Skip to content
2000
Volume 24, Issue 20
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

One of the many reasons for cancer treatment failure and recurrence is acquired Multidrug Resistance (MDR). Overcoming cancer drug resistance has been the focus of researchers' studies. Cellular prion protein (PrPC) is a glycophosphatidylinositol-anchored cell-surface glycoprotein that has been implicated in tumor behavior, including proliferation, apoptosis, invasion, metastasis, and chemoresistance.

Methods

Lupiwighteone (Lup), a natural isoflavone found in the root of Glycyrrhiza glabra, has anticancer activity against prostate cancer cells, neuroblastoma cells, and human breast cancer cells. However, its pharmacological effects and mechanisms in drug-resistant cancer cells have not been reported. In this study, we used an adriamycin-resistant leukemia K562 cell model, and for the first time, we investigated the reversal effect of Lup on its MDR and the potential mechanism.

Results

The results indicated that Lup could induce apoptosis through the mitochondrial pathway while upregulating the expression of related apoptotic proteins, such as Bax, Cyto C, Caspase-3, and PARP1. Autophagy is commonly recognized as a protective mechanism that mediates MDR during treatment. We found that Lup induced cellular autophagy while upregulating the expression of related autophagy proteins such as Beclin 1 and LC3 II.

Conclusion

In addition, when Lup was combined with adriamycin, Lup decreased the IC of K562/ADR cells; moreover, Lup can downregulate the expression of drug-resistant proteins, suggesting that Lup can reverse drug resistance. Further studies have shown that Lup can downregulate the expression of PrPC-PI3K-Akt axis proteins and PrPC-Oct4 axis proteins. This study demonstrated that Lup has the potential to inhibit the proliferation of K562/ADR cells by targeting PrPC, and further study of the signaling pathway associated with PrPC may provide the experimental basis for the treatment of drug-resistant leukemia.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206316284240807100226
2024-12-01
2025-10-03
Loading full text...

Full text loading...

References

  1. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  2. BartelD.P. MicroRNAs: Genomics, biogenesis, mechanism, and function.Cell.2004116228129710.1016/s0092‑8674(04)00045‑5 14744438
    [Google Scholar]
  3. KumariA. AhujaS. BajajS. ZaheerS. ChaitanyaV. AgarwalY. GuptaR. RangaS. Cytomorphological findings in drug defaulters of Tuberculous lymphadenitis.Cytojournal2023203110.25259/Cytojournal_16_2023 37810436
    [Google Scholar]
  4. NarayananS. CaiC.Y. AssarafY.G. GuoH.Q. CuiQ. WeiL. HuangJ.J. AshbyC.R.Jr ChenZ.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance.Drug Resist. Updat.20204810066310.1016/j.drup.2019.100663 31785545
    [Google Scholar]
  5. CaoY.X. WenF. LuoZ.Y. LongX.X. LuoC. LiaoP. LiJ.J. Downregulation of microRNA let‐7f mediated the Adriamycin resistance in leukemia cell line.J. Cell. Biochem.2020121104022403310.1002/jcb.29541 31793054
    [Google Scholar]
  6. JayappaK.D. TranB. GordonV.L. MorrisC. SahaS. FarringtonC.C. O’ConnorC.M. ZawackiK.P. IsaacK.M. KesterM. BenderT.P. WilliamsM.E. PortellC.A. WeberM.J. NarlaG. PP2A modulation overcomes multidrug resistance in chronic lymphocytic leukemia via mPTP-dependent apoptosis.J. Clin. Invest.202313313e15593810.1172/JCI155938 37166997
    [Google Scholar]
  7. LiJ.M. LiX. ChanL.W.C. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  8. LuoG. ZhouZ. HuangC. ZhangP. SunN. ChenW. DengC. LiX. WuP. TangJ. QingL. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps.Heliyon202397e1790910.1016/j.heliyon.2023.e17909 37456049
    [Google Scholar]
  9. MessinaM. A brief historical overview of the past two decades of soy and isoflavone research.J. Nutr.201014071350S1354S10.3945/jn.109.118315 20484551
    [Google Scholar]
  10. XieB. ZhaoL. ZhangZ. ZhouC. TianY. KangY. ChenJ. WeiH. LiL. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells.BMC Cancer202323195510.1186/s12885‑023‑11458‑1 37814227
    [Google Scholar]
  11. Ghelli Luserna di RoràA. JandoubiM. MartinelliG. SimonettiG. Targeting proliferation signals and the cell cycle machinery in acute leukemias: Novel molecules on the horizon.Molecules2023283122410.3390/molecules28031224 36770891
    [Google Scholar]
  12. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb4184 25180339
    [Google Scholar]
  13. NarasimhaA.M. KaulichM. ShapiroG.S. ChoiY.J. SicinskiP. DowdyS.F. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation.eLife20143e0287210.7554/eLife.02872 24876129
    [Google Scholar]
  14. ChaS. SinM.J. KimM.J. KimH.J. KimY.S. ChoiE.K. KimM.Y. Involvement of cellular prion protein in invasion and metastasis of lung cancer by inducing treg cell development.Biomolecules202111228510.3390/biom11020285 33671884
    [Google Scholar]
  15. HanH. BearssD.J. BrowneL.W. CalaluceR. NagleR.B. Von HoffD.D. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray.Cancer Res.2002621028902896 12019169
    [Google Scholar]
  16. GoG. LeeS.H. The cellular prion protein: A promising therapeutic target for cancer.Int. J. Mol. Sci.20202123920810.3390/ijms21239208 33276687
    [Google Scholar]
  17. DominguesP.H. NanduriL.S.Y. SegetK. VenkateswaranS.V. AgorkuD. ViganóC. von SchubertC. NiggE.A. SwantonC. SotilloR. BosioA. StorchováZ. HardtO. Cellular prion protein PrPC and Ecto-5′-Nucleotidase are markers of the cellular stress response to aneuploidy.Cancer Res.201777112914292610.1158/0008‑5472.CAN‑16‑3052 28377454
    [Google Scholar]
  18. LeeJ.H. YunC.W. HanY.S. KimS. JeongD. KwonH.Y. KimH. BaekM.J. LeeS.H. Melatonin and 5‐fluorouracil co‐suppress colon cancer stem cells by regulating cellular prion protein‐Oct4 axis.J. Pineal Res.2018654e1251910.1111/jpi.12519 30091203
    [Google Scholar]
  19. VassalloN. HermsJ. BehrensC. KrebsB. SaekiK. OnoderaT. WindlO. KretzschmarH.A. Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival.Biochem. Biophys. Res. Commun.20053321758210.1016/j.bbrc.2005.04.099 15896301
    [Google Scholar]
  20. WeiseJ. SandauR. SchwartingS. CromeO. WredeA. Schulz-SchaefferW. ZerrI. BährM. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury.Stroke20063751296130010.1161/01.STR.0000217262.03192.d4 16574930
    [Google Scholar]
  21. PuigB. YangD. BrennaS. AltmeppenH.C. MagnusT. Show me your friends and I tell you who you are: The many facets of prion protein in stroke.Cells202097160910.3390/cells9071609 32630841
    [Google Scholar]
  22. SavovaM.S. MihaylovaL.V. TewsD. WabitschM. GeorgievM.I. Targeting PI3K/AKT signaling pathway in obesity.Biomed. Pharmacother.202315911424410.1016/j.biopha.2023.114244 36638594
    [Google Scholar]
  23. YuanY. LongH. ZhouZ. FuY. JiangB. PI3K–AKT-Targeting breast cancer treatments: Natural products and synthetic compounds.Biomolecules20231319310.3390/biom13010093 36671478
    [Google Scholar]
  24. YueJ. LópezJ.M. Understanding MAPK Signaling Pathways in Apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  25. YangM.H. BaekS.H. HwangS.T. UmJ.Y. AhnK.S. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells.Phytother. Res.20223662449246210.1002/ptr.7419 35234310
    [Google Scholar]
  26. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell.2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  27. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  28. KimC. KimB. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review.Nutrients2018108102110.3390/nu10081021 30081573
    [Google Scholar]
  29. GambardellaJ. FiordelisiA. SantulliG. CiccarelliM. CerasuoloF.A. SalaM. SommellaE. CampigliaP. IllarioM. IaccarinoG. SorrientoD. Exploiting GRK2 inhibition as a therapeutic option in experimental cancer treatment: Role of p53-induced mitochondrial apoptosis.Cancers (Basel)20201212353010.3390/cancers12123530 33256128
    [Google Scholar]
  30. BuschhausJ.M. HumphriesB. LukerK.E. LukerG.D. A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis.Cells201876576710.3390/cells7060057 30720785
    [Google Scholar]
  31. NichaniK. LiJ. SuzukiM. HoustonJ.P. Evaluation of caspase‐3 activity during apoptosis with fluorescence lifetime‐based cytometry measurements and phasor analyses.Cytometry A202097121265127510.1002/cyto.a.24207 32790129
    [Google Scholar]
  32. DasS. ShuklaN. SinghS.S. KushwahaS. ShrivastavaR. Mechanism of interaction between autophagy and apoptosis in cancer.Apoptosis2021269-1051253310.1007/s10495‑021‑01687‑9 34510317
    [Google Scholar]
  33. DasT. AnandU. PandeyS.K. AshbyC.R.Jr AssarafY.G. ChenZ.S. DeyA. Therapeutic strategies to overcome taxane resistance in cancer.Drug Resist. Updat.20215510075410.1016/j.drup.2021.100754 33691261
    [Google Scholar]
  34. RobeyR.W. PluchinoK.M. HallM.D. FojoA.T. BatesS.E. GottesmanM.M. Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat. Rev. Cancer201818745246410.1038/s41568‑018‑0005‑8 29643473
    [Google Scholar]
  35. GoG. YunC.W. YoonY.M. LimJ.H. LeeJ.H. LeeS.H. Role of PrP C in cancer stem cell characteristics and drug resistance in colon cancer cells.Anticancer Res.202040105611562010.21873/anticanres.14574 32988885
    [Google Scholar]
  36. DuJ. PanY. ShiY. GuoC. JinX. SunL. LiuN. QiaoT. FanD. Overexpression and significance of prion protein in gastric cancer and multidrug‐resistant gastric carcinoma cell line SGC7901/ADR.Int. J. Cancer2005113221322010.1002/ijc.20570 15386405
    [Google Scholar]
  37. OliveiraB.R. FigueiredoM.A. TrindadeG.S. MarinsL.F. OCT4 mutations in human erythroleukemic cells: Implications for multiple drug resistance (MDR) phenotype.Mol. Cell. Biochem.20154001-2415010.1007/s11010‑014‑2260‑7 25355160
    [Google Scholar]
  38. ZhangZ. ChenW. ZhangS. BaiJ. LiuB. YungK.K.L. KoJ.K.S. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy.Phytomedicine202210615440610.1016/j.phymed.2022.154406 36029643
    [Google Scholar]
  39. HamidA. RajabN.F. CharmagneY. AwangN. JufriN.F. RasliN.R. Cellular and DNA toxicity study of triphenyltin ethyl phenyl dithiocarbamate and triphenyltin butyl phenyl dithiocarbamate on K562, leukemia cell line.Anticancer. Agents Med. Chem.2024241586510.2174/0118715206266851231025054446 37921147
    [Google Scholar]
  40. TholF. DöhnerH. GanserA. How I treat refractory and relapsed acute myeloid leukemia.Blood20241431112010.1182/blood.2023022481 37944143
    [Google Scholar]
  41. HuangY. WanC.L. DaiH. XueS. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma.Ann. Hematol.202310282001201310.1007/s00277‑023‑05286‑3 37227492
    [Google Scholar]
  42. SauererT. VelázquezG.F. SchmidC. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: Immune escape mechanisms and current implications for therapy.Mol. Cancer202322118010.1186/s12943‑023‑01889‑6 37951964
    [Google Scholar]
  43. SuX. LiY. WangP. WangX. LiuQ. Protoporphyrin IX-mediated sonodynamic action induces apoptosis of K562 cells.Ultrasonics201454127528410.1016/j.ultras.2013.07.015 23978616
    [Google Scholar]
  44. SekeresM.A. MontesinosP. NovakJ. WangJ. JeyakumarD. TomlinsonB. MayerJ. JouE. RobakT. TaussigD.C. DombretH. MerchantA. ShaikN. O’BrienT. RohW. LiuX. MaW. DiRienzoC.G. ChanG. CortesJ.E. Glasdegib plus intensive or non-intensive chemotherapy for untreated acute myeloid leukemia: Results from the randomized, phase 3 BRIGHT AML 1019 trial.Leukemia202337102017202610.1038/s41375‑023‑02001‑z 37604981
    [Google Scholar]
  45. BolamanA.Z. Eroğlu KüçükdilerA.H. Yavaşoğluİ. Disseminated scabies during induction chemotherapy for acute promyelocytic leukemia.Turkiye Parazitol. Derg.202347212712810.4274/tpd.galenos.2023.27136 37249118
    [Google Scholar]
  46. ZhengC. ZhuZ. WengS. ZhangQ. FuY. CaiX. LiuZ. ShiY. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF‐κB signaling pathway.J. Biochem. Mol. Toxicol.20233712e2351010.1002/jbt.23510 37700718
    [Google Scholar]
  47. LiZ. MaR. TangH. GuoJ. ShahZ. ZhangJ. LiuN. CaoS. MarcucciG. ArtisD. CaligiuriM.A. YuJ. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death.Cell20241873624641.e2310.1016/j.cell.2023.12.015 38211590
    [Google Scholar]
  48. RauschJ. DzamaM.M. DolgikhN. StillerH.L. BohlS.R. LahrmannC. KunzK. KesslerL. EchchannaouiH. ChenC.W. KindlerT. DöhnerK. BurrowsF. TheobaldM. SascaD. KühnM.W.M. Menin inhibitor ziftomenib (KO-539) synergizes with drugs targeting chromatin regulation or apoptosis and sensitizes acute myeloid leukemia with MLL rearrangement or NPM1 mutation to venetoclax.Haematologica2023108102837284310.3324/haematol.2022.282160 37102614
    [Google Scholar]
  49. LongH. HuangQ. YuY. ZhangZ. YaoZ. ChenH. FengJ. Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential.Arch. Med. Sci.201915376577310.5114/aoms.2018.73128 31110544
    [Google Scholar]
  50. GuY.Y. ChenM.H. MayB.H. LiaoX.Z. LiuJ.H. TaoL.T. Man-yuen SzeD. ZhangA.L. MoS.L. Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and caspase-3.Phytomedicine20185121422510.1016/j.phymed.2018.10.004 30466620
    [Google Scholar]
  51. WangM. SunX. JiangY. TanZ. NET-1 promotes invasion, adhesion and growth of hepatocellular carcinoma by regulating the expression of BAX, caspase 3, caspase 8 and BCL2.Cell. Mol. Biol.20186412374110.14715/cmb/2018.64.12.8 30301500
    [Google Scholar]
  52. da Silva SergioL.P. Côrtes ThoméA.M. da Silva Neto TrajanoL.A. MencalhaA.L. de Souza da FonsecaA. de PaoliF. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury.Photochem. Photobiol. Sci.201817797598310.1039/c8pp00109j 29922788
    [Google Scholar]
  53. YousafS. AhmadM. WuS. ZiaM.A. AhmedI. IqbalH.M.N. LiuQ. RehmanS. Cellular prion protein role in cancer biology: Is it a potential therapeutic target?Biomedicines20221011283310.3390/biomedicines10112833 36359353
    [Google Scholar]
  54. LimoneA. MaggisanoV. SarnataroD. BulottaS. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology.Cell. Mol. Life Sci.202380820710.1007/s00018‑023‑04844‑2 37452879
    [Google Scholar]
  55. ChengQ. ZhengH. LiM. WangH. GuoX. ZhengZ. ChenC. LiuJ. ZhanT. LiZ. WuH. HanJ. LiuL. TangT. ChenQ. DuL. LGR4 cooperates with PrPC to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis.Cancer Lett.202254021572510.1016/j.canlet.2022.215725 35561877
    [Google Scholar]
  56. WangH. LiX. XiaB. ZhangQ. HeJ. YangL. Amelioration of chronic prostatitis by fractions of Mongolian medicine Hosta plantaginea flowers via inhibition of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt signaling pathways in rats.J. Ethnopharmacol.202330711624510.1016/j.jep.2023.116245 36746294
    [Google Scholar]
  57. LimJ.H. GoG. LeeS.H. PrPC regulates the cancer stem cell properties via interaction with c-Met in colorectal cancer cells.Anticancer Res.20214173459347010.21873/anticanres.15133 34230141
    [Google Scholar]
  58. WangY.J. HerlynM. The emerging roles of Oct4 in tumor-initiating cells.Am. J. Physiol. Cell Physiol.201530911C709C71810.1152/ajpcell.00212.2015 26447206
    [Google Scholar]
  59. YangC.C. SungP.H. ChenK.H. ChaiH.T. ChiangJ.Y. KoS.F. LeeF.Y. YipH.K. Valsartan- and melatonin-supported adipose-derived mesenchymal stem cells preserve renal function in chronic kidney disease rat through upregulation of prion protein participated in promoting PI3K-Akt-mTOR signaling and cell proliferation.Biomed. Pharmacother.202214611255110.1016/j.biopha.2021.112551 34923336
    [Google Scholar]
  60. TazzariP.L. CappelliniA. RicciF. EvangelistiC. PapaV. GrafoneT. MartinelliG. ConteR. CoccoL. McCubreyJ.A. MartelliA.M. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts.Leukemia200721342743810.1038/sj.leu.2404523 17215852
    [Google Scholar]
  61. LiY.J. LeiY.H. YaoN. WangC.R. HuN. YeW.C. ZhangD.M. ChenZ.S. Autophagy and multidrug resistance in cancer.Chin. J. Cancer20173615210.1186/s40880‑017‑0219‑2 28646911
    [Google Scholar]
  62. ZengT. XuM. ZhangW. GuX. ZhaoF. LiuX. ZhangX. Autophagy inhibition and microRNA 199a 5p upregulation in paclitaxel resistant A549/T lung cancer cells.Oncol. Rep.202146114910.3892/or.2021.8100 34080652
    [Google Scholar]
  63. ZhangX. ChenX. GuoY. JiaH.R. JiangY.W. WuF.G. Endosome/lysosome-detained supramolecular nanogels as an efflux retarder and autophagy inhibitor for repeated photodynamic therapy of multidrug-resistant cancer.Nanoscale Horiz.20205348148710.1039/C9NH00643E 32118218
    [Google Scholar]
  64. MaiuriM.C. ZalckvarE. KimchiA. KroemerG. Self-eating and self-killing: Crosstalk between autophagy and apoptosis.Nat. Rev. Mol. Cell Biol.20078974175210.1038/nrm2239 17717517
    [Google Scholar]
  65. ZhaoQ. PengC. ZhengC. HeX.H. HuangW. HanB. Recent advances in characterizing natural products that regulate autophagy.Anticancer. Agents Med. Chem.202019182177219610.2174/1871520619666191015104458 31749434
    [Google Scholar]
  66. RyterS.W. MizumuraK. ChoiA.M.K. The impact of autophagy on cell death modalities.Int. J. Cell Biol.2014201411210.1155/2014/502676 24639873
    [Google Scholar]
  67. JingK. LimK. Why is autophagy important in human diseases?Exp. Mol. Med.2012442697210.3858/emm.2012.44.2.028 22257881
    [Google Scholar]
  68. GumpJ.M. ThorburnA. Autophagy and apoptosis: What is the connection?Trends Cell Biol.201121738739210.1016/j.tcb.2011.03.007 21561772
    [Google Scholar]
  69. SuM. MeiY. SinhaS. Role of the crosstalk between autophagy and apoptosis in cancer.J. Oncol.2013201311410.1155/2013/102735 23840208
    [Google Scholar]
  70. MariñoG. Niso-SantanoM. BaehreckeE.H. KroemerG. Self-consumption: The interplay of autophagy and apoptosis.Nat. Rev. Mol. Cell Biol.2014152819410.1038/nrm3735 24401948
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206316284240807100226
Loading
/content/journals/acamc/10.2174/0118715206316284240807100226
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; autophagy; cell cycle arrest; K562/ADR; Lup; PrPC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test