Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Breast cancer is the most common cancer in women. Traditional treatments include endocrine therapy, chemotherapy, surgery, radiation, and immunotherapy. Recent studies suggest melittin, a component of bee venom, as a promising breast cancer treatment due to its anticancer properties: inducing cytotoxicity, apoptosis, and gene regulation.

Methods

This manuscript aims to review melittin's potential therapeutical and future implications in treating breast cancer. An extensive literature search was conducted on MEDLINE and Cochrane databases up to July 2024 using Boolean operators with a combination of keywords. After screening, data extraction, and descriptive analysis, 40 articles were retained.

Results

Experimental data and different therapeutical strategies were collected. Melittin disrupts tumor cell membranes and modulates key apoptotic pathways. Advanced delivery systems enhance their effectiveness and reduce toxicity. Combining melittin with chemotherapy shows synergistic effects, improving outcomes. Thus, melittin could be a valuable addition to breast cancer therapies.

Conclusion

Further clinical trials are essential to validate its potential and establish its role in breast cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206347581250217045306
2025-02-25
2025-10-07
Loading full text...

Full text loading...

References

  1. AkayM. KalaycioğluZ. KolayliS. BerkerB. Comparative determination of melittin by capillary electrophoretic methods.J. Turk. Chem. Soc. A: Chem.2021841211121610.18596/jotcsa.949188
    [Google Scholar]
  2. Data visualization tools for exploring the global cancer burden in2022Available from: https://gco.iarc.who.int/today/
  3. World health organization breast cancerAvailable from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  4. Orrantia-BorundaE. Anchondo-NuñezP. Acuña-AguilarL.E. Gómez-VallesF.O. Ramírez-ValdespinoC.A. Subtypes of breast cancer.Breast CancerExon Publications: Brisbane (AU)2022
    [Google Scholar]
  5. LoiblS. PoortmansP. MorrowM. DenkertC. CuriglianoG. Breast cancer.Lancet2021397102861750176910.1016/S0140‑6736(20)32381‑3 33812473
    [Google Scholar]
  6. KwonN.Y. SungS.H. SungH.K. ParkJ.K. Anticancer activity of bee venom components against breast cancer.Toxins202214746010.3390/toxins14070460 35878198
    [Google Scholar]
  7. ChenJ. GuanS.M. SunW. FuH. Melittin, the major pain-producing substance of bee venom.Neurosci. Bull.201632326527210.1007/s12264‑016‑0024‑y 26983715
    [Google Scholar]
  8. WehbeR. FrangiehJ. RimaM. El ObeidD. SabatierJ.M. FajlounZ. Bee venom: Overview of main compounds and bioactivities for therapeutic interests.Molecules20192416299710.3390/molecules24162997 31430861
    [Google Scholar]
  9. HaqueS. Melittin: A possible regulator of cancer proliferation in preclinical cell culture and animal models.J. Cancer Res. Clin. Oncol.2023149177091772610.1007/s00432‑023‑05458‑8
    [Google Scholar]
  10. PandeyP. KhanF. KhanM.A. KumarR. UpadhyayT.K. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers.Nutrients20231514311110.3390/nu15143111 37513529
    [Google Scholar]
  11. MogaM. DimienescuO. ArvătescuC. IfteniP. PleşL. Anticancer activity of toxins from bee and snake venom—an overview on ovarian cancer.Molecules201823369210.3390/molecules23030692 29562696
    [Google Scholar]
  12. LeBeauA.M. BrennenW.N. AggarwalS. DenmeadeS.R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin.Mol. Cancer Ther.2009851378138610.1158/1535‑7163.MCT‑08‑1170 19417147
    [Google Scholar]
  13. LiB. GuW. ZhangC. HuangX.Q. HanK.Q. LingC.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin.Onkologie2006298-9367371 16974113
    [Google Scholar]
  14. SobralF. SampaioA. FalcãoS. QueirozM.J.R.P. CalhelhaR.C. Vilas-BoasM. FerreiraI.C.F.R. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal.Food Chem. Toxicol.20169417217710.1016/j.fct.2016.06.008 27288930
    [Google Scholar]
  15. SalamaM.A. YounisM.A. TalaatR.M. Cytokine and inflammatory mediators are associated with cytotoxic, anti-inflammatory and apoptotic activity of honeybee venom.J. Complement. Integr. Med.2021181758610.1515/jcim‑2019‑0182 32452823
    [Google Scholar]
  16. JungG.B. HuhJ.E. LeeH.J. KimD. LeeG.J. ParkH.K. LeeJ.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy.Biomed. Opt. Express20189115703571810.1364/BOE.9.005703 30460157
    [Google Scholar]
  17. SevinS. D OzkanA. TutunH. KivrakI. TurnaO. GuneyE.G. Determination of the effects of bee venom on triple negative breast cancer cells in vitro.Chem. Biodivers.2023203e20220126310.1002/cbdv.202201263 36806913
    [Google Scholar]
  18. JeongY.J. ChoiY. ShinJ.M. ChoH.J. KangJ.H. ParkK.K. ChoeJ.Y. BaeY.S. HanS.M. KimC.H. ChangH.W. ChangY.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells.Food Chem. Toxicol.20146821822510.1016/j.fct.2014.03.022 24675423
    [Google Scholar]
  19. Khorsand-DehkordiS. DoostiA. Upregulation of EPSTI1/Drp1/AKT1 signaling pathways using pDNA/Melittin against breast cancer.Biochem. Genet.202412310.1007/s10528‑024‑10806‑5 38722433
    [Google Scholar]
  20. Mir HassaniZ. NabiuniM. ParivarK. AbdiradS. KarimzadehL. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells.Med. Oncol.20213877710.1007/s12032‑021‑01526‑6 34076777
    [Google Scholar]
  21. BahreyniA. LiuH. MohamudY. XueY.C. FanY.M. ZhangY.L. LuoH. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy.BMC Med.202321119310.1186/s12916‑023‑02901‑y 37226233
    [Google Scholar]
  22. El MehdiI. Chemical, cytotoxic, and anti-inflammatory assessment of honey bee venom from Apis mellifera intermissa.Antibiot.202110121514
    [Google Scholar]
  23. BahreyniA. MohamudY. ZhangJ. LuoH. Engineering a facile and versatile nanoplatform to facilitate the delivery of multiple agents for targeted breast cancer chemo-immunotherapy.Biomed. Pharmacother.202316311478910.1016/j.biopha.2023.114789 37119737
    [Google Scholar]
  24. BaiL. LiuH. YouR. JiangX. ZhangT. LiY. ShanT. QianZ. WangY. LiuY. LiC. Combination nano-delivery systems remodel the immunosuppressive tumor microenvironment for metastatic triple-negative breast cancer therapy.Mol. Pharm.20242152148216210.1021/acs.molpharmaceut.3c00242 38536949
    [Google Scholar]
  25. DuarteD. FalcãoS.I. El MehdiI. Vilas-BoasM. ValeN. Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines.Pharmaceutics202214351110.3390/pharmaceutics14030511 35335887
    [Google Scholar]
  26. LiQ. ShiZ. OuM. LiZ. LuoM. WuM. DongX. LuL. LvF. ZhangF. MeiL. pH-labile artificial natural killer cells for overcoming tumor drug resistance.J. Control. Release202235245045810.1016/j.jconrel.2022.10.042 36341929
    [Google Scholar]
  27. DuffyC. SorollaA. WangE. GoldenE. WoodwardE. DavernK. HoD. JohnstoneE. PflegerK. RedfernA. IyerK.S. BaerB. BlancafortP. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer.NPJ Precis. Oncol.2020412410.1038/s41698‑020‑00129‑0 32923684
    [Google Scholar]
  28. KhamisA.A. AliE.M.M. SalimE.I. El-MoneimM.A.A. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats.Sci. Rep.2024141151010.1038/s41598‑023‑50729‑6 38233443
    [Google Scholar]
  29. KhamisA.A.A. AliE.M.M. El-MoneimM.A.A. Abd-AlhaseebM.M. El-MagdM.A. SalimE.I. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells.Biomed. Pharmacother.20181051335134310.1016/j.biopha.2018.06.105 30021371
    [Google Scholar]
  30. ShawP. KumarN. HammerschmidD. Privat-MaldonadoA. DewildeS. BogaertsA. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy.Cancers2019118110910.3390/cancers11081109 31382579
    [Google Scholar]
  31. PintoM.B. Bee venom-loaded niosomes as innovative platforms for cancer treatment: Development and therapeutical efficacy and safety evaluation.Phar. (Basel)2024175572
    [Google Scholar]
  32. HusseinM.M.A. Abdelfattah-HassanA. EldoumaniH. EssawiW.M. AlsahliT.G. AlharbiK.S. AlzareaS.I. Al-HejailiH.Y. GaafarS.F. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells.Front. Pharmacol.202314125838710.3389/fphar.2023.1258387 37808196
    [Google Scholar]
  33. RaveendranR. ChenF. KentB. StenzelM.H. Estrone-decorated polyion complex micelles for targeted melittin delivery to hormone-responsive breast cancer cells.Biomacromolecules20202131222123310.1021/acs.biomac.9b01681 32022540
    [Google Scholar]
  34. DaiY. YuX. LengY. PengX. WangJ. ZhaoY. ChenJ. ZhangZ. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles.J. Nanobiotechnol.202321124510.1186/s12951‑023‑02026‑7 37528426
    [Google Scholar]
  35. ZhouY. ZhangS. ChenZ. BaoY. ChenA.T. SheuW.C. LiuF. JiangZ. ZhouJ. Targeted delivery of secretory promelittin via novel Poly(lactone‐ co ‐β‐amino ester) nanoparticles for treatment of breast cancer brain metastases.Adv. Sci.202075190186610.1002/advs.201901866 32154067
    [Google Scholar]
  36. GribenkoA.V. Guzmán-CasadoM. LopezM.M. MakhatadzeG.I. Conformational and thermodynamic properties of peptide binding to the human S100P protein.Protein Sci.20021161367137510.1110/ps.0202202 12021435
    [Google Scholar]
  37. SomanN.R. BaldwinS.L. HuG. MarshJ.N. LanzaG.M. HeuserJ.E. ArbeitJ.M. WicklineS.A. SchlesingerP.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth.J. Clin. Invest.200911992830284210.1172/JCI38842 19726870
    [Google Scholar]
  38. YangL. CuiF. ShiK. CunD. WangR. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique.Drug Dev. Ind. Pharm.200935895996810.1080/03639040902718039 19274512
    [Google Scholar]
  39. ChoH.J. JeongY.J. ParkK.K. ParkY.Y. ChungI.K. LeeK.G. YeoJ.H. HanS.M. BaeY.S. ChangY.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-κB-dependent mechanisms.J. Ethnopharmacol.2010127366266810.1016/j.jep.2009.12.007 19969058
    [Google Scholar]
  40. ArmbrechtL. GabernetG. KurthF. HissJ.A. SchneiderG. DittrichP.S. Characterisation of anticancer peptides at the single-cell level.Lab Chip201717172933294010.1039/C7LC00505A 28736788
    [Google Scholar]
  41. DanilukK. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells.Materials (Basel)201913190
    [Google Scholar]
  42. DanilukK. LangeA. PruchniewskiM. MałolepszyA. SawoszE. JaworskiS. Delivery of melittin as a lytic agent via graphene nanoparticles as carriers to breast cancer cells.J. Funct. Biomater.202213427810.3390/jfb13040278 36547538
    [Google Scholar]
  43. DanilukK. LangeA. WójcikB. ZawadzkaK. BałabanJ. KutwinM. JaworskiS. Effect of melittin complexes with graphene and graphene oxide on triple-negative breast cancer tumors grown on chicken embryo chorioallantoic membrane.Int. J. Mol. Sci.2023249838810.3390/ijms24098388 37176095
    [Google Scholar]
  44. ZhangC. ZhangB. TangC. ShiX. GuoB. WangF. A ratiometric gene‐switch system for mirna sensing and gene regulation.Small Methods202483230126610.1002/smtd.202301266 38009771
    [Google Scholar]
  45. KimS. ChoiI. HanI.H. BaeH. Enhanced therapeutic effect of optimized Melittin-dKLA, a peptide agent targeting m2-like tumor-associated macrophages in triple-negative breast cancer.Int. J. Mol. Sci.202223241575110.3390/ijms232415751 36555393
    [Google Scholar]
  46. YuX. Activatable protein nanoparticles for targeted delivery of therapeutic peptides.Adv. Mater.201830710.1002/adma.20170538310.1002/adma.201705383
    [Google Scholar]
  47. JinX. WuH. YuJ. CaoY. ZhangL. ZhangZ. LvH. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles.J. Control. Release202436580281710.1016/j.jconrel.2023.12.013 38092255
    [Google Scholar]
  48. ZhangT. BaiL. YouR. YangM. ChenQ. ChengY. QianZ. WangY. LiuY. Homologous-targeting biomimetic nanoparticles co-loaded with melittin and a photosensitizer for the combination therapy of triple negative breast cancer.J. Mater. Chem. B Mater. Biol. Med.202412225465547810.1039/D3TB02919K 38742364
    [Google Scholar]
  49. ZhaoQ. FengH. YangZ. LiangJ. JinZ. ChenL. ZhanL. XuanM. YanJ. KuangJ. ChengX. ZhaoR. QiuW. The central role of a two‐way positive feedback pathway in molecular targeted therapies‐mediated pyroptosis in anaplastic thyroid cancer.Clin. Transl. Med.2022122e72710.1002/ctm2.727 35184413
    [Google Scholar]
  50. HartmannA.D. WilhelmN. ErfleV. HartmannK. Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus.Tierarztl. Prax. Ausg. K Klientiere. Heimtiere2016446417423 27808347
    [Google Scholar]
  51. ChoiE. MichalskiC.J. ChooS.H. KimG.N. BanasikowskaE. LeeS. WuK. AnH.Y. MillsA. SchneiderS. BredeekU.F. CoulstonD.R. DingS. FinziA. TianM. KleinK. ArtsE.J. MannJ.F.S. GaoY. KangC.Y. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses.Retrovirol.20161318210.1186/s12977‑016‑0317‑2 27894306
    [Google Scholar]
  52. KoyamaN. HirataK. HoriK. DanK. YokotaT. Computer-assisted infrared thermographic study of axon reflex induced by intradermal melittin.Pain200084213313910.1016/S0304‑3959(99)00192‑X 10666517
    [Google Scholar]
  53. CarterV. UnderhillA. BaberI. SyllaL. BabyM. Larget-ThieryI. ZettorA. BourgouinC. LangelÜ. FayeI. OtvosL. WadeJ.D. CoulibalyM.B. TraoreS.F. TripetF. EgglestonP. HurdH. Killer bee molecules: Antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium.PLoS Pathog.2013911e100379010.1371/journal.ppat.1003790 24278025
    [Google Scholar]
  54. OršolićN. Bee venom in cancer therapy.Cancer Metastasis Rev.2012311-217319410.1007/s10555‑011‑9339‑3 22109081
    [Google Scholar]
  55. GajskiG. Garaj-VrhovacV. Melittin: A lytic peptide with anticancer properties.Environ. Toxicol. Pharmacol.201336269770510.1016/j.etap.2013.06.009 23892471
    [Google Scholar]
  56. RaghuramanH. ChattopadhyayA. Melittin: A membrane-active peptide with diverse functions.Biosci. Rep.2007274-518922310.1007/s10540‑006‑9030‑z 17139559
    [Google Scholar]
  57. DamianoglouA. RodgerA. PridmoreC. DaffornT.R. MoselyJ.A. SandersonJ.M. HicksM.R. The synergistic action of melittin and phospholipase A2 with lipid membranes: Development of linear dichroism for membrane-insertion kinetics.Protein Pept. Lett.201017111351136210.2174/0929866511009011351 20673225
    [Google Scholar]
  58. LyuC. FangF. LiB. Anti-tumor effects of melittin and its potential applications in clinic.Curr. Protein Pept. Sci.201920324025010.2174/1389203719666180612084615 29895240
    [Google Scholar]
  59. TostesonM.T. HolmesS.J. RazinM. TostesonD.C. Melittin lysis of red cells.J. Membr. Biol.1985871354410.1007/BF01870697 4057243
    [Google Scholar]
  60. DeGradoW.F. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue.Biophys. J.1982371329338
    [Google Scholar]
  61. LeeG. BaeH. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects.Molecules201621561610.3390/molecules21050616 27187328
    [Google Scholar]
  62. SobotkaA.K. Allergy to insect stings: II. Phospholipase A: The major allergen in honeybee venom.J. Allergy Clin. Immunol.1976571294010.1016/0091‑6749(76)90076‑2
    [Google Scholar]
  63. PaullB.R. Melittin: An allergen of honeybee venom.J. Allergy Clin. Immunol.197759433433810.1016/0091‑6749(77)90056‑2
    [Google Scholar]
  64. GajskiG. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes.Toxicon2016110566710.1016/j.toxicon.2015.12.005
    [Google Scholar]
  65. Cathcart-RakeE.J. TevaarwerkA.J. HaddadT.C. D’AndreS.D. RuddyK.J. Advances in the care of breast cancer survivors.BMJ2023382e07156510.1136/bmj‑2022‑071565 37722731
    [Google Scholar]
  66. Di NardoP. LisantiC. GaruttiM. BuriollaS. AlbertiM. MazzeoR. PuglisiF. Chemotherapy in patients with early breast cancer: Clinical overview and management of long-term side effects.Expert Opin. Drug Saf.202221111341135510.1080/14740338.2022.2151584 36469577
    [Google Scholar]
  67. DeMarcoC. Side effects of radiation therapy for breast cancer.2023Available from: https://www.mdanderson.org/cancerwise/side-effects-of-radiation-therapy-for-breast-cancer.h00-159615489.html
    [Google Scholar]
  68. TaylorC.W. KirbyA.M. Cardiac side-effects from breast cancer radiotherapy.Clin. Oncol.2015271162162910.1016/j.clon.2015.06.007 26133462
    [Google Scholar]
  69. Al-DasooqiN. BowenJ.M. GibsonR.J. SullivanT. LeesJ. KeefeD.M. Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients.Invest. New Drugs200927217317810.1007/s10637‑008‑9152‑1 18612591
    [Google Scholar]
  70. HattersleyR. NanaM. LansdownA.J. Endocrine complications of immunotherapies: A review.Clin. Med.2021212e212e22210.7861/clinmed.2020‑0827 33762389
    [Google Scholar]
  71. American thyroid associationAvailable from: https://www.thyroid. org/patient-thyroid-information/ct-for-patients/august-2020/vol-13-issue-8-p-5-6/
  72. Hormone Therapy for Breast Cancer2022Available from: https://www.cancer.gov/types/breast/breast-hormone-therapy-fact-sheet
/content/journals/acamc/10.2174/0118715206347581250217045306
Loading
/content/journals/acamc/10.2174/0118715206347581250217045306
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): anticancer properties; breast cancer; honeybee venom; Melittin; therapy; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test