Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

This study explored whether the cell cycle regulator cadherin 1 (CDH1) impacts colorectal cancer cell cycle and stemness mediating ubiquitination of sirtuin 5 (SIRT5).

Methods

We first constructed CDH1 overexpression plasmid and small interfering RNA against SIRT5 (siSIRT5) and transfected them into HCT116/HT29 cells, followed by transfection efficiency verification. The effect of CDH1 on Cyclin F/SIRT5/CDH1 protein levels in HCT116/HT29 cells was verified by Western blot. After up-regulation of CDH1, changes in SIRT5 ubiquitination (immunoprecipitation), cell cycle (cell cycle kit), proliferation (5-Bromodeoxyuridine assay), and stemness marker expressions (qRT-PCR) in HCT116/HT29 cells were detected. Rescue assays were performed to examine cell proliferation and stemness marker expressions.

Results

Overexpression of CDH1 decreased Cyclin F expression and increased SIRT5 and CDH1 expressions in HCT116/HT29 cells. Up-regulation of CDH1 suppressed SIRT5 ubiquitination, promoted G0/G1 phase blockage in HCT116/HT29 cells, boosted cell proliferation into quiescence and enhanced cell stemness. siSIRT5 counteracted the regulatory effect of CDH1 overexpression on colorectal cancer cells.

Conclusion

CDH1 promotes the entry of colorectal cancer cells into quiescence and enhances stemness by dampening SIRT5 ubiquitination.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206336851241204111721
2025-02-12
2025-09-02
Loading full text...

Full text loading...

References

  1. JinK RenC LiuY LanH WangZ An update on colorectal cancer microenvironment, epigenetic and immunotherapy.Int Immunopharmacol.202089Pt A10704110.1016/j.intimp.2020.107041
    [Google Scholar]
  2. KimB.J. HannaM.H. Colorectal cancer in young adults.J. Surg. Oncol.202312781247125110.1002/jso.27320
    [Google Scholar]
  3. ArnoldM. SierraM.S. LaversanneM. SoerjomataramI. JemalA. BrayF. Global patterns and trends in colorectal cancer incidence and mortality.Gut201766468369110.1136/gutjnl‑2015‑310912 26818619
    [Google Scholar]
  4. McQuadeR.M. StojanovskaV. BornsteinJ.C. NurgaliK. Colorectal cancer chemotherapy: The evolution of treatment and new approaches.Curr. Med. Chem.2017241515371557 28079003
    [Google Scholar]
  5. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  6. RobertsonD. J. ImperialeT. F. Colorectal Cancer Screening: Is Earlier Better? Lancet Gastroenterol. Hepatol.20183851910.1016/S2468‑1253(18)30205‑X
    [Google Scholar]
  7. DuL. ChengQ. ZhengH. LiuJ. LiuL. ChenQ. Targeting stemness of cancer stem cells to fight colorectal cancers.Semin. Cancer Biol.20228215016110.1016/j.semcancer.2021.02.012 33631296
    [Google Scholar]
  8. CollocaA. BalestrieriA. AnastasioC. BalestrieriM.L. D’OnofrioN. Mitochondrial sirtuins in chronic degenerative diseases: New metabolic targets in colorectal cancer.Int. J. Mol. Sci.2022236321210.3390/ijms23063212 35328633
    [Google Scholar]
  9. ChaY. KimT. JeonJ. JangY. KimP.B. LopesC. LeblancP. CohenB.M. KimK.S. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes.Cell Rep.2021371311015510.1016/j.celrep.2021.110155 34965411
    [Google Scholar]
  10. PollettaL. VernucciE. CarnevaleI. ArcangeliT. RotiliD. PalmerioS. SteegbornC. NowakT. SchutkowskiM. PellegriniL. SansoneL. VillanovaL. RunciA. PucciB. MorganteE. FiniM. MaiA. RussoM.A. TafaniM. SIRT5 regulation of ammonia-induced autophagy and mitophagy.Autophagy201511225327010.1080/15548627.2015.1009778 25700560
    [Google Scholar]
  11. KumarS. LombardD.B. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.Crit. Rev. Biochem. Mol. Biol.201853331133410.1080/10409238.2018.1458071 29637793
    [Google Scholar]
  12. YangX. WangZ. LiX. LiuB. LiuM. LiuL. ChenS. RenM. WangY. YuM. WangB. ZouJ. ZhuW.G. YinY. GuW. LuoJ. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation.Cancer Res.201878237238610.1158/0008‑5472.CAN‑17‑1912 29180469
    [Google Scholar]
  13. WangH.L. ChenY. WangY.Q. TaoE.W. TanJ. LiuQ.Q. LiC.M. TongX.M. GaoQ.Y. HongJ. ChenY.X. FangJ.Y. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability.Nat. Commun.2022131612110.1038/s41467‑022‑33903‑8 36253417
    [Google Scholar]
  14. HuT. ShuklaS.K. VernucciE. HeC. WangD. KingR.J. JhaK. SiddhantaK. MullenN.J. AttriK.S. MurthyD. ChaikaN.V. ThakurR. MulderS.E. PachecoC.G. FuX. HighR.R. YuF. LazenbyA. SteegbornC. LanP. MehlaK. RotiliD. ChaudharyS. ValenteS. TafaniM. MaiA. AuwerxJ. VerdinE. TuvesonD. SinghP.K. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression.Gastroenterology202116151584160010.1053/j.gastro.2021.06.045 34245764
    [Google Scholar]
  15. GuW. QianQ. XuY. XuX. ZhangL. HeS. SIRT5 regulates autophagy and apoptosis in gastric cancer cells.J. Int. Med. Res.2021492300060520986355
    [Google Scholar]
  16. ShiL. YanH. AnS. ShenM. JiaW. ZhangR. ZhaoL. HuangG. LiuJ. SIRT 5‐mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer.Mol. Oncol.201913235837510.1002/1878‑0261.12408 30443978
    [Google Scholar]
  17. DuJ. ZhouY. SuX. YuJ.J. KhanS. JiangH. KimJ. WooJ. KimJ.H. ChoiB.H. HeB. ChenW. ZhangS. CerioneR.A. AuwerxJ. HaoQ. LinH. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.Science2011334605780680910.1126/science.1207861 22076378
    [Google Scholar]
  18. TengP. CuiK. YaoS. FeiB. LingF. LiC. HuangZ. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration.Cell Death Differ.2024311657710.1038/s41418‑023‑01240‑y 38007551
    [Google Scholar]
  19. KumarS. LombardD.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer.Antioxid. Redox Signal.201522121060107710.1089/ars.2014.6213 25545135
    [Google Scholar]
  20. ChienJ.H. ChangK.F. LeeS.C. LeeC.J. ChenY.T. LaiH.C. LuY.C. TsaiN.M. Cedrol restricts the growth of colorectal cancer in vitro and in vivo by inducing cell cycle arrest and caspase-dependent apoptotic cell death.Int. J. Med. Sci.202219131953196410.7150/ijms.77719 36438926
    [Google Scholar]
  21. MillsC.A. WangX. BhattD.P. GrimsrudP.A. MatsonJ.P. LahiriD. BurkeD.J. CookJ.G. HirscheyM.D. EmanueleM.J. Sirtuin 5 is regulated by the SCF Cyclin F ubiquitin ligase and is involved in cell cycle control.Mol. Cell. Biol.2021412e00269e2010.1128/MCB.00269‑20 33168699
    [Google Scholar]
  22. GalperJ. RaynerS.L. HoganA.L. FifitaJ.A. LeeA. ChungR.S. BlairI.P. YangS. CyclinF. A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer.Int. J. Biochem. Cell Biol.20178921622010.1016/j.biocel.2017.06.011 28652210
    [Google Scholar]
  23. ChoudhuryR. BonacciT. ArceciA. LahiriD. MillsC.A. KernanJ.L. BraniganT.B. DeCaprioJ.A. BurkeD.J. EmanueleM.J. APC/C and SCF cyclin F constitute a reciprocal feedback circuit controlling S-phase entry.Cell Rep.201616123359337210.1016/j.celrep.2016.08.058 27653696
    [Google Scholar]
  24. YeC.C. WangJ. E‐cadherin (CDH1) gene –160C/A polymorphism and the risk of colorectal cancer: A meta‐analysis involving 17,291 subjects.J. Gene Med.20212310e337010.1002/jgm.3370 34097324
    [Google Scholar]
  25. QiaoX. ZhangL. GamperA.M. FujitaT. WanY. APC/C-Cdh1.Cell Cycle20109193904391210.4161/cc.9.19.13585 20935501
    [Google Scholar]
  26. FujitaT. LiuW. DoiharaH. WanY. Regulation of Skp2-p27 axis by the Cdh1/anaphase-promoting complex pathway in colorectal tumorigenesis.Am. J. Pathol.2008173121722810.2353/ajpath.2008.070957 18535175
    [Google Scholar]
  27. WangD. YangY. CaoY. MengM. WangX. ZhangZ. FuW. DuanS. TangL. Histone deacetylase inhibitors inhibit lung adenocarcinoma metastasis via HDAC2/YY1 mediated downregulation of Cdh1.Sci. Rep.20231311206910.1038/s41598‑023‑38848‑6 37495623
    [Google Scholar]
  28. ShenoyS. CDH1 (E-cadherin) mutation and gastric cancer: Genetics, molecular mechanisms and guidelines for management.Cancer Manag. Res.201911104771048610.2147/CMAR.S208818 31853199
    [Google Scholar]
  29. SuskiJ.M. BraunM. StrmiskaV. SicinskiP. Targeting cell-cycle machinery in cancer.Cancer Cell202139675977810.1016/j.ccell.2021.03.010 33891890
    [Google Scholar]
  30. De FalcoM. De LucaA. Cell cycle as a target of antineoplastic drugs.Curr. Pharm. Des.201016121417142610.2174/138161210791033914 20166983
    [Google Scholar]
  31. TreichelS. FilippiM.D. Linking cell cycle to hematopoietic stem cell fate decisions.Front. Cell Dev. Biol.202311123173510.3389/fcell.2023.1231735 37645247
    [Google Scholar]
  32. NarayananS. CaiC.Y. AssarafY.G. GuoH.Q. CuiQ. WeiL. HuangJ.J. AshbyC.R.Jr ChenZ.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance.Drug Resist. Updat.20204810066310.1016/j.drup.2019.100663 31785545
    [Google Scholar]
  33. KimataY. APC/C ubiquitin ligase: Coupling cellular differentiation to G1/G0 phase in multicellular systems.Trends Cell Biol.201929759160310.1016/j.tcb.2019.03.001 31000380
    [Google Scholar]
  34. KitagawaK. KitagawaM. The SCF-type E3 ubiquitin ligases as cancer targets.Curr. Cancer Drug Targets201616211912910.2174/1568009616666151112122231 26560120
    [Google Scholar]
  35. SpanoD. CataraG. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy.Cells20231312910.3390/cells13010029 38201233
    [Google Scholar]
  36. DengL. MengT. ChenL. WeiW. WangP. The role of ubiquitination in tumorigenesis and targeted drug discovery.Signal Transduct. Target. Ther.2020511110.1038/s41392‑020‑0107‑0 32296023
    [Google Scholar]
  37. TangJ.Q. MarchandM.M. VeggianiG. Ubiquitin engineering for interrogating the ubiquitin–proteasome system and novel therapeutic strategies.Cells20231216211710.3390/cells12162117 37626927
    [Google Scholar]
  38. GreilC. EngelhardtM. WäschR. The role of the APC/C and its coactivators Cdh1 and Cdc20 in cancer development and therapy.Front. Genet.20221394156510.3389/fgene.2022.941565 35832196
    [Google Scholar]
  39. CappellS.D. ChungM. JaimovichA. SpencerS.L. MeyerT. Irreversible APC Cdh1 inactivation underlies the point of no return for cell-cycle entry.Cell2016166116718010.1016/j.cell.2016.05.077 27368103
    [Google Scholar]
  40. ShachafC.M. KopelmanA.M. ArvanitisC. KarlssonÅ. BeerS. MandlS. BachmannM.H. BorowskyA.D. RuebnerB. CardiffR.D. YangQ. BishopJ.M. ContagC.H. FelsherD.W. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.Nature200443170121112111710.1038/nature03043 15475948
    [Google Scholar]
  41. LiaoQ. RenY. YangY. ZhuX. ZhiY. ZhangY. ChenY. DingY. ZhaoL. CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression.Oncogenesis202110128410.1038/s41389‑021‑00374‑3 34862361
    [Google Scholar]
  42. FangZ. ZhongM. ZhouL. LeY. WangH. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway.Bioengineered202213368076818
    [Google Scholar]
  43. GuoD. SongX. GuoT. GuS. ChangX. SuT. YangX. LiangB. HuangD. Vimentin acetylation is involved in SIRT5-mediated hepatocellular carcinoma migration.Am. J. Cancer Res.201881224532466 30662803
    [Google Scholar]
  44. BasuB. GhoshM.K. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level.Biochim. Biophys. Acta Mol. Cell Res.20221869711926110.1016/j.bbamcr.2022.119261 35307468
    [Google Scholar]
  45. AkhmetkaliyevA. AlibrahimN. ShafieeD. TulchinskyE. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin?Mol. Cancer20232219010.1186/s12943‑023‑01793‑z 37259089
    [Google Scholar]
  46. ChenC. AihemaitiM. ZhangX. QuH. JiaoJ. SunQ. YuW. FOXD4 induces tumor progression in colorectal cancer by regulation of the SNAI3/CDH1 axis.Cancer Biol. Ther.201819111065107110.1080/15384047.2018.1480291 30252597
    [Google Scholar]
  47. TsukiyamaT. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis.In Vitro Cell. Dev. Biol. Anim.2024605449465
    [Google Scholar]
  48. DittmerJ. Mechanisms governing metastatic dormancy in breast cancer.Semin. Cancer Biol.201744728210.1016/j.semcancer.2017.03.006 28344165
    [Google Scholar]
  49. ManriqueI. NguewaP. BleauA.M. Nistal-VillanE. LopezI. VillalbaM. Gil-BazoI. CalvoA. The inhibitor of differentiation isoform Id1b, generated by alternative splicing, maintains cell quiescence and confers self-renewal and cancer stem cell-like properties.Cancer Lett.201535622 Pt B89990910.1016/j.canlet.2014.10.035 25449776
    [Google Scholar]
  50. LiuL. TaoT. LiuS. YangX. ChenX. LiangJ. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness.Nat. Commun.20211212693
    [Google Scholar]
  51. ZhouS. HuangH. ZhengZ. ZhengK. XieL. MOGS promotes stemness acquisition and invasion via enhancing NOTCH1-glycosylation dependent NOTCH pathway in colorectal cancer.Am. J. Cancer Res.2023131259966010 38187061
    [Google Scholar]
  52. RemšíkJ. PíckováM. VacekO. FedrR. BinóL. HamplA. TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells.Sci. Rep.202010111396
    [Google Scholar]
  53. MakenaM.R. RanjanA. ThirumalaV. ReddyA.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance.Biochim. Biophys. Acta Mol. Basis Dis.20201866416533910.1016/j.bbadis.2018.11.015 30481586
    [Google Scholar]
  54. MohiuddinI.S. WeiS.J. KangM.H. Role of OCT4 in cancer stem-like cells and chemotherapy resistance.Biochim. Biophys. Acta Mol. Basis Dis.20201866416543210.1016/j.bbadis.2019.03.005 30904611
    [Google Scholar]
  55. PastushenkoI. BlanpainC. EMT transition states during tumor progression and metastasis.Trends Cell Biol.201929321222610.1016/j.tcb.2018.12.001 30594349
    [Google Scholar]
  56. FrancescangeliF. ContavalliP. De AngelisM.L. CarecciaS. SignoreM. HaasT.L. SalarisF. BaiocchiM. BoeA. GiulianiA. TcheremenskaiaO. PagliucaA. GuardiolaO. MinchiottiG. ColaceL. CiardiA. D’AndreaV. La TorreF. MedemaJ. De MariaR. ZeunerA. A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer.J. Exp. Clin. Cancer Res.2020391210.1186/s13046‑019‑1505‑4 31910865
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206336851241204111721
Loading
/content/journals/acamc/10.2174/0118715206336851241204111721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test