Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Esophageal cancer is a highly lethal cancer with a rapidly increasing incidence and a poor prognosis. Atractylenolide I is a natural sesquiterpene lactone extracted from the rhizome of the plant, which has a variety of pharmacological effects, such as anti-inflammatory and immunomodulatory. Still, its impact on esophageal cancer has not been reported. Therefore, this study investigated the and effects of Atractylenolide I on the growth and proliferation of esophageal cancer and explored its possible mechanisms.

Methods

To evaluate the effect of atractylenolide I on esophageal cancer cells, apoptosis assay and cell cycle assay tests were performed. Atractylenolide I was used to treat esophageal cancer cells for 48 hours, and flow cytometry detects apoptosis and cell cycle. The Wnt/β-catenin-related pathway proteins were then detected by Western blotting. For studies, an esophageal cancer graft tumor model was established subcutaneously in BALB/c nude mice, which were given Atractylenolide I treatment for 2 weeks.

Results

The result shows that Atractylenolide I inhibited the proliferation and induced apoptosis of esophageal squamous carcinoma and adenocarcinoma cells. Further research shows that Atractylenolide I inhibited the Wnt/β-catenin signaling pathway, decreased the expression of CCND1, MYC, and FN1 genes, and thus increased the apoptosis of esophageal cancer cells and blocked the cell cycle in G/G phase, hence exerting the role of inhibiting esophageal cancer cells and .

Conclusion

This study indicates that Atractylenolide I is an efficient lead compound for the treatment of esophageal cancer, providing a theoretical basis for further clinical development and application of Atractylenolide I.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206366543250213071529
2025-02-20
2025-09-06
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J. (Engl.)2022135558459010.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  3. DeboeverN. JonesC.M. YamashitaK. AjaniJ.A. HofstetterW.L. Advances in diagnosis and management of cancer of the esophagus.BMJ2024385e07496210.1136/bmj‑2023‑074962 38830686
    [Google Scholar]
  4. LanderS. LanderE. GibsonM.K. Esophageal cancer: Overview, Risk factors, and reasons for the rise.Curr. Gastroenterol. Rep.2023251127527910.1007/s11894‑023‑00899‑0 37812328
    [Google Scholar]
  5. BöhmeF. RaczK. SebestaC.Jr SebestaC. Esophageal Cancer.Wien. Med. Wochenschr.20231739-10209215 36318394
    [Google Scholar]
  6. AnJ. AnS. ChoiM. JungJ.H. KimB. Natural products for esophageal cancer therapy: From traditional medicine to modern drug discovery.Int. J. Mol. Sci.202223211355810.3390/ijms232113558 36362345
    [Google Scholar]
  7. PingL. Qiu-dongL. RongL. Hong-ruiN. Xiao-geK. Hong-junX. Effect of traditional Chinese medicine on survival and quality of life in patients with esophageal carcinoma after esophagectomy.Chin. J. Integr. Med.200612317517910.1007/BF02836517 17005076
    [Google Scholar]
  8. CaoL. WangX. ZhuG. LiS. WangH. WuJ. LuT. LiJ. Traditional Chinese medicine therapy for esophageal cancer: A literature review.Integr. Cancer Ther.2021201534735421106172010.1177/15347354211061720 34825600
    [Google Scholar]
  9. ZhangY. ShenQ. LiJ. Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy.Acta Pharmacol. Sin.201637329530210.1038/aps.2015.116 26707140
    [Google Scholar]
  10. JiG. ChenR. ZhengJ. Atractylenolide I inhibits lipopolysaccharide-induced inflammatory responses via mitogen-activated protein kinase pathways in RAW264.7 cells.Immunopharmacol. Immunotoxicol.201436642042510.3109/08923973.2014.968256 25270720
    [Google Scholar]
  11. WangM. ZhangT. LiY. ChenX. ZhangQ. ZhengY. LongD. ChengX. HongA. YangX. WangG. Atractylenolide-I alleviates hyperglycemia-induced heart developmental malformations through direct and indirect modulation of the STAT3 pathway.Phytomedicine202412915569810.1016/j.phymed.2024.155698 38728919
    [Google Scholar]
  12. DuZ. MaZ. LaiS. DingQ. HuZ. YangW. QianQ. ZhuL. DouX. LiS. Atractylenolide I ameliorates acetaminophen-induced acute liver injury via the tlr4/mapks/nf-κb signaling pathways.Front. Pharmacol.20221379749910.3389/fphar.2022.797499 35126160
    [Google Scholar]
  13. SunY. LiuY. CaiY. HanP. HuS. CaoL. Atractylenolide I inhibited the development of malignant colorectal cancer cells and enhanced oxaliplatin sensitivity through the PDK1-FoxO1 axis.J. Gastrointest. Oncol.20221352382239210.21037/jgo‑22‑910 36388699
    [Google Scholar]
  14. HanY. BaiC. HeX.M. RenQ.L. P2X7 receptor involved in antitumor activity of atractylenolide I in human cervical cancer cells.Purinergic Signal.202319114515310.1007/s11302‑022‑09854‑6 35235139
    [Google Scholar]
  15. LongF. LinH. ZhangX. ZhangJ. XiaoH. WangT. Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting toll-like receptor 4-mediated nuclear factor-κB signaling pathway.Front. Pharmacol.20201159893910.3389/fphar.2020.598939 33363472
    [Google Scholar]
  16. ChenJ. ZhangY. HuangR. CaoL. ZhangY. LianM. WangZ. JinJ. TangC. ChenT. YanL. YuL. TianR. XiangX. LuoL. YuC. Alantolactone inhibits oesophageal adenocarcinoma cells through nuclear factor erythroid 2‐related factor 2‐mediated reactive oxygen species increment.Basic Clin. Pharmacol. Toxicol.2023132325326210.1111/bcpt.13824 36507595
    [Google Scholar]
  17. LiQ. MaQ. XuL. GaoC. YaoL. WenJ. YangM. ChengJ. ZhouX. ZouJ. ZhongX. GuoX. Human telomerase reverse transcriptase as a therapeutic target of dihydroartemisinin for esophageal squamous cancer.Front. Pharmacol.20211276978710.3389/fphar.2021.769787 34744749
    [Google Scholar]
  18. NongH. ZhangY. BaiY. ZhangQ. LiuM. ZhouQ. ShiZ. ZengG. ZongS.H. Adapalene inhibits prostate cancer cell proliferation in vitro and in vivo by inducing DNA damage, S-phase cell cycle arrest, and apoptosis.Front. Pharmacol.20221380162410.3389/fphar.2022.801624 35273495
    [Google Scholar]
  19. XiangX. TianY. HuJ. XiongR. BautistaM. DengL. YueQ. LiY. KuangW. LiJ. LiuK. YuC. FengG. Fangchinoline exerts anticancer effects on colorectal cancer by inducing autophagy via regulation AMPK/mTOR/ULK1 pathway.Biochem. Pharmacol.202118611447510.1016/j.bcp.2021.114475 33609560
    [Google Scholar]
  20. YiX. XuC. HuangP. ZhangL. QingT. LiJ. WangC. ZengT. LuJ. HanZ. 1-Trifluoromethoxyphenyl-3-(1-Propionylpiperidin-4-yl) urea protects the blood-brain barrier against ischemic injury by upregulating tight junction protein expression, mitigating apoptosis and inflammation in vivo and in vitro model.Front. Pharmacol.202011119710.3389/fphar.2020.01197 32848796
    [Google Scholar]
  21. BasuonyN.S. MohamedT.M. BeltagyD.M. MassoudA.A. ElwanM.M. Therapeutic effects of crocin nanoparticles alone or in combination with doxorubicin against hepatocellular carcinoma in vitro.Anticancer. Agents Med. Chem.2025253194206 39410891
    [Google Scholar]
  22. YuX. LiaoB. ZhuP. ChengS. DuZ. JiangG. β‐Caryophyllene induces apoptosis and inhibits cell proliferation by deregulation of STAT‐3/mTOR/AKT signaling in human bladder cancer cells: An in vitro study.J. Biochem. Mol. Toxicol.20213510e2286310.1002/jbt.22863 34318533
    [Google Scholar]
  23. ChenY. WuW. FangY. ZhangY. ZhaoH. LvY. LiuY. ZhengQ. WuX. ZhangJ. Antidiarrheal effect of ethanol extract from Lophatheri herba and its effect on isolated jejunal smooth muscle in rabbits.Pak. J. Pharm. Sci.2022352587594 35642416
    [Google Scholar]
  24. LiW. ZhiW. LiuF. HeZ. WangX. NiuX. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro.Exp. Cell Res.20173531263410.1016/j.yexcr.2017.02.040 28274716
    [Google Scholar]
  25. LiuP. ZhaoG. ZhangL. GongY. GuY. Atractylenolide I inhibits antibiotic-induced dysbiosis of the intestinal microbiome.Ann. Transl. Med.2021920153910.21037/atm‑21‑4656 34790745
    [Google Scholar]
  26. LiuH. ZhangG. HuangJ. MaS. MiK. ChengJ. ZhuY. ZhaX. HuangW. Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro.J. Transl. Med.201614110410.1186/s12967‑016‑0845‑5 27118139
    [Google Scholar]
  27. ZhuB. ZhangQ. HuaJ. ChengW. QinL. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review.J. Ethnopharmacol.201822614316710.1016/j.jep.2018.08.023 30130541
    [Google Scholar]
  28. Ness-JensenE. Epidemiology and prevention of oesophageal adenocarcinoma.Scand. J. Gastroenterol.202257889189510.1080/00365521.2022.2042594 35234549
    [Google Scholar]
  29. MorganE. SoerjomataramI. RumgayH. ColemanH.G. ThriftA.P. VignatJ. LaversanneM. FerlayJ. ArnoldM. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020.Gastroenterology20221633649658.e210.1053/j.gastro.2022.05.054 35671803
    [Google Scholar]
  30. StockC. How dysregulated ion channels and transporters take a hand in esophageal, liver, and colorectal cancer.Rev. Physiol. Biochem. Pharmacol.202018112922210.1007/112_2020_41 32875386
    [Google Scholar]
  31. ChangJ. ZhaoX. WangY. LiuT. ZhongC. LaoY. ZhangS. LiaoH. BaiF. LinD. WuC. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development.Cancer Cell2023411220382050.e510.1016/j.ccell.2023.11.003 38039962
    [Google Scholar]
  32. LiL. JiangD. ZhangQ. LiuH. XuF. GuoC. QinZ. WangH. FengJ. LiuY. ChenW. ZhangX. BaiL. TianS. TanS. XuC. SongQ. LiuY. ZhongY. ChenT. ZhouP. ZhaoJ.Y. HouY. DingC. Integrative proteogenomic characterization of early esophageal cancer.Nat. Commun.2023141166610.1038/s41467‑023‑37440‑w 36966136
    [Google Scholar]
  33. ChuC.Y. WangR. LiuX.L. Roles of Wnt/β-catenin signaling pathway related microRNAs in esophageal cancer.World J. Clin. Cases20221092678268610.12998/wjcc.v10.i9.2678 35434118
    [Google Scholar]
  34. WangQ. LvQ. BianH. YangL. GuoK. YeS. DongX. TaoL.L. A novel tumor suppressor SPINK5 targets Wnt/β‐catenin signaling pathway in esophageal cancer.Cancer Med.2019852360237110.1002/cam4.2078 30868765
    [Google Scholar]
  35. LiuJ. XiaoQ. XiaoJ. NiuC. LiY. ZhangX. ZhouZ. ShuG. YinG. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities.Signal Transduct. Target. Ther.202271310.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206366543250213071529
Loading
/content/journals/acamc/10.2174/0118715206366543250213071529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test