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Aims

This study aimed to assess the effects of AEO in an model of cell lines derived from cervical cancer-namely, HeLa and SiHa-by screening for AEO’s cytotoxic properties and examining its influence on the modulation of gene expression.

Background

Cervical cancer stands as a prevalent global health concern, affecting millions of women worldwide. The current treatment modalities encompass surgery, radiation, and chemotherapy, but significant limitations and adverse effects constrain their effectiveness. Therefore, exploring novel treatments that offer enhanced efficacy and reduced side effects is imperative. Arborvitae essential oil, extracted from , has garnered attention for its antimicrobial, anti-inflammatory, immunomodulatory, and tissue-remodeling properties; however, its potential in treating cervical cancer remains uncharted.

Objective

The objective of this study was to delve into the molecular mechanisms induced by arborvitae essential oil in order to learn about its anticancer effects on cervical cancer cell lines.

Methods

The methods used in this study were assessments of cell viability using WST-1 and annexin V–propidium iodide, mRNA sequencing, and subsequent bioinformatics analysis.

Results

The findings unveiled a dose-dependent cytotoxic effect of arborvitae essential oil on both HeLa and SiHa cell lines. Minor effects were observed only at very low doses in the HaCaT non-tumorigenic human keratinocyte cells. RNA-Seq bioinformatics analysis revealed the regulatory impact of arborvitae essential oil on genes enriched in the following pathways: proteasome, adherens junctions, nucleocytoplasmic transport, cell cycle, proteoglycans in cancer, protein processing in the endoplasmic reticulum, ribosome, spliceosome, mitophagy, cellular senescence, and viral carcinogenesis, among others, in both cell lines. It is worth noting that the ribosome and spliceosome KEGG pathways are the most significantly enriched pathways in HeLa and SiHa cells.

Conclusion

Arborvitae essential oil shows potential as a cytotoxic and antiproliferative agent against cervical cancer cells, exerting its cytotoxic properties by regulating many KEGG pathways.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206308864240823095507
2024-12-01
2025-10-03
Loading full text...

Full text loading...

References

  1. JohnsonC.A. JamesD. MarzanA. ArmaosM. Cervical cancer: An overview of pathophysiology and management.Semin. Oncol. Nurs.201935216617410.1016/j.soncn.2019.02.00330878194
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  3. LewandowskaA. SzubertS. KoperK. KoperA. CwynarG. WicherekL. Analysis of long-term outcomes in 44 patients following pelvic exenteration due to cervical cancer.World J. Surg. Oncol.202018123410.1186/s12957‑020‑01997‑332878646
    [Google Scholar]
  4. BoonS.S. LukH.Y. XiaoC. ChenZ. ChanP.K.S. Review of the standard and advanced screening, staging systems and treatment modalities for cervical cancer.Cancers (BaseL)20221412291310.3390/cancers14122913.
    [Google Scholar]
  5. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑532433532
    [Google Scholar]
  6. EsfahaniK. RoudaiaL. BuhlaigaN. Del RinconS.V. PapnejaN. MillerW.H.Jr A review of cancer immunotherapy: from the past, to the present, to the future.Curr. Oncol.20202712879710.3747/co.27.522332368178
    [Google Scholar]
  7. OdiaseO. Noah-VermillionL. SimoneB.A. AridgidesP.D. The incorporation of immunotherapy and targeted therapy into chemoradiation for cervical cancer: A focused review.Front. Oncol.20211166374910.3389/fonc.2021.66374934123823
    [Google Scholar]
  8. SchmidtMW. BattistaMJ. SchmidtM. GarciaM. SiepmannT. HasenburgA. AnicK. Efficacy and safety of immunotherapy for cervical cancer-A systematic review of clinical trials.Cancers (Basel)202214244110.3390/cancers14020441.
    [Google Scholar]
  9. ShenG. ZhengF. RenD. DuF. DongQ. WangZ. ZhaoF. AhmadR. ZhaoJ. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development.J. Hematol. Oncol.201811112010.1186/s13045‑018‑0664‑730231931
    [Google Scholar]
  10. SchilderR.J. SillM.W. LeeY.C. MannelR. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: A gynecologic oncology group study.Int. J. Gynecol. Cancer200919592993310.1111/IGC.0b013e3181a8346719574787
    [Google Scholar]
  11. GoncalvesA. FabbroM. LhomméC. GladieffL. ExtraJ.M. FloquetA. ChaigneauL. CarrascoA.T. ViensP. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer.Gynecol. Oncol.20081081424610.1016/j.ygyno.2007.07.05717980406
    [Google Scholar]
  12. Nogueira-RodriguesA. MoralezG. GrazziotinR. CarmoC.C. SmallI.A. AlvesF.V.G. MamedeM. ErlichF. ViegasC. TriginelliS.A. FerreiraC.G. Phase 2 trial of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced cervical cancer.Cancer201412081187119310.1002/cncr.2847124615735
    [Google Scholar]
  13. TewariK.S. SillM.W. LongH.J.III PensonR.T. HuangH. RamondettaL.M. LandrumL.M. OakninA. ReidT.J. LeitaoM.M. MichaelH.E. MonkB.J. Improved survival with bevacizumab in advanced cervical cancer.N. Engl. J. Med.2014370873474310.1056/NEJMoa130974824552320
    [Google Scholar]
  14. TewariK.S. SillM.W. PensonR.T. HuangH. RamondettaL.M. LandrumL.M. OakninA. ReidT.J. LeitaoM.M. MichaelH.E. DiSaiaP.J. CopelandL.J. CreasmanW.T. StehmanF.B. BradyM.F. BurgerR.A. ThigpenJ.T. BirrerM.J. WaggonerS.E. MooreD.H. LookK.Y. KohW.J. MonkB.J. Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240).Lancet2017390101031654166310.1016/S0140‑6736(17)31607‑028756902
    [Google Scholar]
  15. ColemanR.L. LorussoD. GennigensC. González-MartínA. RandallL. CibulaD. LundB. WoelberL. PignataS. ForgetF. RedondoA. VindeløvS.D. ChenM. HarrisJ.R. SmithM. NicacioL.V. TengM.S.L. LaenenA. RangwalaR. MansoL. MirzaM. MonkB.J. VergoteI. RaspagliesiF. MelicharB. Gaba GarciaL. JacksonA. HenryS. KralZ. HarterP. De GiorgiU. BjurbergM. GoldM. O’MalleyD. HonhonB. VulstekeC. De CuypereE. DenysH. BaurainJ-F. ZamagniC. TenneyM. GordinierM. BradleyW. SchlumbrechtM. SpirtosN. ConcinN. MahnerS. ScambiaG. LeathC. Farias-EisnerR. CohenJ. MullerC. BhatiaS. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study.Lancet Oncol.202122560961910.1016/S1470‑2045(21)00056‑533845034
    [Google Scholar]
  16. MinH.Y. LeeH.Y. Mechanisms of resistance to chemotherapy in non-small cell lung cancer.Arch. Pharm. Res.202144214616410.1007/s12272‑021‑01312‑y33608812
    [Google Scholar]
  17. OrtizM. WabelE. MitchellK. HoribataS. Mechanisms of chemotherapy resistance in ovarian cancer.Cancer Drug Resist.20225230431610.20517/cdr.2021.14735800369
    [Google Scholar]
  18. EslamiM. DavarpanahA. RismanbafA.H. Taghizadeh-HesaryF. DorgalelehS. MemarS.S. NayerniaK. BehnamB. Molecular mechanisms for targeting metastatic cancer cells and to overcome or prevent chemotherapy resistance.Preprints202310.20944/preprints202306.0602.v1.
    [Google Scholar]
  19. KannoY. ChenC.Y. LeeH.L. ChiouJ.F. ChenY.J. Molecular mechanisms of chemotherapy resistance in head and neck cancers.Front. Oncol.20211164039210.3389/fonc.2021.64039234026617
    [Google Scholar]
  20. ZahedipourF.K. PrashantK. SahebkarA. Mechanisms of multidrug resistance in cancer. Aptamers Engineered Nanocarriers for Cancer Therapy2023518310.1016/B978‑0‑323‑85881‑6.00002‑6.
    [Google Scholar]
  21. GeorgeI.A.C. ChauhanR. DhawaleR.E. IyerR. LimayeS. SankaranarayananR. KumarP. VenkataramananR. Insights into therapy resistance in cervical cancer.Adv. Cancer Bio. Metasis20226410007410.1016/j.adcanc.2022.100074.
    [Google Scholar]
  22. MannM. SinghV.P. KumarL. Cervical cancer: A tale from HPV infection to PARP inhibitors.Genes Dis.20231041445145610.1016/j.gendis.2022.09.01437397551
    [Google Scholar]
  23. LaiJ. YangS. LinZ. HuangW. LiX. LiR. TanJ. WangW. Update on chemoresistance mechanisms to first-line chemotherapy for gallbladder cancer and potential reversal strategies.Am. J. Clin. Oncol.202346413114110.1097/COC.000000000000098936867653
    [Google Scholar]
  24. FedotchevaT.A. ShimanovskyN.L. Pharmacological strategies for overcoming multidrug resistance to chemotherapy.Pharm. Chem. J.202356101307131310.1007/s11094‑023‑02790‑836683825
    [Google Scholar]
  25. RoseP.G. AliS. WatkinsE. ThigpenJ.T. DeppeG. Clarke-PearsonD.L. InsalacoS. Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: A gynecologic oncology group study.J. Clin. Oncol.200725192804281010.1200/JCO.2006.09.453217502627
    [Google Scholar]
  26. KumarL. GuptaS. Integrating chemotherapy in the management of cervical cancer: A critical appraisal.Oncology20169181710.1159/00044757627464068
    [Google Scholar]
  27. KatsumataN. YoshikawaH. KobayashiH. SaitoT. KuzuyaK. NakanishiT. YasugiT. YaegashiN. YokotaH. KodamaS. MizunoeT. HiuraM. KasamatsuT. ShibataT. KamuraT. JapanG. Phase III randomised controlled trial of neoadjuvant chemotherapy plus radical surgery vs radical surgery alone for stages IB2, IIA2, and IIB cervical cancer: A Japan Clinical Oncology Group trial (JCOG 0102).Br. J. Cancer2013108101957196310.1038/bjc.2013.17923640393
    [Google Scholar]
  28. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  29. DeheleanC.A. MarcoviciI. SoicaC. MiocM. CoricovacD. IurciucS. CretuO.M. PinzaruI. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy.Molecules2021264110910.3390/molecules2604110933669817
    [Google Scholar]
  30. AndradeM.A. BragaM.A. CesarP.H.S. TrentoM.V.C. EspósitoM.A. SilvaL.F. MarcussiS. Anticancer properties of essential oils: An overview.Curr. Cancer Drug Targets2018181095796610.2174/156800961866618010210584329295695
    [Google Scholar]
  31. Abd RashidN. Mohamad NajibN.H. Abdul JalilN.A. TeohS.L. Essential oils in cervical cancer: Narrative review on current insights and future prospects.Antioxidants20231212210910.3390/antiox1212210938136228
    [Google Scholar]
  32. SinghT. AggarwalN. ThakurK. ChhokarA. YadavJ. TripathiT. JadliM. BhatA. KumarA. NarulaR.H. GuptaP. KhuranaA. BhartiA.C. Evaluation of therapeutic potential of selected plant-derived homeopathic medicines for their action against cervical cancer.Homeopathy2023112426227410.1055/s‑0042‑175643636858077
    [Google Scholar]
  33. PalA. DasS. BasuS. KunduR. Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with Thujone as the bioactive principle.J. Integr. Med.202220546347210.1016/j.joim.2022.06.00435752587
    [Google Scholar]
  34. TsiriD. GraikouK. Pobłocka-OlechL. Krauze-BaranowskaM. SpyropoulosC. ChinouI. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity.Molecules200914114707471510.3390/molecules1411470719935470
    [Google Scholar]
  35. YatagaiM. SatoT. TakahashiT. Terpenes of leaf oils from Cupressaceae.Biochem. Syst. Ecol.198513437738510.1016/0305‑1978(85)90081‑X
    [Google Scholar]
  36. SvajdlenkaE. PavolM. GrancaiD. TomaskoI. Essential oil composition of Thuja occidentalis L. samples from Slovakia.J. Essent. Oil Res.20111153253610.1080/10412905.1999.9701208
    [Google Scholar]
  37. BubenI. KarmazínM. TrojánkováJ. NovaD. Seasonal variability in the contents and composition of essential oil in various Thuja species occurring in Czechoslovakia.Acta Hortic.1992120020310.17660/ActaHortic.1992.306.21
    [Google Scholar]
  38. KéïtaS.M. VincentC. SchmidtJ.P. ArnasonJ.T. Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus .Can. J. Plant Sci.20008117317710.4141/P00‑059
    [Google Scholar]
  39. Von RudloffE. Lapp MartinS. Yeh FrancisC. Chemosystematic study of Thuja plicata : Multivariate analysis of leaf oil terpene composition.Biochem. Syst. Ecol.19881619912510.1016/0305‑1978(88)90083‑X.
    [Google Scholar]
  40. von RudloffE. Gas—liquid chromatography of terpenes VI. The volatile oil of Thuja plicata Donn.Phytochemistry19621319520210.1016/S0031‑9422(00)82822‑8
    [Google Scholar]
  41. NaserB. BodinetC. TegtmeierM. LindequistU. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties.Evid. Based Complement. Alternat. Med.200521697810.1093/ecam/neh06515841280
    [Google Scholar]
  42. CaruntuS. CiceuA. OlahN.K. DonI. HermeneanA. CotoraciC. Thuja occidentalis L. (Cupressaceae): Ethnobotany, phytochemistry and biological activity.Molecules20202522541610.3390/molecules2522541633228192
    [Google Scholar]
  43. LeeJ.Y. ParkH. LimW. SongG. Therapeutic potential of α,β‐thujone through metabolic reprogramming and caspase‐dependent apoptosis in ovarian cancer cells.J. Cell. Physiol.202123621545155810.1002/jcp.3008633000501
    [Google Scholar]
  44. LeeJ.Y. ParkH. LimW. SongG. α,β-Thujone suppresses human placental choriocarcinoma cells via metabolic disruption.Reproduction2020159674575610.1530/REP‑20‑001832240978
    [Google Scholar]
  45. TorresA. VargasY. UribeD. CarrascoC. TorresC. RochaR. OyarzúnC. San MartínR. QuezadaC. Pro-apoptotic and anti-angiogenic properties of the α /β-thujone fraction from Thuja occidentalis on glioblastoma cells.J. Neurooncol.2016128191910.1007/s11060‑016‑2076‑226900077
    [Google Scholar]
  46. AntosJ.A. FilipescuC.N. NegraveR.W. Ecology of western redcedar (Thuja plicata ): Implications for management of a high-value multiple-use resource.For. Ecol. Manage.201637521122210.1016/j.foreco.2016.05.043
    [Google Scholar]
  47. Western Redcedar.1990Available from: https://www.srs.fs.usda.gov/pubs/misc/ag_654/volume_1/thuja/plicata.htm
  48. HanX. ParkerT.L. Arborvitae ( Thuja plicata ) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts.Biochim. Open20174566010.1016/j.biopen.2017.02.00329450142
    [Google Scholar]
  49. HudsonJ. KuoM. VimalanathanS. The antimicrobial properties of cedar leaf (Thuja plicata ) oil; A safe and efficient decontamination agent for buildings.Int. J. Environ. Res. Public Health20118124477448710.3390/ijerph812447722408584
    [Google Scholar]
  50. VimalanathanS. HusonJ. The activity of cedar leaf oil vapor against respiratory viruses: Practical applications.J. Appl. Pharm. Sci.20133111510.7324/JAPS.2013.31103.
    [Google Scholar]
  51. SebaughJ.L. Guidelines for accurate EC50/IC50 estimation.Pharm. Stat.201110212813410.1002/pst.42622328315
    [Google Scholar]
  52. LiaoY. SmythG.K. ShiW. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads.Nucleic Acids Res.2019478e4710.1093/nar/gkz11430783653
    [Google Scholar]
  53. UlgenE. OzisikO. SezermanO.U. pathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks.Front. Genet.20191085810.3389/fgene.2019.0085831608109
    [Google Scholar]
  54. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  55. BiswasR. MandalS.K. DuttaS. BhattacharyyaS.S. BoujedainiN. Khuda-BukhshA.R. Thujone‐rich fraction of Thuja occidentalis demonstrates major anti‐cancer potentials: Evidences from in vitro studies on A375 cells.Evid. Based Complement. Alternat. Med.20112011156814810.1093/ecam/neq04221647317
    [Google Scholar]
  56. ElansaryH.O. AbdelgaleilS.A.M. MahmoudE.A. YessoufouK. ElhindiK. El-HendawyS. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt.BMC Complement. Altern. Med.201818121410.1186/s12906‑018‑2262‑130005652
    [Google Scholar]
  57. RE.B. JesubathamP.D. v MBelin, G.V.M. VismanathanS. SrividyaS. Non-toxic and non teratogenic extract of Thuja orientalis L. inhibited angiogenesis in zebra fish and suppressed the growth of human lung cancer cell line.Biomed. Pharmacother.201810669970610.1016/j.biopha.2018.07.01029990861
    [Google Scholar]
  58. SahaS. BhattacharjeeP. MukherjeeS. MazumdarM. ChakrabortyS. KhuranaA. NayakD. ManchandaR. ChakrabartyR. DasT. SaG. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells.Oncol. Rep.20143141589159810.3892/or.2014.299324482097
    [Google Scholar]
  59. SiveenK.S. KuttanG. Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice.Can. J. Physiol. Pharmacol.2011891069170310.1139/y11‑06721905822
    [Google Scholar]
  60. SworK. SatyalP. PoudelA. SetzerW.N. Gymnosperms of Idaho: Chemical compositions and enantiomeric distributions of essential oils of Abies lasiocarpa, Picea engelmannii, Pinus contorta, Pseudotsuga menziesii, and Thuja plicata. Molecules2023286247710.3390/molecules2806247736985451
    [Google Scholar]
  61. PudełekM. CatapanoJ. KochanowskiP. MrowiecK. Janik-OlchawaN. CzyżJ. RyszawyD. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro .Fitoterapia201913417218110.1016/j.fitote.2019.02.02030825580
    [Google Scholar]
  62. KozicsK. BuckovaM. PuskarovaA. KalaszovaV. CabicarovaT. PangalloD. The effect of ten essential oils on several cutaneous drug-resistant microorganisms and their cyto/genotoxic and antioxidant properties.Molecules20192424457010.3390/molecules24244570.
    [Google Scholar]
  63. LiuQ. LiA. TianY. WuJ.D. LiuY. LiT. ChenY. HanX. WuK. The CXCL8-CXCR1/2 pathways in cancer.Cytokine Growth Factor Rev.201631617110.1016/j.cytogfr.2016.08.00227578214
    [Google Scholar]
  64. WaughD.J.J. WilsonC. The interleukin-8 pathway in cancer.Clin. Cancer Res.200814216735674110.1158/1078‑0432.CCR‑07‑484318980965
    [Google Scholar]
  65. KnallC. WorthenG.S. JohnsonG.L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases.Proc. Natl. Acad. Sci. USA19979473052305710.1073/pnas.94.7.30529096344
    [Google Scholar]
  66. Fernandez-AvilaL. Castro-AmayaA.M. Molina-PinedaA. Hernández-GutiérrezR. Jave-SuarezL.F. Aguilar-LemarroyA. The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as potential prognosis markers in cervical cancer: Evidence of E6/E7 from HPV16 and 18 in chemokines regulation.Biomedicines20231110265510.3390/biomedicines1110265537893029
    [Google Scholar]
  67. XiongX. LiaoX. QiuS. XuH. ZhangS. WangS. AiJ. YangL. CXCL8 in tumor biology and its implications for clinical translation.Front. Mol. Biosci.2022972384610.3389/fmolb.2022.72384635372515
    [Google Scholar]
  68. ChenX. GuX. ShanY. TangW. YuanJ. ZhongZ. WangY. HuangW. WanB. YuL. Identification of a novel human lactate dehydrogenase gene LDHAL6A, which activates transcriptional activities of AP1(PMA).Mol. Biol. Rep.200936466967610.1007/s11033‑008‑9227‑218351441
    [Google Scholar]
  69. EferlR. WagnerE.F. AP-1: A double-edged sword in tumorigenesis.Nat. Rev. Cancer200331185986810.1038/nrc120914668816
    [Google Scholar]
  70. RanL. MouX. PengZ. LiX. LiM. XuD. YangZ. SunX. YinT. ADORA2A promotes proliferation and inhibits apoptosis through PI3K/AKT pathway activation in colorectal carcinoma.Sci. Rep.20231311947710.1038/s41598‑023‑46521‑137945707
    [Google Scholar]
  71. JingN. ZhangK. ChenX. LiuK. WangJ. XiaoL. ZhangW. MaP. XuP. ChengC. WangD. ZhaoH. HeY. JiZ. XinZ. SunY. ZhangY. BaoW. GongY. FanL. JiY. ZhuangG. WangQ. DongB. ZhangP. XueW. GaoW.Q. ZhuH.H. ADORA2A-driven proline synthesis triggers epigenetic reprogramming in neuroendocrine prostate and lung cancers.J. Clin. Invest.202313324e16867010.1172/JCI16867038099497
    [Google Scholar]
  72. ZhangY. GuJ. WangL. ZhaoZ. PanY. ChenY. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.Mol. Cell. Endocrinol.201743913314010.1016/j.mce.2016.10.03627815211
    [Google Scholar]
  73. SaigusaH. MimuraI. KurataY. TanakaT. NangakuM. Hypoxia‐inducible lncRNA MIR210HG promotes HIF1α expression by inhibiting miR‐93‐5p in renal tubular cells.FEBS J.2023290164040405610.1111/febs.1679437029581
    [Google Scholar]
  74. LiZ.Y. XieY. DengM. ZhuL. WuX. LiG. ShiN.X. WenC. HuangW. DuanY. YinZ. LinX.J. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer.Cancer Lett.202252632233410.1016/j.canlet.2021.11.00634767926
    [Google Scholar]
  75. WangA.H. JinC.H. CuiG.Y. LiH.Y. WangY. YuJ.J. WangR.F. TianX.Y. MIR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer.Aging (Albany NY)20201243205321710.18632/aging.10279932087604
    [Google Scholar]
  76. YuT. LiG. WangC. GongG. WangL. LiC. ChenY. WangX. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis.RNA Biol.202118122513253010.1080/15476286.2021.193075534110962
    [Google Scholar]
  77. BedardK. JaquetV. KrauseK.H. NOX5: From basic biology to signaling and disease.Free Radic. Biol. Med.201252472573410.1016/j.freeradbiomed.2011.11.02322182486
    [Google Scholar]
  78. SalcherS. HermannM. Kiechl-KohlendorferU. AusserlechnerM.J. ObexerP. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy.Mol. Cancer20171619510.1186/s12943‑017‑0661‑428545464
    [Google Scholar]
  79. TongS. XiaT. FanK. JiangK. ZhaiW. LiJ-S. WangS-H. WangJ-J. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein.Oncotarget2016739642606427310.18632/oncotarget.1172827588399
    [Google Scholar]
  80. ZhouP.J. WangX. AnN. WeiL. ZhangL. HuangX. ZhuH.H. FangY.X. GaoW.Q. Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes.Oncogene201938122192220510.1038/s41388‑018‑0580‑x30467379
    [Google Scholar]
  81. StackerS. AchenM. Emerging roles for VEGF-D in human disease.Biomolecules201881110.3390/biom801000129300337
    [Google Scholar]
  82. ZhangQ. ZhengL. BaiY. SuC. CheY. XuJ. SunK. NiJ. HuangL. ShenY. JiaL. XuL. YinR. LiM. HuJ. ITPR1-AS1 promotes small cell lung cancer metastasis by facilitating P21 splicing and stabilizing DDX3X to activate the cRaf-MEK-ERK cascade.Cancer Lett.202357721642610.1016/j.canlet.2023.21642637820992
    [Google Scholar]
  83. WuD. LiD. LiuZ. LiuX. ZhouS. DuanH. Role and underlying mechanism of SPATA12 in oxidative damage.Oncol. Lett.20181533676368410.3892/ol.2018.774929467887
    [Google Scholar]
  84. DanL. LifangY. GuangxiuL. Expression and possible functions of a novel gene SPATA12 in human testis.J. Androl.200728450251210.2164/jandrol.106.00156017251597
    [Google Scholar]
  85. ZhangY. YangL. LinY. RongZ. LiuX. LiD. SPATA12 and its possible role in DNA damage induced by ultraviolet-C.PLoS One2013810e7820110.1371/journal.pone.007820124205157
    [Google Scholar]
  86. Aguilar-RojasA. Huerta-ReyesM. Maya-NúñezG. Arechavaleta-VeláscoF. ConnP.M. Ulloa-AguirreA. ValdésJ. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231.BMC Cancer201212155010.1186/1471‑2407‑12‑55023176180
    [Google Scholar]
  87. DondiD. FestucciaC. PiccolellaM. BolognaM. MottaM. GnRH agonists and antagonists decrease the metastatic progression of human prostate cancer cell lines by inhibiting the plasminogen activator system.Oncol. Rep.200615239340010.3892/or.15.2.39316391860
    [Google Scholar]
  88. EmonsG. MüllerV. OrtmannO. SchulzK.D. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells.J. Steroid Biochem. Mol. Biol.1998651-619920610.1016/S0960‑0760(97)00189‑19699874
    [Google Scholar]
  89. FisterS. GünthertA.R. EmonsG. GründkerC. Gonadotropin-releasing hormone type II antagonists induce apoptotic cell death in human endometrial and ovarian cancer cells in vitro and in vivo .Cancer Res.20076741750175610.1158/0008‑5472.CAN‑06‑322217308117
    [Google Scholar]
  90. SuoL. ChangX. XuN. JiH. The anti-proliferative activity of GnRH through downregulation of the Akt/ERK Pathways in pancreatic cancer.Front. Endocrinol. (Lausanne)20191037010.3389/fendo.2019.0037031263453
    [Google Scholar]
  91. von AltenJ. FisterS. SchulzH. ViereckV. FroschK.H. EmonsG. GründkerC. GnRH analogs reduce invasiveness of human breast cancer cells.Breast Cancer Res. Treat.20061001132110.1007/s10549‑006‑9222‑z16758121
    [Google Scholar]
  92. DuJ. XiangY. LiuH. LiuS. KumarA. XingC. WangZ. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis.Nat. Commun.2021121706710.1038/s41467‑021‑27367‑534862394
    [Google Scholar]
  93. ZhuoX. ChenL. LaiZ. LiuJ. LiS. HuA. LinY. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) correlates with poor prognosis and immune infiltration in lung adenocarcinoma.Bioengineered20211218336834610.1080/21655979.2021.198581734592886
    [Google Scholar]
  94. NiedernbergA. TunaruS. BlaukatA. ArdatiA. KostenisE. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63.Cell. Signal.200315443544610.1016/S0898‑6568(02)00119‑512618218
    [Google Scholar]
  95. ZengS. LiangY. HuH. WangF. LiangL. Endothelial cell-derived S1P promotes migration and stemness by binding with GPR63 in colorectal cancer.Pathol. Res. Pract.202224015419710.1016/j.prp.2022.15419736371997
    [Google Scholar]
  96. DiaoL. WangS. SunZ. Long noncoding RNA GAPLINC promotes gastric cancer cell proliferation by acting as a molecular sponge of miR-378 to modulate MAPK1 expression.OncoTargets Ther.2018112797280410.2147/OTT.S16514729785127
    [Google Scholar]
  97. HuY. WangJ. QianJ. KongX. TangJ. WangY. ChenH. HongJ. ZouW. ChenY. XuJ. FangJ.Y. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer.Cancer Res.201474236890690210.1158/0008‑5472.CAN‑14‑068625277524
    [Google Scholar]
  98. LuoY. OuyangJ. ZhouD. ZhongS. WenM. OuW. YuH. JiaL. HuangY. Long NoncodingR.N.A. Long noncoding RNA GAPLINC promotes cells migration and invasion in colorectal cancer cell by regulating miR-34a/c-MET signal pathway.Dig. Dis. Sci.201863489089910.1007/s10620‑018‑4915‑929427222
    [Google Scholar]
  99. WangS. PangL. LiuZ. MengX. SERPINE1 associated with remodeling of the tumor microenvironment in colon cancer progression: A novel therapeutic target.BMC Cancer202121176710.1186/s12885‑021‑08536‑734215248
    [Google Scholar]
  100. ShengY.H. HeY. HasnainS.Z. WangR. TongH. ClarkeD.T. LourieR. OanceaI. WongK.Y. LumleyJ.W. FlorinT.H. SuttonP. HooperJ.D. McMillanN.A. McGuckinM.A. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target.Oncogene201736570071310.1038/onc.2016.24127399336
    [Google Scholar]
  101. ShengY. WongK.Y. SeimI. WangR. HeY. WuA. PatrickM. LourieR. SchreiberV. GiriR. NgC.P. PopatA. HooperJ. KijankaG. FlorinT.H. BegunJ. RadfordK.J. HasnainS. McGuckinM.A. MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity.Oncogene201938487294731010.1038/s41388‑019‑0951‑y31427737
    [Google Scholar]
  102. ChenC.I. LiW.S. ChenH.P. LiuK.W. TsaiC.J. HungW.J. YangC.C. High expression of folate receptor alpha (FOLR1) is Associated with aggressive tumor behavior, poor response to chemoradiotherapy, and worse survival in rectal cancer.Technol. Cancer Res. Treat.2022211533033822114179510.1177/1533033822114179536426547
    [Google Scholar]
  103. NawazF.Z. KipreosE.T. Emerging roles for folate receptor FOLR1 in signaling and cancer.Trends Endocrinol. Metab.202233315917410.1016/j.tem.2021.12.00335094917
    [Google Scholar]
  104. BouchardD. MorissetD. BourbonnaisY. TremblayG.M. Proteins with whey-acidic-protein motifs and cancer.Lancet Oncol.20067216717410.1016/S1470‑2045(06)70579‑416455481
    [Google Scholar]
  105. MadarS. BroshR. BuganimY. EzraO. GoldsteinI. SolomonH. KoganI. GoldfingerN. KlockerH. RotterV. Modulated expression of WFDC1 during carcinogenesis and cellular senescence.Carcinogenesis2009301202710.1093/carcin/bgn23218842679
    [Google Scholar]
  106. LiangR.J. TaylorS. NahiyaanN. SongJ. MurphyC.J. DantasE. ChengS. HsuT.W. RamsamoojS. GroverR. HwangS.K. NgoB. CantleyL.C. RheeK.Y. GoncalvesM.D. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase.Cancer Metab.2021911210.1186/s40170‑021‑00246‑933762003
    [Google Scholar]
  107. WengY. FanX. BaiY. WangS. HuangH. YangH. ZhuJ. ZhangF. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization.Cell Death Discov.2018413810.1038/s41420‑018‑0038‑529531835
    [Google Scholar]
  108. LuoW. GangwalK. SankarS. BoucherK.M. ThomasD. LessnickS.L. GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance.Oncogene200928464126413210.1038/onc.2009.26219718047
    [Google Scholar]
  109. HemmingM.L. CoyS. LinJ.R. AndersenJ.L. PrzybylJ. MazzolaE. Abdelhamid AhmedA.H. van de RijnM. SorgerP.K. ArmstrongS.A. DemetriG.D. SantagataS. HAND1 and BARX1 act as transcriptional and anatomic determinants of malignancy in gastrointestinal stromal tumor.Clin. Cancer Res.20212761706171910.1158/1078‑0432.CCR‑20‑353833451979
    [Google Scholar]
  110. HemmingM.L. LawlorM.A. ZeidR. LesluyesT. FletcherJ.A. RautC.P. SicinskaE.T. ChibonF. ArmstrongS.A. DemetriG.D. BradnerJ.E. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome.Proc. Natl. Acad. Sci. USA201811525E5746E575510.1073/pnas.180207911529866822
    [Google Scholar]
  111. HuangX. WangZ. ZhangJ. NiX. BaiG. CaoJ. ZhangC. HanZ. LiuT. BARX1 promotes osteosarcoma cell proliferation and invasion by regulating HSPA6 expression.J. Orthop. Surg. Res.202318121110.1186/s13018‑023‑03690‑z36927457
    [Google Scholar]
  112. SunG. GeY. ZhangY. YanL. WuX. OuyangW. WangZ. DingB. ZhangY. LongG. LiuM. ShiR. ZhouH. ChenZ. YeZ. Transcription factors BARX1 and DLX4 contribute to progression of clear cell renal cell carcinoma via promoting proliferation and epithelial–mesenchymal transition.Front. Mol. Biosci.2021862632810.3389/fmolb.2021.62632834124141
    [Google Scholar]
  113. ZhangT. QiuL. CaoJ. LiQ. ZhangL. AnG. NiJ. JiaH. LiS. LiK. ZFP36 loss-mediated BARX1 stabilization promotes malignant phenotypes by transactivating master oncogenes in NSCLC.Cell Death Dis.202314852710.1038/s41419‑023‑06044‑z37587140
    [Google Scholar]
  114. KumarD. AsthanaS. Autophagy and metabolism: Potential target for cancer therapy.London, United Kingdom; San Diego, CAAcademic Press2022
    [Google Scholar]
  115. BoeseA.C. KangS. Mitochondrial metabolism-mediated redox regulation in cancer progression.Redox Biol.20214210187010.1016/j.redox.2021.10187033509708
    [Google Scholar]
  116. ShiT. PoldermanP.E. Pagès-GallegoM. van EsR.M. VosH.R. BurgeringB.M.T. DansenT.B. p53 forms redox-dependent protein–protein interactions through cysteine 277.Antioxidants20211010157810.3390/antiox1010157834679713
    [Google Scholar]
  117. HeZ. SimonH.U. A novel link between p53 and ROS.Cell Cycle201312220120210.4161/cc.2341823287470
    [Google Scholar]
  118. MonteroJ. DuttaC. van BodegomD. WeinstockD. LetaiA. p53 regulates a non-apoptotic death induced by ROS.Cell Death Differ.201320111465147410.1038/cdd.2013.5223703322
    [Google Scholar]
  119. SantosP.A.S.R. AvançoG.B. NeriloS.B. MarcelinoR.I.A. JaneiroV. ValadaresM.C. MachinskiM. Assessment of cytotoxic activity of rosemary ( Rosmarinus officinalis L.), turmeric ( Curcuma longa L.), and ginger ( Zingiber officinale R.) essential oils in cervical cancer cells (HeLa).ScientificWorldJournal201620161810.1155/2016/927307828042599
    [Google Scholar]
  120. RezaiesereshtH. ShobeiriS.S. KaskaniA. Chenopodium botrys essential oil as a source of sesquiterpenes to induce apoptosis and G1 cell cycle arrest in cervical cancer cells.Iran. J. Pharm. Res.202019234135133224241
    [Google Scholar]
  121. NikakhtarZ. HasanzadehM. HamediS.S. NajafiM.N. TavassoliA.P. FeyzabadiZ. MeshkatZ. SakiA. The efficacy of vaginal suppository based on myrtle in patients with cervicovaginal human papillomavirus infection: A randomized, double‐blind, placebo trial.Phytother. Res.201832102002200810.1002/ptr.613129943384
    [Google Scholar]
  122. PuškárováA. BučkováM. KrakováL. PangalloD. KozicsK. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells.Sci. Rep.201771821110.1038/s41598‑017‑08673‑928811611
    [Google Scholar]
  123. McGregorR.C. ParkerK.A. HornbyJ.M. LattaL.C.IV Microbial population dynamics under microdoses of the essential oil arborvitae.BMC Complement. Altern. Med.201919124710.1186/s12906‑019‑2666‑631488126
    [Google Scholar]
  124. ReisD. JonesT. Aromatherapy: Using essential oils as a supportive therapy.Clin. J. Oncol. Nurs.2017211161910.1188/17.CJON.16‑1928107335
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206308864240823095507
Loading
/content/journals/acamc/10.2174/0118715206308864240823095507
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): arborvitae; cervical cancer; cytotoxicity; essential oil; HeLa; RNA-Seq; SiHa; Thuja plicata
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test