Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML. A current therapeutic approach for the treatment of CML, Tyrosine Kinase Inhibitors (TKIs), effectively inactivates BCR-ABL1 kinase activity; however, drug resistance to TKIs limits the long-term potential for this treatment. Proteolysis Targeting Chimera (PROTAC) has emerged as a promising pharmacological approach for degrading, rather than inhibiting, targeted proteins by harnessing the ubiquitin-proteosome system. This process involves tagging a Protein of Interest (POI) with ubiquitin by the E3 ubiquitin ligases, which subsequently target the protein for proteasomal degradation. The N-end rule or the N-degron concept describes the correlation between the metabolic stability of a protein and the biochemical identity of its N-terminal amino acid. A recent work unveiled that N-degron PROTACs could offer a potential treatment for CML by targeting and degrading BCR-ABL1 proteins. Herein, we present the molecular and biochemical implications for targeting chronic myeloid leukemia.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206367166241230111659
2025-01-08
2025-11-07
Loading full text...

Full text loading...

References

  1. EldeebM.A. LeitaoL.C.A. FahlmanR.P. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation.Biochem Cell Biol.201896328929410.1139/bcb‑2017‑027429253354
    [Google Scholar]
  2. VarshavskyA. N-degron pathways.Proc. Natl. Acad. Sci. USA202412139e240869712110.1073/pnas.240869712139264755
    [Google Scholar]
  3. TyagiS. SinghA. SharmaN. ChaturvediR. KushwahaH.R. Insights into existing and futuristic treatment approach for chronic myeloid leukaemia.Indian J. Med. Res.2024159545546710.25259/ijmr_1716_2239382408
    [Google Scholar]
  4. ZhangJ. MaC. YuY. LiuC. FangL. RaoH. Single amino acid–based PROTACs trigger degradation of the oncogenic kinase BCR–ABL in chronic myeloid leukemia (CML).J. Biol. Chem.2023299810499410.1016/j.jbc.2023.10499437392851
    [Google Scholar]
  5. ShanmugasundaramK. ShaoP. ChenH. CamposB. McHardyS.F. LuoT. RaoH. A modular PROTAC design for target destruction using a degradation signal based on a single amino acid.J. Biol. Chem.201929441151721517510.1074/jbc.AC119.01079031511327
    [Google Scholar]
  6. HeM. CaoC. NiZ. LiuY. SongP. HaoS. HeY. SunX. RaoY. PROTACs: Great opportunities for academia and industry (an update from 2020 to 2021).Signal Transduct. Target. Ther.20227118110.1038/s41392‑022‑00999‑935680848
    [Google Scholar]
  7. LiK. CrewsC.M. PROTACs: Past, present and future.Chem. Soc. Rev.202251125214523610.1039/D2CS00193D35671157
    [Google Scholar]
  8. MalarvannanM. UnnikrishnanS. MonoharS. RavichandiranV. PaulD. Design and optimization strategies of PROTACs and its Application, Comparisons to other targeted protein degradation for multiple oncology therapies.Bioorg. Chem.202515410798410.1016/j.bioorg.2024.10798439591691
    [Google Scholar]
  9. KargboR.B. A new frontier in targeted therapies: Harnessing PROTACs and advanced delivery systems.ACS Med. Chem. Lett.202415111818182010.1021/acsmedchemlett.4c0048939563812
    [Google Scholar]
  10. ImaideS. RichingK.M. MakukhinN. VetmaV. WhitworthC. HughesS.J. TrainorN. MahanS.D. MurphyN. CowanA.D. ChanK.H. CraigonC. TestaA. ManiaciC. UrhM. DanielsD.L. CiulliA. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity.Nat. Chem. Biol.202117111157116710.1038/s41589‑021‑00878‑434675414
    [Google Scholar]
  11. ChengJ. ZhangJ. HeS. LiM. DongG. ShengC. Photoswitchable PROTACs for reversible and spatiotemporal regulation of NAMPT and NAD +.Angew. Chem. Int. Ed.20246312e20231599710.1002/anie.20231599738282119
    [Google Scholar]
  12. GuanX. XuX. TaoY. DengX. HeL. LinZ. ChangJ. HuangJ. ZhouD. YuX. WeiM. ZhangL. Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy.J. Nanobiotechnol.202422169210.1186/s12951‑024‑02967‑739523308
    [Google Scholar]
  13. SalernoA. SeghettiF. CaciollaJ. UliassiE. TestiE. GuardigniM. RobertiM. MilelliA. BolognesiM.L. Enriching proteolysis targeting chimeras with a second modality: When two are better than one.J. Med. Chem.202265149507953010.1021/acs.jmedchem.2c0030235816671
    [Google Scholar]
  14. CavalliA. BolognesiM.L. MinariniA. RosiniM. TumiattiV. RecanatiniM. MelchiorreC. Multi-target-directed ligands to combat neurodegenerative diseases.J. Med. Chem.200851334737210.1021/jm700936418181565
    [Google Scholar]
  15. FuchterM.J. On the promise of photopharmacology using photoswitches: A medicinal chemist’s perspective.J. Med. Chem.20206320114361144710.1021/acs.jmedchem.0c0062932511922
    [Google Scholar]
  16. CasiG. NeriD. Antibody–Drug Conjugates and Small Molecule–drug conjugates: Opportunities and challenges for the development of selective anticancer cytotoxic agents.J. Med. Chem.201558228751876110.1021/acs.jmedchem.5b0045726079148
    [Google Scholar]
  17. CummingsM.D. SekharanS. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands.J. Med. Chem.201962156843685310.1021/acs.jmedchem.8b0198530860377
    [Google Scholar]
  18. GhidiniA. CléryA. HalloyF. AllainF.H.T. HallJ. RNA‐PROTACs: Degraders of RNA‐binding proteins.Angew. Chem. Int. Ed.20216063163316910.1002/anie.20201233033108679
    [Google Scholar]
  19. WanW.B. SethP.P. The medicinal chemistry of therapeutic oligonucleotides.J. Med. Chem.201659219645966710.1021/acs.jmedchem.6b0055127434100
    [Google Scholar]
  20. NeklesaT.K. WinklerJ.D. CrewsC.M. Targeted protein degradation by PROTACs.Pharmacol. Ther.201717413814410.1016/j.pharmthera.2017.02.02728223226
    [Google Scholar]
  21. RoyM.J. WinklerS. HughesS.J. WhitworthC. GalantM. FarnabyW. RumpelK. CiulliA. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate.ACS Chem. Biol.201914336136810.1021/acschembio.9b0009230721025
    [Google Scholar]
  22. ScottJ.S. MichaelidesI.N. SchadeM. Property-based optimisation of PROTACs.RSC Med. Chem.2024 [Epub ahead of print]10.1039/D4MD00769G39553465
    [Google Scholar]
  23. OmarE.A. RR. DasP.K. PalR. Purawarga MatadaG.S. MajiL. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance.Eur. J. Med. Chem.202528111703410.1016/j.ejmech.2024.11703439527893
    [Google Scholar]
  24. LiX. PuW. ZhengQ. AiM. ChenS. PengY. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.Mol. Cancer20222119910.1186/s12943‑021‑01434‑335410300
    [Google Scholar]
  25. QiS.M. DongJ. XuZ.Y. ChengX.D. ZhangW.D. QinJ.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy.Front. Pharmacol.20211269257410.3389/fphar.2021.69257434025443
    [Google Scholar]
  26. EldeebM.A. FahlmanR.P. EsmailiM. RaghebM.A. Regulating apoptosis by degradation: The N-End rule-mediated regulation of apoptotic proteolytic fragments in mammalian cells.Int. J. Mol. Sci.20181911341410.3390/ijms1911341430384441
    [Google Scholar]
  27. EldeebM.A. ZorcaC.E. FahlmanR.P. Targeting cancer cells via N-degron-based PROTACs.Endocrinology202016112bqaa18510.1210/endocr/bqaa18533159513
    [Google Scholar]
  28. EldeebM. EsmailiM. FahlmanR. Degradation of proteins with N-terminal glycine.Nat. Struct. Mol. Biol.201926976176310.1038/s41594‑019‑0291‑131477902
    [Google Scholar]
  29. Amarante-MendesG.P. RanaA. DatoguiaT.S. HamerschlakN. BrumattiG. BCR-ABL1 tyrosine kinase complex signaling transduction: Challenges to overcome resistance in chronic Myeloid leukemia.Pharmaceutics202214121510.3390/pharmaceutics1401021535057108
    [Google Scholar]
  30. AtallahE.L. MauroM.J. SasakiK. LevyM.Y. KollerP. YangD. LaineD. SaboJ. GuE. CortesJ.E. Dose-escalation of second-line and first-line asciminib in chronic myeloid leukemia in chronic phase: The ASC2ESCALATE Phase II trial.Future Oncol.202420383065307510.1080/14796694.2024.240268039387441
    [Google Scholar]
  31. HořínkováJ. ŠímaM. SlanařO. Pharmacokinetics of dasatinib.Prague Med. Rep.20191202-3526310.14712/23362936.2019.1031586504
    [Google Scholar]
  32. BékésM. LangleyD.R. CrewsC.M. PROTAC targeted protein degraders: The past is prologue.Nat. Rev. Drug Discov.202221318120010.1038/s41573‑021‑00371‑635042991
    [Google Scholar]
  33. GregoryJ.A. HickeyC.M. ChavezJ. CacaceA.M. New therapies on the horizon: Targeted protein degradation in neuroscience.Cell Chem Biol.20243191688169810.1016/j.chembiol.2024.08.01039303702
    [Google Scholar]
  34. YaoD. LiT. YuL. HuM. HeY. ZhangR. WuJ. LiS. KuangW. YangX. LiuG. XieY. Selective degradation of hyperphosphorylated tau by proteolysis-targeting chimeras ameliorates cognitive function in Alzheimer’s disease model mice.Front. Pharmacol.202415135179210.3389/fphar.2024.135179238919259
    [Google Scholar]
  35. QuJ. RenX. XueF. HeY. ZhangR. ZhengY. HuangH. WangW. ZhangJ. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity.Cell Chem. Biol.2020276751762.e410.1016/j.chembiol.2020.03.01032359427
    [Google Scholar]
  36. ZhaoQ. RenC. LiuL. ChenJ. ShaoY. SunN. SunR. KongY. DingX. ZhangX. XuY. YangB. YinQ. YangX. JiangB. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase.J. Med. Chem.201962209281929810.1021/acs.jmedchem.9b0126431539241
    [Google Scholar]
  37. LiuY. WangZ. CangY. Mini PROTACs: N-end rule-mediated degradation on the horizon.Trends Biochem. Sci.20244915710.1016/j.tibs.2023.10.00137923612
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206367166241230111659
Loading
/content/journals/acamc/10.2174/0118715206367166241230111659
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; N-degron; PROTACs; proteasome; Protein degradation; protein degraders; proteolysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test