Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown. However, the following significant risk factors have been found: sex, age, heredity, not having children, breastfeeding, elevated hormone levels, and personal lifestyle. The presence or lack of three nuclear receptors ER, PR, and HER2/ERBB2 (triple negative) and the amplification of the HER2/ErbB2 gene are the clinical criteria used to classify breast cancer. Chemotherapy is still the cornerstone of treatment for triple-negative breast cancer (TNBC), even. If, for the first two groups of patients, receptor-specific therapy is used. The most often prescribed chemotherapy agents for the treatment of breast cancer include doxorubicin (DOX), curcumin paclitaxel (PTX), docetaxel (DCX), thioridazine (THZ), disulfiram (DSF), and camptothecin (CPT). Monoclonal antibodies (mAbs) were used in antibody-drug conjugates (ADCs) to bind tumor-associated target antigens selectively and deliver very effective cytotoxic agents. According to recent research, synthetic derivatives effectively combat both MCF-7 and breast cancer cell lines that are resistant to many drugs. This review provides a wealth of information on the mechanism of action of synthetic derivatives on multidrug-resistant cell lines. This review includes information about how synthetic derivatives affect cancer cells that have developed multidrug resistance during chemotherapy. These mechanisms have been linked to factors such as increased drug efflux, genetic factors, growth factors, increased DNA repair capacity, and elevated xenobiotic metabolism. Because of this, more research is necessary to learn more about the effectiveness of synthetic derivatives against breast cancer and cell lines that are resistant to several drugs. This review aims to find recent prospects of various types of cellular signaling pathways (JAK/STAT, Akt, MAPK, .) involved in the progression of breast cancer disorder, and we also study different synthetic and natural drugs that are applied for treating breast cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206319933241104100736
2025-01-01
2025-11-06
Loading full text...

Full text loading...

References

  1. CurtisC. ShahS.P. ChinS.F. TurashviliG. RuedaO.M. DunningM.J. SpeedD. LynchA.G. SamarajiwaS. YuanY. GräfS. HaG. HaffariG. BashashatiA. RussellR. McKinneyS. LangerødA. GreenA. ProvenzanoE. WishartG. PinderS. WatsonP. MarkowetzF. MurphyL. EllisI. PurushothamA. Børresen-DaleA.L. BrentonJ.D. TavaréS. CaldasC. AparicioS. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.Nature2012486740334635210.1038/nature10983 22522925
    [Google Scholar]
  2. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci.200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  3. CoatesA.S. WinerE.P. GoldhirschA. GelberR.D. GnantM. Piccart-GebhartM. ThürlimannB. SennH.J. AndréF. BaselgaJ. BerghJ. BonnefoiH. BursteinH. CardosoF. Castiglione-GertschM. CoatesA.S. ColleoniM. CuriglianoG. DavidsonN.E. Di LeoA. EjlertsenB. ForbesJ.F. GalimbertiV. GelberR.D. GnantM. GoldhirschA. GoodwinP. HarbeckN. HayesD.F. HuoberJ. HudisC.A. IngleJ.N. JassemJ. JiangZ. KarlssonP. MorrowM. OrecchiaR. Kent OsborneC. PartridgeA.H. de la PeñaL. Piccart-GebhartM.J. PritchardK.I. RutgersE.J.T. SedlmayerF. SemiglazovV. ShaoZ-M. SmithI. ThürlimannB. ToiM. TuttA. VialeG. von MinckwitzG. WatanabeT. WhelanT. WinerE.P. XuB. Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015.Ann. Oncol.20152681533154610.1093/annonc/mdv221 25939896
    [Google Scholar]
  4. HobdayT.J. PerezE.A. Molecularly targeted therapies for breast cancer.Cancer Contr.2005122738110.1177/107327480501200202 15855890
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  6. KashyapM.K. MangrulkarS.V. KushwahaS. VedA. KaleM.B. WankhedeN.L. TaksandeB.G. UpaganlawarA.B. UmekarM.J. KoppulaS. KopalliS.R. Recent perspectives on cardiovascular toxicity associated with colorectal cancer drug therapy.Pharmaceuticals (Basel)20231610144110.3390/ph16101441 37895912
    [Google Scholar]
  7. ZhangX. SunC. WanJ. ZhangX. JiaY. ZhouC. Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity.Cell. Signal.202310111050710.1016/j.cellsig.2022.110507 36328117
    [Google Scholar]
  8. ShenM. CaiR. LiZ. ChenX. XieJ. The molecular mechanism of yam polysaccharide protected H2O2-induced oxidative damage in IEC-6 cells.Foods202312226210.3390/foods12020262 36673354
    [Google Scholar]
  9. SerdaM. Synthesis and biological activity of new thiosemicarbazone analogues of iron chelators.Bioorg. Chem.201387155162
    [Google Scholar]
  10. DischerD.E. MooneyD.J. ZandstraP.W. Growth factors, matrices, and forces combine and control stem cells.Science200932459351673167710.1126/science.1171643
    [Google Scholar]
  11. EddyA.A. Molecular insights into renal interstitial fibrosis.J. Am. Soc. Nephrol.19967122495250810.1681/ASN.V7122495 8989727
    [Google Scholar]
  12. FukuiF. HayashiS. YamaguchiY. Heregulin controls ERα and HER2 signaling in mammospheres of ERα-positive breast cancer cells and interferes with the efficacy of molecular targeted therapy.J. Steroid Biochem. Mol. Biol.202020110569810.1016/j.jsbmb.2020.105698 32404282
    [Google Scholar]
  13. ReiskeH.R. ZhaoJ. HanD.C. CooperL.A. GuanJ.L. Analysis of FAK‐associated signaling pathways in the regulation of cell cycle progression.FEBS Lett.2000486327528010.1016/S0014‑5793(00)02295‑X 11119718
    [Google Scholar]
  14. van de WaterB. NagelkerkeJ.F. StevensJ.L. Dephosphorylation of focal adhesion kinase (FAK) and loss of focal contacts precede caspase-mediated cleavage of FAK during apoptosis in renal epithelial cells.J. Biol. Chem.199927419133281333710.1074/jbc.274.19.13328 10224094
    [Google Scholar]
  15. NingL. Focal Adhesion Kinase (FAK) is a downstream effector of the Raf-1 signal transduction pathway in gastrointestinal carcinoid cancer cells.J. Surg. Res.20081442239
    [Google Scholar]
  16. LimS.T. ChenX.L. LimY. HansonD.A. VoT.T. HowertonK. LarocqueN. FisherS.J. SchlaepferD.D. IlicD. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation.Mol. Cell200829192210.1016/j.molcel.2007.11.031 18206965
    [Google Scholar]
  17. XieP. KondetiV.K. LinS. HarunaY. RapariaK. KanwarY.S. Role of extracellular matrix renal tubulo-interstitial nephritis antigen (TINag) in cell survival utilizing integrin (alpha)vbeta3/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B-serine/threonine kinase (AKT) signaling pathway.J. Biol. Chem.201128639341313414610.1074/jbc.M111.241778 21795690
    [Google Scholar]
  18. GolubovskayaV.M. FinchR. KwehF. MassollN.A. Campbell-ThompsonM. WallaceM.R. CanceW.G. p53 regulates FAK expression in human tumor cells.Mol. Carcinog.200847537338210.1002/mc.20395 17999388
    [Google Scholar]
  19. XieP. KondetiV.K. LinS. HarunaY. RapariaK. KanwarY.S. Withdrawal: Role of extracellular matrix renal tubulo-interstitial nephritis antigen (TINag) in cell survival utilizing integrin αvβ3/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B-serine/threonine kinase (AKT) signaling pathway.J. Biol. Chem.2019294261037910.1074/jbc.W119.009585 31253687
    [Google Scholar]
  20. StinsonB.M. LoparoJ.J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway.Annu. Rev. Biochem.202190113716410.1146/annurev‑biochem‑080320‑110356 33556282
    [Google Scholar]
  21. ZhaoH. Mismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand breaks.Elife20143e0272510.7554/eLife.02725
    [Google Scholar]
  22. ConcannonK. MorrisB.B. GayC.M. ByersL.A. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control.Mol. Cell202383566068010.1016/j.molcel.2022.12.031 36669489
    [Google Scholar]
  23. ChedgyE.C.P. BlackP.C. Moving beyond the androgen receptor in advanced prostate cancer commentary on: DNA-repair defects and olaparib in metastatic prostate cancer.Urology201689101110.1016/j.urology.2015.12.002 26723184
    [Google Scholar]
  24. HakemR. DNA-damage repair; the good, the bad, and the ugly.EMBO J.200827458960510.1038/emboj.2008.15 18285820
    [Google Scholar]
  25. JacksonS.P. BartekJ. The DNA-damage response in human biology and disease.Nature200946172671071107810.1038/nature08467 19847258
    [Google Scholar]
  26. LeJ. PerezE. NemzowL. GongF. Role of deubiquitinases in DNA damage response.DNA Repair (Amst.)201976899810.1016/j.dnarep.2019.02.011 30831436
    [Google Scholar]
  27. ZhouY. MouwK.W. DNA repair deficiency and the immune microenvironment: A pathways perspective.DNA Repair (Amst.)202413310359410.1016/j.dnarep.2023.103594 37980867
    [Google Scholar]
  28. RingA. KimY.M. KahnM. Wnt/catenin signaling in adult stem cell physiology and disease.Stem Cell Rev.201410451252510.1007/s12015‑014‑9515‑2 24825509
    [Google Scholar]
  29. VilchezV. TurciosL. MartiF. GedalyR. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment.World J. Gastroenterol.201622282383210.3748/wjg.v22.i2.823 26811628
    [Google Scholar]
  30. LiY. LiY. YangY. DengY. NiX. ZhaoB. YanZ. HeW. LiY. LiS. LiuL. LuD. Synergistic efficacy of PI3Kδ inhibitor with anti-PD-1 mAbs in immune-humanized PDX model of endocrine resistance hormone receptor-positive advanced breast cancer.Heliyon202398e1849810.1016/j.heliyon.2023.e18498 37533997
    [Google Scholar]
  31. SlamonD.J. NevenP. ChiaS. FaschingP.A. De LaurentiisM. ImS.A. PetrakovaK. BianchiG.V. EstevaF.J. MartínM. NuschA. SonkeG.S. De la Cruz-MerinoL. BeckJ.T. PivotX. VidamG. WangY. Rodriguez LorencK. MillerM. TaranT. JerusalemG. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3.J. Clin. Oncol.201836242465247210.1200/JCO.2018.78.9909 29860922
    [Google Scholar]
  32. DeanJ.L. ThangavelC. McClendonA.K. ReedC.A. KnudsenE.S. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure.Oncogene201029284018403210.1038/onc.2010.154 20473330
    [Google Scholar]
  33. WekkingD. CDK4/6 inhibition in hormone receptor-positive/HER2-negative breast cancer: Biological and clinical aspects.Cytokine Growth Factor Rev.202375576410.1016/j.cytogfr.2023.10.001
    [Google Scholar]
  34. AsifH. BarnettS.D. SaxonD. YounisH. BuxtonI.L.O. β3 adrenergic receptor activation modulates connexin 43 activity to relax human myometrium.Cell. Signal.202310611064010.1016/j.cellsig.2023.110640 36841274
    [Google Scholar]
  35. GhauriM.A. RazaA. HayatU. AtifN. IqbalH.M.N. BilalM. Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis.Biochim. Biophys. Acta, Gen. Subj.20221866513011310.1016/j.bbagen.2022.130113 35202768
    [Google Scholar]
  36. DhiwarP.S. MatadaG.S.P. RaghavendraN.M. GharaA. SinghE. AbbasN. AndhaleG.S. ShenoyG.P. SasmalP. Current updates on EGFR and HER2 tyrosine kinase inhibitors for the breast cancer.Med. Chem. Res.20223191401141310.1007/s00044‑022‑02934‑7
    [Google Scholar]
  37. BartholomeuszC. Gonzalez-AnguloA.M. LiuP. HayashiN. LluchA. Ferrer-LozanoJ. HortobágyiG.N. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients.Oncologist201217676677410.1634/theoncologist.2011‑0377 22584435
    [Google Scholar]
  38. Tavčar KunstičT. DebeljakN. Fon TacerK. Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors.Adv. Cancer Biol. Metastasis2023710008610.1016/j.adcanc.2022.100086
    [Google Scholar]
  39. TeránS. AlvaM. TolosaP. Rey-CárdenasM. MadariagaA. LemaL. RuanoY. MansoL. CiruelosE. Sánchez-BayonaR. Analysis of the association of HER-2 low carcinomas and PAM50 assay in hormone receptor positive early-stage breast cancer.Breast202371424610.1016/j.breast.2023.07.009 37481795
    [Google Scholar]
  40. MaherP. DarguschR. BodaiL. GerardP.E. PurcellJ.M. MarshJ.L. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease.Hum. Mol. Genet.201120226127010.1093/hmg/ddq460 20952447
    [Google Scholar]
  41. Acosta-CasiqueA. Montes-AlvaradoJ.B. BarragánM. Larrauri-RodríguezK.A. Perez-GonzalezA. Delgado-MagallónA. Millán-Perez-PeñaL. Rosas-MurrietaN.H. MaycotteP. ERK activation modulates invasiveness and Reactive Oxygen Species (ROS) production in triple negative breast cancer cell lines.Cell. Signal.202310111048710.1016/j.cellsig.2022.110487 36216165
    [Google Scholar]
  42. BogoyevitchM.A. CourtN.W. Counting on mitogen-activated protein kinases—ERKs 3, 4, 5, 6, 7 and 8.Cell. Signal.200416121345135410.1016/j.cellsig.2004.05.004 15381250
    [Google Scholar]
  43. DengJ. WangH. LiangY. ZhaoL. LiY. YanY. ZhaoH. ZhangX. ZouF. miR-15a-5p enhances the malignant phenotypes of colorectal cancer cells through the STAT3/TWIST1 and PTEN/AKT signaling pathways by targeting SIRT4.Cell. Signal.202310111051710.1016/j.cellsig.2022.110517 36332797
    [Google Scholar]
  44. WylaźM. KaczmarskaA. PajorD. HryniewickiM. GilD. Dulińska-LitewkaJ. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer.Biomed. Pharmacother.202316811567610.1016/j.biopha.2023.115676 37832401
    [Google Scholar]
  45. OrtegaM.A. Fraile-MartínezO. AsúnsoloÁ. BujánJ. García-HonduvillaN. CocaS. Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR.J. Oncol.2020202011110.1155/2020/9258396 32211045
    [Google Scholar]
  46. ZhouY. SantiniD. RoodM. BluesteinL. MitchellG. StephensT. WardJ. An assessment of causes of PEV success across U.S. metro areas.World Electric Vehicle J.20168481883010.3390/wevj8040818
    [Google Scholar]
  47. ChungE. KondoM. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development.Immunol. Res.2011491-324826810.1007/s12026‑010‑8187‑5 21170740
    [Google Scholar]
  48. PencikJ. PhamH.T.T. SchmoellerlJ. JavaheriT. SchledererM. CuligZ. MerkelO. MorigglR. GrebienF. KennerL. JAK-STAT signaling in cancer: From cytokines to non-coding genome.Cytokine201687263610.1016/j.cyto.2016.06.017 27349799
    [Google Scholar]
  49. ChristyJ. PriyadharshiniL. Differential expression analysis of JAK/STAT pathway related genes in breast cancer.Meta Gene20181612212910.1016/j.mgene.2018.02.008
    [Google Scholar]
  50. MorrisR. KershawN.J. BabonJ.J. The molecular details of cytokine signaling via the JAK/STAT pathway.Protein Sci.201827121984200910.1002/pro.3519 30267440
    [Google Scholar]
  51. XinP. XuX. DengC. LiuS. WangY. ZhouX. MaH. WeiD. SunS. The role of JAK/STAT signaling pathway and its inhibitors in diseases.Int. Immunopharmacol.20208010621010.1016/j.intimp.2020.106210 31972425
    [Google Scholar]
  52. GronerB. von MansteinV. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition.Mol. Cell. Endocrinol.201745111410.1016/j.mce.2017.05.033 28576744
    [Google Scholar]
  53. UluerE.T. AydemirI. InanS. OzbilginK. VatanseverH.S. Effects of 5-fluorouracil and gemcitabine on a breast cancer cell line (MCF-7) via the JAK/STAT pathway.Acta Histochem.2012114764164610.1016/j.acthis.2011.11.010 22172707
    [Google Scholar]
  54. DinakarY.H. KumarH. MudavathS.L. JainR. AjmeerR. JainV. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors.Life Sci.202230912099610.1016/j.lfs.2022.120996 36170890
    [Google Scholar]
  55. MaliS.B. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer.Oral Oncol.201551656556910.1016/j.oraloncology.2015.03.004 25817923
    [Google Scholar]
  56. ZhangH. WangY. ChenX. ZhangA. HouL. HongJ. LiuJ. LiuZ. YangP. Targeting epithelial cell-derived TWIST1 alleviates allergic asthma.Cell. Signal.202310211055210.1016/j.cellsig.2022.110552 36481410
    [Google Scholar]
  57. BrooksA.J. PutoczkiT. Jak-stat signalling pathway in cancer.Cancers (Basel)2020127197110.3390/cancers12071971 32698360
    [Google Scholar]
  58. Rojas-SanchezG. García-MirandaA. Montes-AlvaradoJ.B. Cotzomi-OrtegaI. Sarmiento-SalinasF.L. Jimenez-IgnacioE.E. Ramírez-RamírezD. Romo-RodríguezR.E. Reyes-LeyvaJ. Vallejo-RuizV. Pazos-SalazarN.G. MaycotteP. Chloroquine induces ROS-mediated macrophage migration inhibitory factor secretion and epithelial to mesenchymal transition in ER-positive breast cancer cell lines.J. Mammary Gland Biol. Neoplasia202126434135510.1007/s10911‑021‑09503‑5 34813005
    [Google Scholar]
  59. ZhangL. XuL. WangY. ZhangX. XueT. SunQ. TangH. LiM. CaoX. ShiF. ZhangG. ZhangS. HuZ. Histone methyltransferase Setdb1 mediates osteogenic differentiation by suppressing the expression of miR-212-3p under mechanical unloading.Cell. Signal.202310211055410.1016/j.cellsig.2022.110554 36476391
    [Google Scholar]
  60. SerasingheM.N. WiederS.Y. RenaultT.T. ElkholiR. AsciollaJ.J. YaoJ.L. JabadoO. HoehnK. KageyamaY. SesakiH. ChipukJ.E. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors.Mol. Cell201557352153610.1016/j.molcel.2015.01.003 25658204
    [Google Scholar]
  61. SonY. KimS. ChungH.T. PaeH.O. Reactive oxygen species in the activation of MAP kinases.Methods Enzymol.2013528274810.1016/B978‑0‑12‑405881‑1.00002‑1 23849857
    [Google Scholar]
  62. ChakrabortyJ. ChakrabortyS. ChakrabortyS. NarayanM.N. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders.Biochim. Biophys. Acta. Gene Regul. Mech.20231866419498810.1016/j.bbagrm.2023.194988 37739217
    [Google Scholar]
  63. ZhaoS. GuT. WengK. ZhangY. CaoZ. ZhangY. ZhaoW. ChenG. XuQ. Phosphoproteome reveals extracellular regulated protein kinase phosphorylation mediated by mitogen-activated protein kinase kinase-regulating granulosa cell apoptosis in broody geese.Int. J. Mol. Sci.202324151227810.3390/ijms241512278 37569653
    [Google Scholar]
  64. CarneiroT.J. CarvalhoA.L.M.B. VojtekM. CarmoI.F. MarquesM.P.M. DinizC. GilA.M. Disclosing a metabolic signature of cisplatin resistance in MDA-MB-231 triple-negative breast cancer cells by NMR metabolomics.Cancer Cell Int.202323131010.1186/s12935‑023‑03124‑0 38057765
    [Google Scholar]
  65. YangS.H. SharrocksA.D. WhitmarshA.J. Transcriptional regulation by the MAP kinase signaling cascades.Gene20033201–232110.1016/S0378‑1119(03)00816‑3 14597384
    [Google Scholar]
  66. BraicuC. BuseM. BusuiocC. DrulaR. GuleiD. RadulyL. RusuA. IrimieA. AtanasovA.G. SlabyO. IonescuC. Berindan-NeagoeI. A comprehensive review on MAPK: A promising therapeutic target in cancer.Cancers (Basel)20191110161810.3390/cancers11101618 31652660
    [Google Scholar]
  67. MorrisonD.K. DavisR.J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals.Annu. Rev. Cell Dev. Biol.20031919111810.1146/annurev.cellbio.19.111401.091942 14570565
    [Google Scholar]
  68. MiyataY. NishidaE. Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions.Biochem. Biophys. Res. Commun.1999266229129510.1006/bbrc.1999.1705 10600495
    [Google Scholar]
  69. ChangL. KarinM. Mammalian MAP kinase signalling cascades.Nature20014106824374010.1038/35065000 11242034
    [Google Scholar]
  70. KyriakisJ.M. AvruchJ. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.200181280786910.1152/physrev.2001.81.2.807 11274345
    [Google Scholar]
  71. de PaulaC.A.A. Coulson-ThomasV.J. FerreiraJ.G. MazaP.K. SuzukiE. NakahataA.M. NaderH.B. SampaioM.U. OlivaM.L.V. Enterolobium contortisiliquum trypsin inhibitor (EcTI), a plant proteinase inhibitor, decreases in vitro cell adhesion and invasion by inhibition of Src protein-focal adhesion kinase (FAK) signaling pathways.J. Biol. Chem.2012287117018210.1074/jbc.M111.263996 22039045
    [Google Scholar]
  72. WeinbergR.A. The retinoblastoma protein and cell cycle control.Cell199581332333010.1016/0092‑8674(95)90385‑2 7736585
    [Google Scholar]
  73. LeiC. DuF. SunL. LiT. LiT. MinY. NieA. WangX. GengL. LuY. ZhaoX. ShiY. FanD. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6.Cell Death Dis.2017810e310110.1038/cddis.2017.493 29022908
    [Google Scholar]
  74. SanchezE.F. SchneiderF.S. YarlequeA. BorgesM.H. RichardsonM. FigueiredoS.G. EvangelistaK.S. EbleJ.A. The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets.Arch. Biochem. Biophys.2010496192010.1016/j.abb.2010.01.010 20102699
    [Google Scholar]
  75. hang, H.J. Twist2 promotes kidney cancer cell proliferation and invasion via regulating ITGA6 and CD44 expression in the ECM-receptor-interaction pathway.Biomed. Pharmacother.20168145345910.1016/j.biopha.2016.02.042
    [Google Scholar]
  76. FickovaM. MachoL. BrtkoJ. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.Toxicol. In Vitro201529472773110.1016/j.tiv.2015.02.007 25743928
    [Google Scholar]
  77. León-BuitimeaA. Rodríguez-FragosoL. LauerF.T. BowlesH. ThompsonT.A. BurchielS.W. Ethanol-induced oxidative stress is associated with EGF receptor phosphorylation in MCF-10A cells overexpressing CYP2E1.Toxicol. Lett.2012209216116510.1016/j.toxlet.2011.12.009 22222162
    [Google Scholar]
  78. RajarajanS. SnijeshV.P. AnupamaC.E. NairM.G. MavatkarA.D. NaiduC.M. PatilS. NimbalkarV.P. AlexanderA. PillaiM. JollyM.K. SabarinathanR. RameshR.S. BsS. PrabhuJ.S. An androgen receptor regulated gene score is associated with epithelial to mesenchymal transition features in triple negative breast cancers.Transl. Oncol.20233710176110.1016/j.tranon.2023.101761 37603927
    [Google Scholar]
  79. SharifiM.N. O’ReganR.M. WisinskiK.B. Is the androgen receptor a viable target in triple negative breast cancer in 5 years?Clin. Breast Cancer202323881382410.1016/j.clbc.2023.06.009 37419745
    [Google Scholar]
  80. IacopettaD. RechoumY. FuquaS.A.W. The role of androgen receptor in breast cancer.Drug Discov. Today Dis. Mech.201291-2e19e2710.1016/j.ddmec.2012.11.003 26568765
    [Google Scholar]
  81. LiX. ChangY. ShenW. HuangG. HuN. LvH. JinM. miR-138 from ADSC Exo accelerates wound healing by targeting SIRT1/PTEN pathway to promote angiogenesis and fibrosis.Cell. Signal.202311111084310.1016/j.cellsig.2023.110843 37544635
    [Google Scholar]
  82. AbrahamJ. OcenJ. StaffurthJ. Hormonal therapy for cancer.Medicine (Abingdon)2023511283110.1016/j.mpmed.2022.10.017
    [Google Scholar]
  83. khanam, R.; Hejazi, I.I.; Shahabuddin, S.; Bhat, A.R.; Athar, F. Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1, 3, 4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors.J. Pharm. Anal.20199213314110.1016/j.jpha.2018.12.002 31011470
    [Google Scholar]
  84. CortésJ. KimS.B. ChungW.P. ImS.A. ParkY.H. HeggR. KimM.H. TsengL.M. PetryV. ChungC.F. IwataH. HamiltonE. CuriglianoG. XuB. HuangC.S. KimJ.H. ChiuJ.W.Y. PedriniJ.L. LeeC. LiuY. CathcartJ. BakoE. VermaS. HurvitzS.A. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer.N. Engl. J. Med.2022386121143115410.1056/NEJMoa2115022 35320644
    [Google Scholar]
  85. KunteS. AbrahamJ. MonteroA.J. Novel HER2–targeted therapies for HER2–positive metastatic breast cancer.Cancer2020126194278428810.1002/cncr.33102 32721042
    [Google Scholar]
  86. TanB.B.J-W. MaiA.S. LeeS.J-Y. TanE-K. Tamoxifen in breast cancer and risk of Parkinson’s disease: A meta-analysis.Am. J. Med. Sci.20243674251810.1016/j.amjms.2023.11.003 37993099
    [Google Scholar]
  87. KaleV.P. GilhooleyP.J. PhadtareS. NabavizadehA. PandeyM.K. Role of gambogic acid in chemosensitization of cancer. Role Nutraceuticals Cancer Chemosensitization.Academic Press2017Vol.215116710.1016/B978‑0‑12‑812373‑7.00008‑5
    [Google Scholar]
  88. WillsonM.L. BurkeL. FergusonT. GhersiD. NowakA.K. WilckenN. Taxanes for adjuvant treatment of early breast cancer.Cochrane Database Syst. Rev.201999CD00442110.1002/14651858.CD004421.pub3
    [Google Scholar]
  89. KumariP. DangS. Dual drug loaded nanostructured lipid carrier for cytotoxic effect against breast cancer - a drug repurposing approach.Surf. Interfaces20234010313810.1016/j.surfin.2023.103138
    [Google Scholar]
  90. LiY. WangP. ZouZ. PanQ. LiX. LiangZ. LiL. LinY. PengX. ZhangR. TianH. HanL. Ginsenoside (20S)-protopanaxatriol induces non-protective autophagy and apoptosis by inhibiting Akt/mTOR signaling pathway in triple-negative breast cancer cells.Biochem. Biophys. Res. Commun.202158318419110.1016/j.bbrc.2021.10.067 34749235
    [Google Scholar]
  91. RobinsonD.R. WuY.M. VatsP. SuF. LonigroR.J. CaoX. Kalyana-SundaramS. WangR. NingY. HodgesL. GurskyA. SiddiquiJ. TomlinsS.A. RoychowdhuryS. PientaK.J. KimS.Y. RobertsJ.S. RaeJ.M. Van PoznakC.H. HayesD.F. ChughR. KunjuL.P. TalpazM. SchottA.F. ChinnaiyanA.M. Activating ESR1 mutations in hormone-resistant metastatic breast cancer.Nat. Genet.201345121446145110.1038/ng.2823 24185510
    [Google Scholar]
  92. IbrahimM.Y. HashimN.M. OmerF.A.A. AbubakarM.S. MohammedH.A. SalamaS.M. JayashS.N. Potential antitumor effect of α-mangostin against rat mammary gland tumors induced by LA7 cells.Int. J. Mol. Sci.202324121028310.3390/ijms241210283 37373429
    [Google Scholar]
  93. DankM. The role of aromasin in the hormonal therapy of breast cancer.Pathol. Oncol. Res.200282879210.1007/BF03033716
    [Google Scholar]
  94. KalousO. ConklinD. DesaiA.J. O’BrienN.A. GintherC. AndersonL. CohenD.J. BrittenC.D. TaylorI. ChristensenJ.G. SlamonD.J. FinnR.S. Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib.Mol. Cancer Ther.20121191978198710.1158/1535‑7163.MCT‑11‑0730 22761403
    [Google Scholar]
  95. WangY. ZhouD. PhungS. MasriS. SmithD. ChenS. SGK3 is an estrogen-inducible kinase promoting estrogen-mediated survival of breast cancer cells.Mol. Endocrinol.2011251728210.1210/me.2010‑0294 21084382
    [Google Scholar]
  96. HurvitzS.A. BardiaA. QuirogaV. ParkY.H. BlancasI. Alonso-RomeroJ.L. VasilievA. AdamchukH. SalgadoM. YardleyD.A. BerzoyO. Zamora-AuñónP. ChanD. SperaG. XueC. FerreiraE. Badovinac CrnjevicT. Pérez-MorenoP.D. López-ValverdeV. SteinseiferJ. FernandoT.M. MooreH.M. FaschingP.A. Neoadjuvant palbociclib plus either giredestrant or anastrozole in oestrogen receptor-positive, HER2-negative, early breast cancer (coopERA Breast Cancer): an open-label, randomised, controlled, phase 2 study.Lancet Oncol.20232491029104110.1016/S1470‑2045(23)00268‑1 37657462
    [Google Scholar]
  97. RiceS. AmonA. WhiteheadS.A. Ethanolic extracts of black cohosh (Actaea racemosa) inhibit growth and oestradiol synthesis from oestrone sulphate in breast cancer cells.Maturitas200756435936710.1016/j.maturitas.2006.10.002 17125943
    [Google Scholar]
  98. JainS. SpandanaG. AgrawalA.K. KushwahV. ThankiK. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles.Mol. Pharm.201512113871388410.1021/acs.molpharmaceut.5b00281 26375023
    [Google Scholar]
  99. FlynnC.R. KumarA.P. O’SheaD. HigginsM.J. Alpelisib-induced thyroiditis in a patient with metastatic breast cancer: Is routine monitoring of thyroid function required?Curr. Probl. Cancer Case Rep.2023910021910.1016/j.cpccr.2023.100219
    [Google Scholar]
  100. BiganzoliL. CuferT. BruningP. ColemanR. DuchateauL. CalvertA.H. GamucciT. TwelvesC. FargeotP. EpelbaumR. LohrischC. PiccartM.J. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial.J. Clin. Oncol.200220143114312110.1200/JCO.2002.11.005 12118025
    [Google Scholar]
  101. FuentesN. SilveyraP. Estrogen receptor signaling mechanisms.Adv. Protein Chem. Struct. Biol.201911613517010.1016/bs.apcsb.2019.01.001 31036290
    [Google Scholar]
  102. DashS.G. KantevariS. GuruS.K. NaikP.K. Combination of docetaxel and newly synthesized 9-Br-trimethoxybenzyl-noscapine improve tubulin binding and enhances antitumor activity in breast cancer cells.Comput. Biol. Med.202113910499610.1016/j.compbiomed.2021.104996 34753081
    [Google Scholar]
  103. NagelG. LinseisenJ. van GilsC.H. PeetersP.H. Boutron-RuaultM.C. Clavel-ChapelonF. RomieuI. TjønnelandA. OlsenA. RoswallN. WittP.M. OvervadK. RohrmannS. KaaksR. DroganD. BoeingH. TrichopoulouA. StratigakouV. ZylisD. EngesetD. LundE. SkeieG. BerrinoF. GrioniS. MattielloA. MasalaG. TuminoR. ZanettiR. RosM.M. Bueno-de-MesquitaH.B. ArdanazE. SánchezM.J. HuertaJ.M. AmianoP. RodríguezL. ManjerJ. WirfältE. LennerP. HallmansG. SpencerE.A. KeyT.J. BinghamS. KhawK.T. RinaldiS. SlimaniN. BoffettaP. GalloV. NoratT. RiboliE. Dietary β-carotene, vitamin C and E intake and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC).Breast Cancer Res. Treat.2010119375376510.1007/s10549‑009‑0444‑8 19565333
    [Google Scholar]
  104. YouL. AnR. LiangK. WangX. Anti-breast cancer agents from Chinese herbal medicines.Mini Rev. Med. Chem.20131310110510.2174/138955713804484785 23020239
    [Google Scholar]
  105. SinghS.K. SinghS. WlillardJ. SinghR. Drug delivery approaches for breast cancer.Int. J. Nanomed.2017126205621810.2147/IJN.S140325
    [Google Scholar]
  106. YeY. HuangZ. ZhangM. LiJ. ZhangY. LouC. Synergistic therapeutic potential of alpelisib in cancers (excluding breast cancer): Preclinical and clinical evidences.Biomed. Pharmacother.202315911418310.1016/j.biopha.2022.114183 36641927
    [Google Scholar]
  107. UedaA. OikawaK. FujitaK. IshikawaA. SatoE. IshikawaT. KurodaM. KanekuraK. Therapeutic potential of PLK1 inhibition in triple-negative breast cancer.Lab. Invest.20199991275128610.1038/s41374‑019‑0247‑4 30996295
    [Google Scholar]
  108. MullerM. 5-fluorouracil kinetics in the interstitial tumor space: Clinical response in breast cancer patients.Cancer Res.19975725982601
    [Google Scholar]
  109. WangH. LiF. DuC. WangH. MahatoR.I. HuangY. Doxorubicin and lapatinib combination nanomedicine for treating resistant breast cancer.Mol. Pharm.20141182600261110.1021/mp400687w 24405470
    [Google Scholar]
  110. SaloustrosE. MavroudisD. GeorgouliasV. Paclitaxel and docetaxel in the treatment of breast cancer.Expert Opin. Pharmacother.20089152603261610.1517/14656566.9.15.2603 18803448
    [Google Scholar]
  111. TarantinoP. MorgantiS. UlianoJ. GiuglianoF. CriminiE. CuriglianoG. Margetuximab for the treatment of HER2-positive metastatic breast cancer.Expert Opin. Biol. Ther.202121212713310.1080/14712598.2021.1856812 33238772
    [Google Scholar]
  112. ZhouD. YuX. SongY. ZengH. ZhangH. ChenB. WangY. LiH. LiuX. HeQ. LiX. ZhouW. Screening of and mechanism underlying the action of serum- and glucocorticoid-regulated kinase 3-targeted drugs against estrogen receptor-positive breast cancer.Eur. J. Pharmacol.202292717498210.1016/j.ejphar.2022.174982 35569550
    [Google Scholar]
  113. SchlamI. MogesR. MorgantiS. TolaneyS.M. TarantinoP. Next-generation antibody-drug conjugates for breast cancer: Moving beyond HER2 and TROP2.Crit. Rev. Oncol. Hematol.202319010409010.1016/j.critrevonc.2023.104090 37562695
    [Google Scholar]
  114. ShabaniH. KaramiM.H. KolourJ. SayyahiZ. ParvinM.A. SoghalaS. BaghiniS.S. MardasiM. ChopaniA. MoulaviP. FarkhondehT. DarroudiM. KabiriM. SamarghandianS. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches.Biomed. Pharmacother.202316511497210.1016/j.biopha.2023.114972 37481931
    [Google Scholar]
  115. KamaruzmanN.I. AzizN.A. PohC.L. ChowdhuryE.H. Oncogenic signaling in tumorigenesis and applications of siRNA nanotherapeutics in breast cancer.Cancers (Basel)201911563210.3390/cancers11050632 31064156
    [Google Scholar]
  116. SimpsonD. CurranM.P. PerryC.M. PritchardK.I. Letrozole.Drugs200464111213123010.2165/00003495‑200464110‑00005 15161328
    [Google Scholar]
  117. BielawskiK. BielawskaA. MuszyńskaA. PopławskaB. CzarnomysyR. Cytotoxic activity of G3 PAMAM-NH2 dendrimer-chlorambucil conjugate in human breast cancer cells.Environ. Toxicol. Pharmacol.201132336437210.1016/j.etap.2011.08.002 22004955
    [Google Scholar]
  118. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  119. WoodsB. VeenstraD. HawkinsN. Prioritizing pharmacogenetic research: a value of information analysis of CYP2D6 testing to guide breast cancer treatment.Value Health2011148989100110.1016/j.jval.2011.05.048 22152167
    [Google Scholar]
  120. BakkerG.H. Setyono-HanB. PortengenH. De JongF.H. FoekensJ.A. KlijnJ.G.M. Treatment of breast cancer with different antiprogestins: Preclinical and clinical studies.J. Steroid Biochem. Mol. Biol.199037678979410.1016/0960‑0760(90)90421‑G 2285592
    [Google Scholar]
  121. WaniK. TarawadiK. Kaul-GhanekarR. Nanocarriers for delivery of herbal based drugs in breast cancer-an overview.J. Nano Res.201534294010.4028/www.scientific.net/JNanoR.34.29
    [Google Scholar]
  122. CaoJ. WangL. ZhuX.Z. LiuT.G. WangJ.Y. Chlorambucil combined with a fluorophore for targeted cancer therapy and real-time monitoring of cancer cell death.J. Mol. Struct.2023129413637910.1016/j.molstruc.2023.136379
    [Google Scholar]
  123. Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: A review.JAMA,321(3), 288-300.10.1001/jama.2018.19323
    [Google Scholar]
  124. HuF. Wang YiB. ZhangW. LiangJ. LinC. LiD. WangF. PangD. ZhaoY. Carotenoids and breast cancer risk: a meta-analysis and meta-regression.Breast Cancer Res. Treat.2012131123925310.1007/s10549‑011‑1723‑8 21901390
    [Google Scholar]
  125. GeY. DomschkeC. StoiberN. SchottS. HeilJ. RomJ. BlumensteinM. ThumJ. SohnC. SchneeweissA. BeckhoveP. SchuetzF. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome.Cancer Immunol. Immunother.201261335336210.1007/s00262‑011‑1106‑3 21915801
    [Google Scholar]
  126. MartinJ.M. GoldsteinL.J. Profile of abemaciclib and its potential in the treatment of breast cancer. OncoTargets and Therapy.Dove Medical Press Ltd.2018Vol. 115253525910.2147/OTT.S149245
    [Google Scholar]
  127. LinP.H. TsengL.M. LeeY.H. ChenS.T. YehD.C. DaiM.S. LiuL.C. WangM.Y. LoC. ChangS. TanK.T. ChenS.J. KuoS.H. HuangC.S. Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders.J. Formos. Med. Assoc.2022121122538254710.1016/j.jfma.2022.05.015 35752529
    [Google Scholar]
  128. BrittK.L. CuzickJ. PhillipsK.A. Key steps for effective breast cancer prevention.Nat. Rev. Cancer202020841743610.1038/s41568‑020‑0266‑x 32528185
    [Google Scholar]
  129. DwyerP.J.O. Phase I/pharmacokinetic reevaluation of thioTEPA.Cancer Res.1911511231713176
    [Google Scholar]
  130. TarantinoP. HamiltonE. TolaneyS.M. CortesJ. MorgantiS. FerraroE. MarraA. VialeG. TrapaniD. CardosoF. Penault-LlorcaF. VialeG. AndrèF. CuriglianoG. HER2-Low breast cancer: Pathological and clinical landscape.J. Clin. Oncol.202038171951196210.1200/JCO.19.02488 32330069
    [Google Scholar]
  131. SadeghaS. VarshochianR. DadrasP. HosseinzadehH. SakhtianchiR. MirzaieZ.H. ShafieeA. AtyabiF. DinarvandR. Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy.Daru202230233134110.1007/s40199‑022‑00453‑9 36197594
    [Google Scholar]
  132. ChenL. NabilA. FujisawaN. OeE. LiK. EbaraM. A facile, flexible, and multifunctional thermo-chemotherapy system for customized treatment of drug-resistant breast cancer.J. Control. Release202336355056110.1016/j.jconrel.2023.10.010 37804880
    [Google Scholar]
  133. SendurM.A.N. ZenginN. AksoyS. AltundagK. Everolimus: a new hope for patients with breast cancer.Curr. Med. Res. Opin.2014301758710.1185/03007995.2013.846253 24050600
    [Google Scholar]
  134. QinS.Y. ZhangA.Q. ChengS.X. RongL. ZhangX.Z. Drug self-delivery systems for cancer therapy.Biomaterials201711223424710.1016/j.biomaterials.2016.10.016 27768976
    [Google Scholar]
  135. FeldingerK. KongA. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy.Dove Medical Press Ltd.2015Vol. 714716210.2147/BCTT.S54414
    [Google Scholar]
  136. SverrisdottirA. NystedtM. JohanssonH. FornanderT. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial.Breast Cancer Res. Treat.2009117356156710.1007/s10549‑009‑0313‑5 19153828
    [Google Scholar]
  137. LiuX. HuQ. WangW. MaH. PuJ. CuiJ. GongT. WuY. LuW. HuangJ. A protein-fragment complementation assay reveals that celastrol and gambogic acid suppress ERα mutants in breast cancer.Biochem. Pharmacol.202118811458310.1016/j.bcp.2021.114583 33915156
    [Google Scholar]
  138. MustafaY.F. Chemotherapeutic applications of folate prodrugs: A review.Neuroquantology20211989911210.14704/nq.2021.19.8.NQ21120
    [Google Scholar]
  139. CongY. ZhangS.Y. LiH.M. ZhongJ.J. ZhaoW. TangY.J. A truncated DNA aptamer with high selectivity for estrogen receptor-positive breast cancer cells.Int. J. Biol. Macromol.202325212645010.1016/j.ijbiomac.2023.126450 37634779
    [Google Scholar]
  140. ColditzG.A. BohlkeK. Priorities for the primary prevention of breast cancer.CA Cancer J. Clin.201464318619410.3322/caac.21225 24647877
    [Google Scholar]
  141. PerezE.A. Paclitaxel in breast cancer.Oncologist19983637338910.1634/theoncologist.3‑6‑373 10388129
    [Google Scholar]
  142. RouzierR. PerouC.M. SymmansW.F. IbrahimN. CristofanilliM. AndersonK. HessK.R. StecJ. AyersM. WagnerP. MorandiP. FanC. RabiulI. RossJ.S. HortobagyiG.N. PusztaiL. Breast cancer molecular subtypes respond differently to preoperative chemotherapy.Clin. Cancer Res.200511165678568510.1158/1078‑0432.CCR‑04‑2421 16115903
    [Google Scholar]
  143. HuntimerE.D. HalaweishF.T. ChaseC.C.L. Proliferative activity of Echinacea angustifolia root extracts on cancer cells: Interference with doxorubicin cytotoxicity.Chem. Biodivers.20063669570310.1002/cbdv.200690071 17193302
    [Google Scholar]
  144. MoyaE. LyonsB.Y.A. RcsiF.F.R. EdelstynD.G. Smnallpox, in virus and ricketisial diseases of man.J. Cliti. Path196214855
    [Google Scholar]
  145. KimH.I. HuangH. CheepalaS. HuangS. ChungJ. Curcumin inhibition of integrin (α6β4)-dependent breast cancer cell motility and invasion.Cancer Prev. Res. (Phila.)20081538539110.1158/1940‑6207.CAPR‑08‑0087 19138983
    [Google Scholar]
  146. KaliyamoorthiK. RamasamyS. PillaiA.S. AlexanderA. ArivarasuA. EnochI.V.M.V. Camptothecin-loaded holmium ferrite nanocarrier. Expanded activity on breast cancer cells.Mater. Lett.202128512916410.1016/j.matlet.2020.129164
    [Google Scholar]
  147. WooC.C. HsuA. KumarA.P. SethiG. TanK.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS.PLoS One2013810e7535610.1371/journal.pone.0075356 24098377
    [Google Scholar]
  148. SusiriwatananontT. PoovorawanN. TeerapakpinyoC. ShuangshotiS. JarutasnangkulL. TumkositM. ChattranukulchaiP. TheerasuwipakornN. ManasnayakornS. VinayanuwattikunC. VorasettakarnkijY. SriuranpongV. 259P Adjuvant doxorubicin-cyclophosphamide in early-stage breast cancer provides long-term cardiac safety.Ann. Oncol.202334S286S28710.1016/j.annonc.2023.09.456
    [Google Scholar]
  149. ErshlerW.B. Capecitabine monotherapy: safe and effective treatment for metastatic breast cancer.Oncologist200611432533510.1634/theoncologist.11‑4‑325 16614228
    [Google Scholar]
  150. BaranauskaiteJ. OckunM.A. UnerB. GungorB. DumanG. TasC. YesiladaE. Development and In vitro characterization of pullulan fast dissolving films loaded with Panax ginseng extract, antioxidant properties and cytotoxic efficiency on lung and breast cancer cell lines.J. Drug Deliv. Sci. Technol.20227610370110.1016/j.jddst.2022.103701
    [Google Scholar]
  151. AcconciaF. FiocchettiM. BusoneroC. FernandezV.S. MontalesiE. CipollettiM. PallottiniV. MarinoM. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions.Mol. Cell. Endocrinol.202153811145210.1016/j.mce.2021.111452 34500041
    [Google Scholar]
  152. ChenY. ChangL. ZhuJ. SunW. WangY. LiW. LiuY. YuX. QinJ. Antimicrobial poly(aspartic acid) based self-healing hydrogel with enhance cell migration rate for burn wound treatment.J. Drug Deliv. Sci. Technol.20238910506210.1016/j.jddst.2023.105062
    [Google Scholar]
  153. LinS.R. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.2019177614091423
    [Google Scholar]
  154. ZhangX. SpiegelmanD. BagliettoL. BernsteinL. BoggsD.A. van den BrandtP.A. BuringJ.E. GapsturS.M. GilesG.G. GiovannucciE. GoodmanG. HankinsonS.E. HelzlsouerK.J. Horn-RossP.L. InoueM. JungS. KhudyakovP. LarssonS.C. LofM. McCulloughM.L. MillerA.B. NeuhouserM.L. PalmerJ.R. ParkY. RobienK. RohanT.E. RossJ.A. SchoutenL.J. ShikanyJ.M. TsuganeS. VisvanathanK. WeiderpassE. WolkA. WillettW.C. ZhangS.M. ZieglerR.G. Smith-WarnerS.A. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies.Am. J. Clin. Nutr.201295371372510.3945/ajcn.111.014415 22277553
    [Google Scholar]
  155. ShareefM. AshrafM.A. SarfrazM. Natural cures for breast cancer treatment.Saudi Pharm. J.201624323324010.1016/j.jsps.2016.04.018
    [Google Scholar]
  156. KolakA. KamińskaM. SygitK. BudnyA. SurdykaD. Kukiełka-BudnyB. BurdanF. Primary and secondary prevention of breast cancer.Ann. Agric. Environ. Med.201724454955310.26444/aaem/75943 29284222
    [Google Scholar]
  157. OdehF. IsmailS.I. Abu-DahabR. MahmoudI.S. Al BawabA. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer.Drug Deliv.201219837137710.3109/10717544.2012.727500 23043626
    [Google Scholar]
  158. Methotrexate increases extracellular adenosine release.2023
    [Google Scholar]
  159. López-TarruellaS. JerezY. Márquez-RodasI. MartínM. Neratinib (HKI-272) in the treatment of breast cancer.Future Oncol.20128667168110.2217/fon.12.66 22764764
    [Google Scholar]
  160. HongH. ChenH. ZhaoJ. QinL. LiH. HuoH. ShiS. Bioinformatics analysis to identify breast cancer-related potential targets and candidate small molecule drugs.Mutat. Res.202382711183010.1016/j.mrfmmm.2023.111830 37437506
    [Google Scholar]
  161. JeongY.J. Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy.J. Ginseng Res.2024481313910.1016/j.jgr.2023.06.001 38223822
    [Google Scholar]
  162. HyounS.C. ObičanS.G. ScialliA.R. Teratogen update: Methotrexate.Birth Defects Res. A Clin. Mol. Teratol.201294418720710.1002/bdra.23003 22434686
    [Google Scholar]
  163. SunC.Y. Gilteritinib enhances anti-tumor efficacy of CDK4/6 inhibitor, abemaciclib in lung cancer cells.Front. Pharmacol.20231382975910.3389/fphar.2022.829759
    [Google Scholar]
  164. JelinekM.J. AggarwalC. Adjuvant osimertinib: A new standard of care.Oncologist.202126426326510.1002/onco.13634
    [Google Scholar]
  165. HonarvariB. KarimifardS. AkhtariN. MehraryaM. MoghaddamZ.S. AnsariM.J. JalilA.T. MatencioA. TrottaF. YeganehF.E. Farasati FarB. ArkiM.K. Naimi-JamalM.R. NoorbazarganH. LalamiZ.A. ChianiM. Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In silico and In vitro study.Molecules20222714463410.3390/molecules27144634 35889513
    [Google Scholar]
  166. AkromA. MarstyawanH. MustofaM. P0051 Immunomodulator effect of black cumin seed oil (BCO) in the inhibition of breast cancer carcinogenesis in Dimenthylbenzantracene (DMBA)-induced SD rats.Eur. J. Cancer201450e2210.1016/j.ejca.2014.03.095
    [Google Scholar]
  167. MallaR. MarniR. ChakrabortyA. KamalM.A. Diallyl disulfide and diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer.J. Pharm. Anal.202212222123110.1016/j.jpha.2021.11.004 35582397
    [Google Scholar]
  168. KremerJ.M. Toward a better understanding of methotrexate.Arthritis Rheum.20045051370138210.1002/art.20278 15146406
    [Google Scholar]
  169. YosriN. AlsharifS.M. XiaoJ. MusharrafS.G. ZhaoC. SaeedA. GaoR. SaidN.S. Di MinnoA. DagliaM. GuoZ. KhalifaS.A.M. El-SeediH.R. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine.Biomed. Pharmacother.202315811410410.1016/j.biopha.2022.114104 36516694
    [Google Scholar]
  170. MejíaJ A. OllarvesJ.C. ZavaletaL. Modulation of JAK-STAT signaling by LNK: A forgotten oncogenic pathway in hormone receptor-positive breast cancer.Int. J. Mol. Sci.202324191477710.3390/ijms241914777
    [Google Scholar]
  171. BuzdarA.U. JonatW. HowellA. PlourdeP.V. ARIMIDEX: a potent and selective aromatase inhibitor for the treatment of advanced breast cancer.J. Steroid Biochem. Mol. Biol.1997613-614514910.1016/S0960‑0760(97)80006‑4 9365184
    [Google Scholar]
  172. Al-RadadiN.S. Green biosynthesis of flaxseed gold nanoparticles (Au-NPs) as potent anti-cancer agent against breast cancer cells.J. Saudi Chem. Soc.202125610124310.1016/j.jscs.2021.101243
    [Google Scholar]
  173. BkailyG. JacquesD. Flaxseed as an anticardiotoxicity agent in breast cancer therapy.J. Nutr.202015092231223210.1093/jn/nxaa213 32725201
    [Google Scholar]
  174. TaleatZ. LarssonA. EwingA.G. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells.ACS Chem. Neurosci.20191042060206910.1021/acschemneuro.8b00714 30763068
    [Google Scholar]
  175. KortA. SparidansR.W. WagenaarE. BeijnenJ.H. SchinkelA.H. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2).Pharmacol. Res.201510220020710.1016/j.phrs.2015.09.003 26361725
    [Google Scholar]
  176. ShrubsoleM.J. LuW. ChenZ. ShuX.O. ZhengY. DaiQ. CaiQ. GuK. RuanZ.X. GaoY.T. ZhengW. Drinking green tea modestly reduces breast cancer risk.J. Nutr.2009139231031610.3945/jn.108.098699 19074205
    [Google Scholar]
  177. ToyW. ShenY. WonH. GreenB. SakrR.A. WillM. LiZ. GalaK. FanningS. KingT.A. HudisC. ChenD. TaranT. HortobagyiG. GreeneG. BergerM. BaselgaJ. ChandarlapatyS. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer.Nat. Genet.201345121439144510.1038/ng.2822 24185512
    [Google Scholar]
  178. RathoreC. RathboneM.J. ChellappanD.K. TambuwalaM.M. PintoT.D.J.A. DurejaH. HemrajaniC. GuptaG. DuaK. NegiP. Nanocarriers: More than tour de force for thymoquinone.Expert Opin. Drug Deliv.202017447949410.1080/17425247.2020.1730808 32077770
    [Google Scholar]
  179. CoonJ.T. ErnstE. Panax ginseng.Drug Saf.200225532334410.2165/00002018‑200225050‑00003 12020172
    [Google Scholar]
  180. BenjaminM. MalakarP. SinhaR.A. NasserM.W. BatraS.K. SiddiquiJ.A. ChakravartiB. Molecular signaling network and therapeutic developments in breast cancer brain metastasis.Adv. Cancer Biol. Metastasis2023710007910.1016/j.adcanc.2022.100079 36536947
    [Google Scholar]
  181. DeS.K. Medicines for Breast Cancer: Fundamentals of Cancer Detection, Treatment, and Prevention.Wiley202215117710.1002/9783527838561.ch6
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206319933241104100736
Loading
/content/journals/acamc/10.2174/0118715206319933241104100736
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Breast cancer; HER2/ERBB2; multidrug resistance; PDGF; TNBC; WNT signaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test