Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Osteosarcoma, the most common primary malignant tumor of bone tissue, is characterized by aggressive biological behavior and poor clinical outcomes. The Helicase-Like Transcription Factor (HLTF), a key regulator of DNA damage response and chromatin remodeling processes, has been increasingly recognized for its crucial role in the pathogenesis and progression of various malignancies.

Objective

This study aimed to elucidate the regulatory role of HLTF in modulating critical cellular processes, including proliferation, migration, and apoptosis in osteosarcoma cells, while concurrently investigating its potential as a molecular determinant of cisplatin chemoresistance.

Methods

The CCK-8 and colony formation assays were carried out to systematically evaluate the impact of HLTF on the proliferative capabilities of osteosarcoma cells. Additionally, the transwell and cell scratch assays were performed to determine the effect of HLTF on the migratory potential of osteosarcoma cells. Furthermore, the CCK8 assay and the subcutaneous tumorigenesis experiment were conducted in nude mice to determine the effect of HLTF on the sensitivity of osteosarcoma cells to cisplatin.

Results

Our findings revealed that silencing HLTF expression in osteosarcoma cells led to a marked suppression of both cell proliferation and invasive potential. In contrast, the overexpression of HLTF was found to augment the proliferative and migratory abilities of these cells. Remarkably, downregulating HLTF in osteosarcoma cells heightened cell sensitivity to cisplatin, which was further validated by experiments.

Conclusion

Collectively, our findings strongly indicate that HLTF acts as an oncogene, actively driving the proliferation of osteosarcoma cells and conferring resistance to cisplatin.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206370231250313174428
2025-03-21
2025-10-14
Loading full text...

Full text loading...

References

  1. CeyssensS. StroobantsS. Sarcoma.Positron Emission Tomography201172719120310.1007/978‑1‑61779‑062‑1_11 21331935
    [Google Scholar]
  2. EatonB.R. SchwarzR. VatnerR. YehB. ClaudeL. IndelicatoD.J. LaackN. Osteosarcoma.Pediatr. Blood Cancer202168Suppl. 2e2835210.1002/pbc.28352 32779875
    [Google Scholar]
  3. GillJ. GorlickR. Advancing therapy for osteosarcoma.Nat. Rev. Clin. Oncol.2021181060962410.1038/s41571‑021‑00519‑8 34131316
    [Google Scholar]
  4. BelaynehR. FourmanM.S. BhogalS. WeissK.R. Update on Osteosarcoma.Curr. Oncol. Rep.20212367110.1007/s11912‑021‑01053‑7 33880674
    [Google Scholar]
  5. SongL. LuoZ.Q. Post-translational regulation of ubiquitin signaling.J. Cell Biol.201921861776178610.1083/jcb.201902074 31000580
    [Google Scholar]
  6. CzubaL.C. HillgrenK.M. SwaanP.W. Post-translational modifications of transporters.Pharmacol. Ther.2018192889910.1016/j.pharmthera.2018.06.013 29966598
    [Google Scholar]
  7. HanS. WangR. ZhangY. LiX. GanY. GaoF. RongP. WangW. LiW. The role of ubiquitination and deubiquitination in tumor invasion and metastasis.Int. J. Biol. Sci.20221862292230310.7150/ijbs.69411 35414786
    [Google Scholar]
  8. CockramP.E. KistM. PrakashS. ChenS.H. WertzI.E. VucicD. Ubiquitination in the regulation of inflammatory cell death and cancer.Cell Death Differ.202128259160510.1038/s41418‑020‑00708‑5 33432113
    [Google Scholar]
  9. DangF. NieL. WeiW. Ubiquitin signaling in cell cycle control and tumorigenesis.Cell Death Differ.202128242743810.1038/s41418‑020‑00648‑0 33130827
    [Google Scholar]
  10. LiuP. XieN. RFWD2 increases proliferation and CDDP resistance of osteosarcoma cells.Gene202593314897310.1016/j.gene.2024.148973 39349111
    [Google Scholar]
  11. ElserafyM. AbugableA.A. AtteyaR. El-KhamisyS.F. Rad5, HLTF, and SHPRH: A fresh view of an old story.Trends Genet.201834857457710.1016/j.tig.2018.04.006 29807746
    [Google Scholar]
  12. MotegiA. LiawH.J. LeeK.Y. RoestH.P. MaasA. WuX. MoinovaH. MarkowitzS.D. DingH. HoeijmakersJ.H.J. MyungK. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks.Proc. Natl. Acad. Sci. USA200810534124111241610.1073/pnas.0805685105 18719106
    [Google Scholar]
  13. MasudaY. MitsuyukiS. KanaoR. HishikiA. HashimotoH. MasutaniC. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway.Nucleic Acids Res.20184621113401135610.1093/nar/gky943 30335157
    [Google Scholar]
  14. XuY. KeS. LuS. WangC. LiZ. FengZ. YuH. BaiM. QianB. YinB. LiX. HuaY. JiangH. MaY. HLTF promotes hepatocellular carcinoma progression by enhancing SRSF1 stability and activating ERK/MAPK pathway.Oncogenesis2023121210.1038/s41389‑023‑00447‑5 36670110
    [Google Scholar]
  15. LiuL. LiuH. ZhouY. HeJ. LiuQ. WangJ. ZengM. YuanD. TanF. ZhouY. PeiH. ZhuH. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF β/SMAD signaling in vitro.Int. J. Oncol.20185362780278810.3892/ijo.2018.4591 30320371
    [Google Scholar]
  16. CapouillezA. DebauveG. DecaesteckerC. FilleulO. ChevalierD. MortuaireG. CoppéeF. LeroyX. BelayewA. SaussezS. The helicase‐like transcription factor is a strong predictor of recurrence in hypopharyngeal but not in laryngeal squamous cell carcinomas.Histopathology2009551779010.1111/j.1365‑2559.2009.03330.x 19614770
    [Google Scholar]
  17. ArcoliaV. PaciP. DhontL. ChantrainG. SirtaineN. DecaesteckerC. RemmelinkM. BelayewA. SaussezS. Helicase-like transcription factor: A new marker of well-differentiated thyroid cancers.BMC Cancer201414149210.1186/1471‑2407‑14‑492 25005870
    [Google Scholar]
  18. ChoS. CinghuS. YuJ.R. ParkW.Y. Helicase-like transcription factor confers radiation resistance in cervical cancer through enhancing the DNA damage repair capacity.J. Cancer Res. Clin. Oncol.2011137462963710.1007/s00432‑010‑0925‑5 20535496
    [Google Scholar]
  19. BryantE.E. ŠunjevarićI. BerchowitzL. RothsteinR. ReidR.J.D. Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability.Nucleic Acids Res.201947179144915910.1093/nar/gkz631 31350889
    [Google Scholar]
  20. SeelingerM. SøgaardC.K. OtterleiM. The human RAD5 homologs, HLTF and SHPRH, have separate functions in DNA damage tolerance dependent on the DNA lesion type.Biomolecules202010346310.3390/biom10030463 32192191
    [Google Scholar]
  21. IsakoffM.S. BielackS.S. MeltzerP. GorlickR. Osteosarcoma: Current treatment and a collaborative pathway to success.J. Clin. Oncol.201533273029303510.1200/JCO.2014.59.4895 26304877
    [Google Scholar]
  22. ArgenzianoM. TortoraC. PotaE. Di PaolaA. Di MartinoM. Di LevaC. Di PintoD. RossiF. Osteosarcoma in children: Not only chemotherapy.Pharmaceuticals202114992310.3390/ph14090923 34577623
    [Google Scholar]
  23. TangQ. WangL.C. WangY. GaoH. HouZ. Efficacy of methotrexate, doxorubicin, and cisplatin for osteosarcoma.Medicine2019986e1444210.1097/MD.0000000000014442 30732208
    [Google Scholar]
  24. UnkI. HajdúI. FátyolK. HurwitzJ. YoonJ.H. PrakashL. PrakashS. HaracskaL. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination.Proc. Natl. Acad. Sci. USA2008105103768377310.1073/pnas.0800563105 18316726
    [Google Scholar]
  25. DebauveG. CapouillezA. BelayewA. SaussezS. The Helicase-Like Transcription Factor and its implication in cancer progression.Cell. Mol. Life Sci.200865459160410.1007/s00018‑007‑7392‑4 18034322
    [Google Scholar]
  26. PooleL.A. CortezD. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability.Crit. Rev. Biochem. Mol. Biol.201752669671410.1080/10409238.2017.1380597 28954549
    [Google Scholar]
  27. DhontL. MascauxC. BelayewA. The helicase-like transcription factor (HLTF) in cancer: Loss of function or oncomorphic conversion of a tumor suppressor?Cell. Mol. Life Sci.201673112914510.1007/s00018‑015‑2060‑6 26472339
    [Google Scholar]
  28. DebauveG. NonclercqD. RibaucourF. WiedigM. GerbauxC. LeoO. LaurentG. JournéF. BelayewA. ToubeauG. Early expression of the Helicase-Like Transcription Factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis.Mol. Cancer2006512310.1186/1476‑4598‑5‑23 16762066
    [Google Scholar]
  29. CapouillezA. DecaesteckerC. FilleulO. ChevalierD. CoppéeF. LeroyX. BelayewA. SaussezS. Helicase-like transcription factor exhibits increased expression and altered intracellular distribution during tumor progression in hypopharyngeal and laryngeal squamous cell carcinomas.Virchows Arch.2008453549149910.1007/s00428‑008‑0675‑9 18825407
    [Google Scholar]
  30. PiaoS. OjhaR. RebeccaV.W. SamantaA. MaX. McafeeQ. NicastriM.C. BuckleyM. BrownE. WinklerJ.D. GimottyP.A. AmaravadiR.K. ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells.Autophagy201713122056207110.1080/15548627.2017.1377377 28981387
    [Google Scholar]
  31. HashimotoK. NishimuraS. ShinyashikiY. ItoT. AkagiM. Characterizing inflammatory markers in highly aggressive soft tissue sarcomas.Medicine202210139e3068810.1097/MD.0000000000030688 36181081
    [Google Scholar]
  32. NakamuraT. MatsumineA. MatsubaraT. AsanumaK. UchidaA. SudoA. The combined use of the neutrophil-lymphocyte ratio and C-reactive protein level as prognostic predictors in adult patients with soft tissue sarcoma.J. Surg. Oncol.2013108748148510.1002/jso.23424 24018883
    [Google Scholar]
  33. KobayashiH. OkumaT. OkajimaK. IshibashiY. ZhangL. HiraiT. OhkiT. IkegamiM. SawadaR. ShinodaY. AkiyamaT. GotoT. TanakaS. Systemic inflammation response index (SIRI) as a predictive factor for overall survival in advanced soft tissue sarcoma treated with eribulin.J. Orthop. Sci.202227122222810.1016/j.jos.2020.11.006 33384219
    [Google Scholar]
  34. WangX. RaoJ. ChenX. WangZ. ZhangY. Identification of shared signature genes and immune microenvironment subtypes for heart failure and chronic kidney disease based on Machine Learning.J. Inflamm. Res.2024171873189510.2147/JIR.S450736 38533476
    [Google Scholar]
  35. TsuchidaC. Sakuramoto-TsuchidaS. TakedM. Itaya-HironakaA. YamauchiA. MisuM. ShobatakeR. UchiyamaT. MakinoM. Pujol-AutonellI. Vives-PiM. OhbayashiC. TakasawaS. Expression of REG family genes in human inflammatory bowel diseases and its regulation.Biochem. Biophys. Rep.20171219820510.1016/j.bbrep.2017.10.003 29090282
    [Google Scholar]
  36. TakasawaS. TsuchidaC. Sakuramoto-TsuchidaS. TakedaM. Itaya-HironakaA. YamauchiA. MisuM. ShobatakeR. UchiyamaT. MakinoM. OhbayashiC. Expression of human REG family genes in inflammatory bowel disease and their molecular mechanism.Immunol. Res.201866680080510.1007/s12026‑019‑9067‑2 30694514
    [Google Scholar]
  37. KaurG. HelmerR.A. Martinez-MarinD. SennouneS.R. WashburnR.L. Martinez-ZaguilanR. DufourJ.M. ChiltonB.S. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality.PLoS One2023188e028610910.1371/journal.pone.0286109 37624843
    [Google Scholar]
  38. BaiG. KermiC. StoyH. SchiltzC.J. BacalJ. ZainoA.M. HaddenM.K. EichmanB.F. LopesM. CimprichK.A. HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis.Mol. Cell202078612371251.e710.1016/j.molcel.2020.04.031 32442397
    [Google Scholar]
  39. GongX. KaushalS. CeccarelliE. BogdanovaN. NevilleC. NguyenT. ClarkH. KhatibZ.A. ValentineM. LookA.T. RosenthalN. Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 family.Dev. Biol.1997183216618210.1006/dbio.1996.8486 9126292
    [Google Scholar]
  40. HuZ. LiL. LanW. WeiX. WenX. WuP. ZhangX. XiX. LiY. WuL. LiW. LiaoX. Enrichment of Wee1/CDC2 and NF-κB signaling pathway constituents mutually contributes to CDDP resistance in human Osteosarcoma.Cancer Res. Treat.202254127729310.4143/crt.2021.320 33971703
    [Google Scholar]
  41. PanB. PanY. WangS. BaiY. HuX. YangY. WuL. LiuJ. ANXA2 and Rac1 negatively regulates autophagy and osteogenic differentiation in osteosarcoma cells to confer CDDP resistance.Biochem. Biophys. Res. Commun.202367619820610.1016/j.bbrc.2023.07.006 37536195
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206370231250313174428
Loading
/content/journals/acamc/10.2174/0118715206370231250313174428
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CCK-8; cisplatin; HLTF; osteosarcoma; Sarcoma; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test