Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.

Aim

The aim of this study was to explore the potential roles of (planch.) extract and triterpenoid-derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.

Methods

Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.

Results

Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773. Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.

Conclusion

Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206325529241004064307
2025-01-27
2025-09-05
Loading full text...

Full text loading...

References

  1. BertucciF. FinettiP. BirnbaumD. Basal breast cancer: A complex and deadly molecular subtype.Curr. Mol. Med.20121219611010.2174/15665241279837613422082486
    [Google Scholar]
  2. BrayF. JemalA. GreyN. FerlayJ. FormanD. Global cancer transitions according to the human development index (2008–2030): A population-based study.Lancet Oncol.201213879080110.1016/S1470‑2045(12)70211‑522658655
    [Google Scholar]
  3. ArzanovaE. MayrovitzH.N. The epidemiology of breast cancer.Breast Cancer.Exon Publications202210.36255/exon‑publications‑breast‑cancer‑epidemiology
    [Google Scholar]
  4. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  5. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  6. MullaguriS.C. MungamuriS.K. PuligundlaK.C. AnnamaneniS. KanchaR.K. Breast Cancer.Biomed. Asp. Solid Can. KanchaR.K. Springer2024152710.1007/978‑981‑97‑1802‑3_2
    [Google Scholar]
  7. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.20140303625294565
    [Google Scholar]
  8. PuriA. MohiteP. MaitraS. SubramaniyanV. KumarasamyV. UtiD.E. SayedA.A. El-DemerdashF.M. AlgahtaniM. El-kottA.F. ShatiA.A. AlbaikM. Abdel-DaimM.M. AtangwhoI.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability.Biomed. Pharmacother.202417011608310.1016/j.biopha.2023.11608338163395
    [Google Scholar]
  9. OjoO. NdintehD.T. Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: A review.Phys. Sci. Rev.20238454956510.1515/psr‑2020‑0207
    [Google Scholar]
  10. AdesegunS.A. CokerH.A. HamannM.T. Anti-cancerous triterpenoid saponins from Lecaniodiscus cupanioides. J. Nat. Prod. (Gorakhpur)2014715516127867280
    [Google Scholar]
  11. AlayandeK.A. AshafaA.O.T. Evaluation of cytotoxic effects and antimicrobial activities of Lecaniodiscus cupanioides (Planch.) leaf extract.Trans. R. Soc. S. Afr.2017721333810.1080/0035919X.2016.1214851
    [Google Scholar]
  12. AlbahriG. BadranA. Abdel BakiZ. AlameM. HijaziA. DaouA. BaydounE. Potential anti-tumorigenic properties of diverse medicinal plants against the majority of common types of cancer.Pharmaceuticals (Basel)202417557410.3390/ph1705057438794144
    [Google Scholar]
  13. PrasherP. SharmaM. SharmaA.K. Sharifi-RadJ. CalinaD. HanoC. ChoW.C. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule.Biomed. Pharmacother.202316011433210.1016/j.biopha.2023.11433236736282
    [Google Scholar]
  14. AlmatroudiA. AllemailemK.S. AlwanianW.M. AlharbiB.F. AlrumaihiF. KhanA.A. AlmatroodiS.A. RahmaniA.H. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways.Int. J. Mol. Sci.20232410863010.3390/ijms2410863037239974
    [Google Scholar]
  15. NigamM. MishraA.P. DebV.K. DimriD.B. TiwariV. BungauS.G. BungauA.F. RaduA.F. Evaluation of the association of chronic inflammation and cancer: Insights and implications.Biomed. Pharmacother.202316411501510.1016/j.biopha.2023.11501537321055
    [Google Scholar]
  16. BashaN.J. Small molecules as anti‐inflammatory agents: Molecular mechanisms and heterocycles as inhibitors of signaling pathways.ChemistrySelect202389e20220472310.1002/slct.202204723
    [Google Scholar]
  17. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology2802001735366261
    [Google Scholar]
  18. RenY. KinghornA.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity.Planta Med.20198511/1280281410.1055/a‑0832‑238330658371
    [Google Scholar]
  19. Rodríguez-HernándezD. DemunerA.J. BarbosaL.C.A. CsukR. HellerL. Hederagenin as a triterpene template for the development of new antitumor compounds.Eur. J. Med. Chem.2015105576210.1016/j.ejmech.2015.10.00626476750
    [Google Scholar]
  20. FakhriS. AbdianS. MoradiS.Z. DelgadilloB.E. FimognariC. BishayeeA. Marine compounds, mitochondria, and malignancy: A therapeutic nexus.Mar. Drugs2022201062510.3390/md2010062536286449
    [Google Scholar]
  21. HussainA. Bourguet-KondrackiM.L. MajeedM. IbrahimM. ImranM. YangX.W. AhmedI. AltafA.A. KhalilA.A. RaufA. WilairatanaP. HemegH.A. UllahR. GreenI.R. AliI. ShahS.T.A. HussainH. Marine life as a source for breast cancer treatment: A comprehensive review.Biomed. Pharmacother.202315911416510.1016/j.biopha.2022.11416536634590
    [Google Scholar]
  22. RaiT. KaushikN. MalviyaR. SharmaP.K. A review on marine source as anticancer agents.J. Asian Nat. Prod. Res.202426441545110.1080/10286020.2023.224982537675579
    [Google Scholar]
  23. GrecoG. PellicioniV. Cruz-ChamorroI. AttisaniG. StefanelliC. FimognariC. Marine-derived compounds targeting topoisomerase ii in cancer cells: A review.Mar. Drugs2022201167410.3390/md2011067436354997
    [Google Scholar]
  24. NasrollahzadehM. SajjadiM. SoufiG.J. IravaniS. VarmaR.S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses.Nanomaterials (Basel)2020106107210.3390/nano1006107232486364
    [Google Scholar]
  25. KumarM.S. RajniY. PrasadS.T. Recent advances in nanotechnology.Int. J. Nanomater. Nanotechnol. Nanomed.20239152310.17352/2455‑3492.000053
    [Google Scholar]
  26. БаснукаевИ.Ш. ИсламовА.А. МусостоваД.Ш. Nanotechnologies and nanomaterialsTechnical sciences2021Available from: https://gstou.ru/science/ggntu-works.php(accessed on 28-9-2024)
    [Google Scholar]
  27. GiddeN.D. NitalikarM.M. RautI.D. Nanocomposites: A review on current status.Asian J. Pharm. Technol.20211123123710.52711/2231‑5713.2021.00038
    [Google Scholar]
  28. Munir, O.; Arpita, R.; Rouf, A. B.; Fazilet, V. S.; Fernanda, M. Policarpo, T. Ed. Synthesis of bionanomaterials for biomedical applications.Elsevier2023, 1st Edition
    [Google Scholar]
  29. DeepakP. VadivelA. KamarajC. GovindasamyB. AiswaryaD. PerumalP. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells.Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano TechnologiesElsevier201910.1016/B978‑0‑08‑102579‑6.00016‑2
    [Google Scholar]
  30. El-SaadonyM.T. SaadA.M. TahaT.F. NajjarA.A. ZabermawiN.M. NaderM.M. AbuQamarS.F. El-TarabilyK.A. SalamaA. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk.Saudi J. Biol. Sci.202128126782679410.1016/j.sjbs.2021.07.05934866977
    [Google Scholar]
  31. SiddiqiK.S. HusenA. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application.Nanoscale Res. Lett.20161119810.1186/s11671‑016‑1311‑226909778
    [Google Scholar]
  32. MohanpuriaP. RanaN.K. YadavS.K. Biosynthesis of nanoparticles: Technological concepts and future applications.J. Nanopart. Res.200810350751710.1007/s11051‑007‑9275‑x
    [Google Scholar]
  33. RauwelP. KüünalS. FerdovS. RauwelE. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM.Adv. Mater. Sci. Eng.201520151910.1155/2015/682749
    [Google Scholar]
  34. MishraS. SahooS. Kumar SP. KumarS.N. Recent advancements in the plant and microbial assisted green synthesis of nanomaterials.Mater. Today Proc.20232023S221478532305050210.1016/j.matpr.2023.10.144
    [Google Scholar]
  35. HustonM. DeBellaM. DiBellaM. GuptaA. Green synthesis of nanomaterials.Nanomaterials (Basel)2021118213010.3390/nano1108213034443960
    [Google Scholar]
  36. JeevanandamJ. KiewS.F. Boakye-AnsahS. LauS.Y. BarhoumA. DanquahM.K. RodriguesJ. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts.Nanoscale20221472534257110.1039/D1NR08144F35133391
    [Google Scholar]
  37. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  38. SalimiM. MoscaS. GardnerB. PalomboF. MatousekP. StoneN. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management.Nanomaterials (Basel)202212692210.3390/nano1206092235335735
    [Google Scholar]
  39. MagadaniR. Biosynthesis and characterization of gold nanoparticle using phytochemical and investigating their cytotoxic effect against cancerous and non- cancerous cell lines.Master thesis, University of Johannesburg, 2021.
    [Google Scholar]
  40. RamalingamV. RajaS. SundaramahalingamS. RajaramR. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens.Bioorg. Chem.20198332633510.1016/j.bioorg.2018.10.05230396117
    [Google Scholar]
  41. PanY. LeifertA. RuauD. NeussS. BornemannJ. SchmidG. BrandauW. SimonU. Jahnen-DechentW. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage.Small20095182067207610.1002/smll.20090046619642089
    [Google Scholar]
  42. BharadwajK.K. RabhaB. PatiS. SarkarT. ChoudhuryB.K. BarmanA. BhattacharjyaD. SrivastavaA. BaishyaD. EdinurH.A. Abdul KariZ. Mohd NoorN.H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics.Molecules20212621638910.3390/molecules2621638934770796
    [Google Scholar]
  43. NurudeenQ.O. AjiboyeT.O. Aqueous root extract of Lecaniodiscus cupanioides restores the alterations in testicular parameters of sexually impaired male rats.Asian Pac. J. Reprod.20121212012410.1016/S2305‑0500(13)60062‑7
    [Google Scholar]
  44. BishayeeA. AhmedS. BrankovN. PerloffM. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer.Front. Biosci.201116198099610.2741/373021196213
    [Google Scholar]
  45. DongJ. CarpinoneP.L. PyrgiotakisG. DemokritouP. MoudgilB.M. Synthesis of precision gold nanoparticles using turkevich method.Kona.20203722423210.14356/kona.2020011
    [Google Scholar]
  46. Sanchis-GualR. Coronado-PuchauM. MallahT. CoronadoE. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism.Coord. Chem. Rev.202348021502510.1016/j.ccr.2023.215025
    [Google Scholar]
  47. KumarS. GandhiK.S. KumarR. Modeling of formation of gold nanoparticles by citrate method.Ind. Eng. Chem. Res.200746103128313610.1021/ie060672j
    [Google Scholar]
  48. StetefeldJ. McKennaS.A. PatelT.R. Dynamic light scattering: A practical guide and applications in biomedical sciences.Biophys. Rev.20168440942710.1007/s12551‑016‑0218‑628510011
    [Google Scholar]
  49. IqbalM. UsanaseG. OulmiK. AberkaneF. BendaikhaT. FessiH. ZineN. AgustiG. ErrachidE.S. ElaissariA. Preparation of gold nanoparticles and determination of their particles size via different methods.Mater. Res. Bull.2016799710410.1016/j.materresbull.2015.12.026
    [Google Scholar]
  50. LiJ. LiQ. MaX. TianB. LiT. YuJ. DaiS. WengY. HuaY. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties.Int. J. Nanomed.2016115931594410.2147/IJN.S11961827877039
    [Google Scholar]
  51. HerizchiR. AbbasiE. MilaniM. AkbarzadehA. Current methods for synthesis of gold nanoparticles.Artif. Cells Nanomed. Biotechnol.201644259660210.3109/21691401.2014.97180725365243
    [Google Scholar]
  52. de la RicaR. AiliD. StevensM.M. Enzyme-responsive nanoparticles for drug release and diagnostics.Adv. Drug Deliv. Rev.2012641196797810.1016/j.addr.2012.01.00222266127
    [Google Scholar]
  53. Al SaqrA. KhafagyE.S. AlalaiweA. AldawsariM.F. AlshahraniS.M. AnwerM.K. KhanS. LilaA.S.A. ArabH.H. HegazyW.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity.Nanomaterials (Basel)202111380810.3390/nano1103080833809859
    [Google Scholar]
  54. ShankarS.S. RaiA. AhmadA. SastryM. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.J. Colloid Interface Sci.2004275249650210.1016/j.jcis.2004.03.00315178278
    [Google Scholar]
  55. AhnE.Y. LeeY.J. ParkJ. ChunP. ParkY. Antioxidant potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris extracts for biofabrication of gold nanoparticles and cytotoxicity assessment.Nanoscale Res. Lett.201813134810.1186/s11671‑018‑2751‑730377868
    [Google Scholar]
  56. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomed.20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  57. ChithraniB.D. GhazaniA.A. ChanW.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett.20066466266810.1021/nl052396o16608261
    [Google Scholar]
  58. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  59. AbubakrM. OsmanT.A. KishawyH.A. ElharouniF. HegabH. EsawiA.M.K. Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: An aggregate based interpretation.RSC Advances20211141255612557410.1039/D1RA03780C35478865
    [Google Scholar]
  60. MukherjeeS. SushmaV. PatraS. BaruiA.K. BhadraM.P. SreedharB. PatraC.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy.Nanotechnology2012234545510310.1088/0957‑4484/23/45/45510323064012
    [Google Scholar]
  61. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  62. ForestV. CottierM. PourchezJ. Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory.Nano Today201510667768010.1016/j.nantod.2015.07.002
    [Google Scholar]
  63. BaraiA.C. PaulK. DeyA. MannaS. RoyS. BagB.G. MukhopadhyayC. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity.Nano Converg.2018511010.1186/s40580‑018‑0142‑529682442
    [Google Scholar]
  64. NathD. BanerjeeP. Green nanotechnology – A new hope for medical biology.Environ. Toxicol. Pharmacol.2013363997101410.1016/j.etap.2013.09.00224095717
    [Google Scholar]
  65. Vilchis-NestorA. Sanchez-MendietaV. CamachoM. Gomez-EspinosaR. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camelia sinensis extract.Mater. Lett.2008623103310510.1016/j.matlet.2008.01.138
    [Google Scholar]
  66. MohamadN.A.N. ArhamN.A. JaiJ. HadiA. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review.Adv. Mat. Res.201383235035510.4028/www.scientific.net/AMR.832.350
    [Google Scholar]
  67. Abdel-RaoufN. Al-EnaziN.M. IbraheemI.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity.Arab. J. Chem.201710S3029S303910.1016/j.arabjc.2013.11.044
    [Google Scholar]
  68. SharmaG. NamJ.S. SharmaA.R. LeeS.S. Antimicrobial potential of silver nanoparticles synthesized using medicinal herb Coptidis rhizome. Molecules2018239226810.3390/molecules2309226830189672
    [Google Scholar]
  69. SivasubramanianK. SabarinathanS. MuruganandhamM. VelmuruganP. ArumugamN. AlmansourA.I. KumarR.S. SivakumarS. Antioxidant, antibacterial, and cytotoxicity potential of synthesized silver nanoparticles from the Cassia alata leaf aqueous extract.Green Process. Synth.20231212023001810.1515/gps‑2023‑0018
    [Google Scholar]
  70. LiW.Y. ChanS.W. GuoD.J. YuP.H.F. Correlation between antioxidative power and anticancer activity in herbs from traditional chinese medicine formulae with anticancer therapeutic effect.Pharm. Biol.200745754154610.1080/13880200701498879
    [Google Scholar]
  71. MajoumouoM.S. SharmaJ.R. SibuyiN.R.S. TinchoM.B. BoyomF.F. MeyerM. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells.Molecules20202519446910.3390/molecules2519446933003351
    [Google Scholar]
  72. MajoumouoM.S. SibuyiN.R.S. TinchoM.B. MbekouM. BoyomF.F. MeyerM. Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts.Int. J. Nanomedicine2019149031904610.2147/IJN.S22344731819417
    [Google Scholar]
  73. Al-SheddiE.S. FarshoriN.N. Al-OqailM.M. Al-MassaraniS.M. SaquibQ. WahabR. MusarratJ. Al-KhedhairyA.A. SiddiquiM.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA).Bioinorg. Chem. Appl.20182018939078410.1155/2018/9390784
    [Google Scholar]
  74. FarahM.A. AliM.A. ChenS.M. LiY. Al-HemaidF.M. Abou-TarboushF.M. Al-AnaziK.M. LeeJ. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species.Colloids Surf. B Biointerfaces201614115816910.1016/j.colsurfb.2016.01.02726852099
    [Google Scholar]
  75. IbrahimB. AkereT.H. ChakrabortyS. Valsami-JonesE. Ali-BoucettaH. Functionalized gold nanoparticles suppress the proliferation of human lung alveolar adenocarcinoma cells by deubiquitinating enzymes inhibition.ACS Omega2023843406224063810.1021/acsomega.3c0545237929120
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206325529241004064307
Loading
/content/journals/acamc/10.2174/0118715206325529241004064307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test