Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods

The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted. The mechanism of action was determined by microarray-based gene expression and protein analyses.

Results

The wound healing assay demonstrated that wound closure was decreased from 63.63 ± 1.44% at IC treatment to 4.54 ± 0.62% at IC treatment. Significant ( < 0.05) reductions in the percentage of migrated and invaded cells were also observed in SW620, with values of 36.39 ± 3.86% and 44.81 ± 3.54%, respectively. Mouse aortic ring assays demonstrated a significant reduction in the formation of tubes and microvessels. Microarray and protein profiler results revealed that DMCH treatment has modulated several metastases, angiogenesis-related transcripts, and proteins like Epidermal Growth Factor Receptor (EGFR), TIMP-1 (TIMP Metallopeptidase Inhibitor 1) and Vascular Endothelial Growth Factor (VEGF).

Conclusion

DMCH could be a potential anti-cancer agent due to its capability to impede metastasis and angiogenesis activities of the SW620 colorectal cancer cell line regulating genes and protein in metastases and angiogenesis-related signalling pathways.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206336788241029050155
2025-01-06
2025-11-06
Loading full text...

Full text loading...

References

  1. WongM.C.S. HuangJ. LokV. WangJ. FungF. DingH. ZhengZ.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location.Clin. Gastroenterol. Hepatol.2021195955966.e6110.1016/j.cgh.2020.02.026 32088300
    [Google Scholar]
  2. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  3. SchliemannD. ParamasivamD. DahluiM. CardwellC.R. SomasundaramS. Ibrahim TaminN.S.B. DonnellyC. SuT.T. DonnellyM. Change in public awareness of colorectal cancer symptoms following the be cancer alert campaign in the multi-ethnic population of Malaysia.BMC Cancer202020125210.1186/s12885‑020‑06742‑3 32213173
    [Google Scholar]
  4. National strategic plan for colorectal cancer 2021-20252021Available from: https://www.moh.gov.my/moh/resources/Penerbitan/Rujukan/NCD/Kanser/National_Strategic_Plan_for_Colorectal_ Cancer_(NSPCRC)_2021-2025.pdf
  5. MorganE. ArnoldM. GiniA. LorenzoniV. CabasagC.J. LaversanneM. VignatJ. FerlayJ. MurphyN. BrayF. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN.Gut202372233834410.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  6. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  7. LuanY. LiX. LuanY. ZhaoR. LiY. LiuL. HaoY. Oleg VladimirB. JiaL. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis.Mol. Ther. Nucleic Acids20201979080310.1016/j.omtn.2019.12.009 31955010
    [Google Scholar]
  8. ÖsterlundP. RuotsalainenT. PeuhkuriK. KorpelaR. OllusA. IkonenM. JoensuuH. ElomaaI. Lactose intolerance associated with adjuvant 5-fluorouracil-based chemotherapy for colorectal cancer.Clin. Gastroenterol. Hepatol.20042869670310.1016/S1542‑3565(04)00293‑9 15290663
    [Google Scholar]
  9. LiangG. ShaoL. WangY. ZhaoC. ChuY. XiaoJ. ZhaoY. LiX. YangS. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents.Bioorg. Med. Chem.20091762623263110.1016/j.bmc.2008.10.044 19243951
    [Google Scholar]
  10. AdamsB.K. FerstlE.M. DavisM.C. HeroldM. KurtkayaS. CamalierR.F. HollingsheadM.G. KaurG. SausvilleE.A. RicklesF.R. SnyderJ.P. LiottaD.C. ShojiM. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents.Bioorg. Med. Chem.200412143871388310.1016/j.bmc.2004.05.006 15210154
    [Google Scholar]
  11. LiczbińskiP. MichałowiczJ. BukowskaB. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research.Phytother. Res.20203481992200510.1002/ptr.6663 32141677
    [Google Scholar]
  12. HeQ. LiuC. WangX. RongK. ZhuM. DuanL. ZhengP. MiY. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking.Front. Pharmacol.202314110258110.3389/fphar.2023.1102581 36874006
    [Google Scholar]
  13. WarsiW. SardjimanS. RiyantoS. Synthesis and antioxidant activity of curcumin analogues.J. Chem. Pharm. Res.2018101910.1080/10286020.2016.1235562
    [Google Scholar]
  14. ZamrusS.N.H. AkhtarM.N. YeapS.K. QuahC.K. LohW.S. AlitheenN.B. ZareenS. TajuddinS.N. HussinY. ShahS.A.A. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines.Chem. Cent. J.20181213110.1186/s13065‑018‑0398‑1 29556774
    [Google Scholar]
  15. HussinY. AzizM. Che RahimN. YeapS. MohamadN. MasarudinM. NordinN. Abd RahmanN. YongC. AkhtarM. ZamrusS. AlitheenN. DK1 induces apoptosis via mitochondria-dependent signaling pathway in human colon carcinoma cell lines in vitro.Int. J. Mol. Sci.2018194115110.3390/ijms19041151 29641445
    [Google Scholar]
  16. AzizM.N.M. RahimN.F.C. HussinY. YeapS.K. MasarudinM.J. MohamadN.E. AkhtarM.N. OsmanM.A. CheahY.K. AlitheenN.B. Anti-metastatic and anti-angiogenic effects of curcumin analog DK1 on human osteosarcoma cells in vitro.Pharmaceuticals (Basel)202114653210.3390/ph14060532 34204873
    [Google Scholar]
  17. RobinsonT.P. HubbardR.B.IV EhlersT.J. ArbiserJ.L. GoldsmithD.J. BowenJ.P. Synthesis and biological evaluation of aromatic enones related to curcumin.Bioorg. Med. Chem.200513124007401310.1016/j.bmc.2005.03.054 15911313
    [Google Scholar]
  18. Faião-FloresF. SuarezJ.A.Q. Maria-EnglerS.S. Soto-CerratoV. Pérez-TomásR. MariaD.A. The curcumin analog DM-1 induces apoptotic cell death in melanoma.Tumour Biol.20133421119112910.1007/s13277‑013‑0653‑y 23359272
    [Google Scholar]
  19. RahimN.F.C. HussinY. AzizM.N.M. MohamadN.E. YeapS.K. MasarudinM.J. AbdullahR. AkhtarM.N. AlitheenN.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E,6E)-2,6-Bis(2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro.Molecules2021265126110.3390/molecules26051261 33652694
    [Google Scholar]
  20. NordinN. YeapS.K. RahmanH.S. ZamberiN.R. AbuN. MohamadN.E. HowC.W. MasarudinM.J. AbdullahR. AlitheenN.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells.Sci. Rep.201991161410.1038/s41598‑018‑38214‑x 30733560
    [Google Scholar]
  21. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  22. OtunS. AchilonuI. Odero-MarahV. Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment.J. Funct. Foods202411610614610.1016/j.jff.2024.106146 38817632
    [Google Scholar]
  23. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  24. TeijaroC.N. AdhikariA. ShenB. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts.J. Ind. Microbiol. Biotechnol.2019463-443344410.1007/s10295‑018‑2094‑5 30426283
    [Google Scholar]
  25. LautiéE. RussoO. DucrotP. BoutinJ.A. Unraveling plant natural chemical diversity for drug discovery purposes.Front. Pharmacol.20201139710.3389/fphar.2020.00397 32317969
    [Google Scholar]
  26. EvidenteA. Advances on anticancer fungal metabolites: Sources, chemical and biological activities in the last decade (2012–2023).Nat. Prod. Bioprospect.20241413110.1007/s13659‑024‑00452‑0 38743184
    [Google Scholar]
  27. GeraM. SharmaN. GhoshM. HuynhD.L. LeeS.J. MinT. KwonT. JeongD.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application.Oncotarget2017839666806669810.18632/oncotarget.19164 29029547
    [Google Scholar]
  28. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms20051033 30818786
    [Google Scholar]
  29. AnthwalA. ThakurB.K. RawatM.S.M. RawatD.S. TyagiA.K. AggarwalB.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation.BioMed Res. Int.2014201411010.1155/2014/524161 25157362
    [Google Scholar]
  30. AravindS.R. KrishnanL.K. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties.Int. Immunopharmacol.201634788510.1016/j.intimp.2016.02.010 26927614
    [Google Scholar]
  31. JoshiP. VermaK. KumarD. DwivediJ. SharmaS. Mechanism insights of curcumin and its analogues in cancer: An update.Phytother. Res.202337125435546310.1002/ptr.7983 37649266
    [Google Scholar]
  32. KabirM.T. RahmanM.H. AkterR. BehlT. KaushikD. MittalV. PandeyP. AkhtarM.F. SaleemA. AlbadraniG.M. KamelM. KhalifaS.A.M. El-SeediH.R. Abdel-DaimM.M. Potential role of curcumin and its nanoformulations to treat various types of cancers.Biomolecules202111339210.3390/biom11030392 33800000
    [Google Scholar]
  33. KunnumakkaraA.B. BordoloiD. HarshaC. BanikK. GuptaS.C. AggarwalB.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.Clin. Sci. (Lond.)2017131151781179910.1042/CS20160935 28679846
    [Google Scholar]
  34. BrabletzT. KalluriR. NietoM.A. WeinbergR.A. EMT in cancer.Nat. Rev. Cancer201818212813410.1038/nrc.2017.118 29326430
    [Google Scholar]
  35. GaneshK. MassaguéJ. Targeting metastatic cancer.Nat. Med.2021271344410.1038/s41591‑020‑01195‑4
    [Google Scholar]
  36. LambertA.W. PattabiramanD.R. WeinbergR.A. Emerging biological principles of metastasis.Cell2017168467069110.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  37. TasdoganA. UbellackerJ.M. MorrisonS.J. Redox regulation in cancer cells during metastasis.Cancer Discov.202111112682269210.1158/2159‑8290.CD‑21‑0558 34649956
    [Google Scholar]
  38. KarimianH. MohanS. MoghadamtousiS. FadaeinasabM. RazaviM. AryaA. KamalidehghanB. AliH. NoordinM. Tanacetum polycephalum (L.) Schultz-Bip. induces mitochondrial-mediated apoptosis and inhibits migration and invasion in MCF7 cells.Molecules20141979478950110.3390/molecules19079478 24995928
    [Google Scholar]
  39. MeiyantoE. HusnaaU. KastianR.F. PutriH. LarasatiY.A. KhumairaA. PamungkasD.D.P. JenieR.I. KawaichiM. LestariB. YokoyamaT. KatoJ. The target differences of anti-tumorigenesis potential of curcumin and its analogues against HER-2 positive and triple-negative breast cancer cells.Adv. Pharm. Bull.202011118819610.34172/apb.2021.020 33747866
    [Google Scholar]
  40. ShawP. DwivediS.K.D. BhattacharyaR. MukherjeeP. RaoG. VEGF signaling: Role in angiogenesis and beyond.Biochim. Biophys. Acta Rev. Cancer20241879218907910.1016/j.bbcan.2024.189079 38280470
    [Google Scholar]
  41. YooS.Y. KwonS.M. Angiogenesis and its therapeutic opportunities.Mediators Inflamm.2013201311110.1155/2013/127170 23983401
    [Google Scholar]
  42. GuoC. WangL. JiangB. ShiD. Bromophenol curcumin analog BCA-5 exerts an antiangiogenic effect through the HIF-1α/VEGF/Akt signaling pathway in human umbilical vein endothelial cells.Anticancer Drugs2018291096597410.1097/CAD.0000000000000671 30335638
    [Google Scholar]
  43. WeiQ. ZhangY. Flavonoids with anti-angiogenesis function in cancer.Molecules2024297157010.3390/molecules29071570 38611849
    [Google Scholar]
  44. ZhangH.H. ZhangY. ChengY.N. GongF.L. CaoZ.Q. YuL.G. GuoX.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo.Mol. Carcinog.2018571445610.1002/mc.22718 28833603
    [Google Scholar]
  45. FakhriS. MoradiS.Z. FarajiF. KooshkiL. WebberK. BishayeeA. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: A comprehensive and critical review.Cancer Metastasis Rev.202443150157410.1007/s10555‑023‑10136‑9 37792223
    [Google Scholar]
  46. EslamiS.S. JafariD. GhotaslouA. AmoupourM. Asri KojabadA. JafariR. MousazadehN. TarighiP. SadeghizadehM. Combined treatment of dendrosomal-curcumin and daunorubicin synergistically inhibit cell proliferation, migration and induce apoptosis in A549 lung cancer cells.Adv. Pharm. Bull.202213353955010.34172/apb.2023.050 37646049
    [Google Scholar]
  47. KamatoD. BurchM.L. PivaT.J. RezaeiH.B. RostamM.A. XuS. ZhengW. LittleP.J. OsmanN. Transforming growth factor-β signalling: Role and consequences of Smad linker region phosphorylation.Cell. Signal.201325102017202410.1016/j.cellsig.2013.06.001 23770288
    [Google Scholar]
  48. ShiY. MassaguéJ. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.Cell2003113668570010.1016/S0092‑8674(03)00432‑X 12809600
    [Google Scholar]
  49. PangM-F. GeorgoudakiA-M. LambutL. JohanssonJ. TaborV. HagikuraK. JinY. JanssonM. AlexanderJ.S. NelsonC.M. JakobssonL. BetsholtzC. SundM. KarlssonM.C.I. FuxeJ. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.Oncogene201635674876010.1038/onc.2015.133 25961925
    [Google Scholar]
  50. LiY.S. NiS.Y. MengY. ShiX.L. ZhaoX.W. LuoH.H. LiX. Angiotensin II facilitates fibrogenic effect of TGF-β1 through enhancing the down-regulation of BAMBI caused by LPS: A new pro-fibrotic mechanism of angiotensin II.PLoS One2013810e7628910.1371/journal.pone.0076289 24155898
    [Google Scholar]
  51. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.202099103811
    [Google Scholar]
  52. ChengW.L. FengP.H. LeeK.Y. ChenK.Y. SunW.L. Van HiepN. LuoC.S. WuS.M. The role of EREG/EGFR pathway in tumor progression.Int. J. Mol. Sci.202122231282810.3390/ijms222312828 34884633
    [Google Scholar]
  53. LondonM. GalloE. Epidermal growth factor receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies.Cell Biol. Int.20204461267128210.1002/cbin.11340 32162758
    [Google Scholar]
  54. ChenA. XuJ. JohnsonA.C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1.Oncogene200625227828710.1038/sj.onc.1209019 16170359
    [Google Scholar]
  55. KallingalA. ThankachanS. VenkateshT. KabbekoduS.P. SureshP.S. Role of miR-15b/16–2 cluster network in endometrial cancer: An in silico pathway and prognostic analysis.Meta Gene20223110101810.1016/j.mgene.2022.101018
    [Google Scholar]
  56. DaulatA.M. WagnerM.S. WaltonA. BaudeletE. AudebertS. CamoinL. BorgJ.P. The tumor suppressor SCRIB is a negative modulator of the Wnt/β‐Catenin signaling pathway.Proteomics20191921-22180048710.1002/pmic.201800487 31513346
    [Google Scholar]
  57. XuH. YanX. ZhuH. KangY. LuoW. ZhaoJ. ZhouK. LiuX. YeL. ZhouQ. LiS. ZhaoM. WangL. ZhuB. LiuW. LiJ. JiangX. RenC. TBL1X and Flot2 form a positive feedback loop to promote metastasis in nasopharyngeal carcinoma.Int. J. Biol. Sci.20221831134114910.7150/ijbs.68091 35173544
    [Google Scholar]
  58. RamadossS. LiJ. DingX. Al HezaimiK. WangC.Y. Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation.Mol. Cell. Biol.201131592493410.1128/MCB.00576‑10 21189284
    [Google Scholar]
  59. WebbA.H. GaoB.T. GoldsmithZ.K. IrvineA.S. SalehN. LeeR.P. LendermonJ.B. BheemreddyR. ZhangQ. BrennanR.C. JohnsonD. SteinleJ.J. WilsonM.W. Morales-TiradoV.M. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma.BMC Cancer201717143410.1186/s12885‑017‑3418‑y 28633655
    [Google Scholar]
  60. LiZ. JingQ. WuL. ChenJ. HuangM. QinY. The prognostic and diagnostic value of tissue inhibitor of metalloproteinases gene family and potential function in gastric cancer.J. Cancer202112134086409810.7150/jca.57808
    [Google Scholar]
  61. SongG. XuS. ZhangH. WangY. XiaoC. JiangT. WuL. ZhangT. SunX. ZhongL. ZhouC. WangZ. PengZ. ChenJ. WangX. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway.J. Exp. Clin. Cancer Res.201635114810.1186/s13046‑016‑0427‑7 27644693
    [Google Scholar]
  62. Holten-AndersenM.N. HansenU. BrünnerN. NielsenH.J. IllemannM. NielsenB.S. Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma.Int. J. Cancer2005113219810.1002/ijc.20566
    [Google Scholar]
  63. HerszényiL. TIMP-1: A strong player in colorectal cancer.J. Gastrointestin. Liver Dis.201423436536610.15403/jgld.2014.1121.234.tmp1 25531992
    [Google Scholar]
  64. TorayaS. UeharaO. HirakiD. HaradaF. NeopaneP. MorikawaT. TakaiR. YoshidaK. MatsuokaH. KitaichiN. ChibaI. AbikoY. Curcumin inhibits the expression of proinflammatory mediators and MMP-9 in gingival epithelial cells stimulated for a prolonged period with lipopolysaccharides derived from Porphyromonas gingivalis.Odontology20201081162410.1007/s10266‑019‑00432‑8 31087163
    [Google Scholar]
  65. OngC.P. LeeW.L. TangY.Q. YapW.H. Honokiol: A review of its anticancer potential and mechanisms.Cancers (Basel)20191214810.3390/cancers12010048 31877856
    [Google Scholar]
  66. GhalehbandiS. YuzugulenJ. PranjolM.Z.I. PourgholamiM.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF.Eur. J. Pharmacol.202394917558610.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  67. ElebiyoT.C. RotimiD. EvbuomwanI.O. MaimakoR.F. IyobhebheM. OjoO.A. OlubaO.M. AdeyemiO.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy.Cancer Treat. Res. Commun20223210062010.1016/j.ctarc.2022.100620 35964475
    [Google Scholar]
  68. KangY. LiH. LiuY. LiZ. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors.J. Cancer Res. Clin. Oncol.2024150522110.1007/s00432‑024‑05714‑5 38687357
    [Google Scholar]
  69. AguiarR.B. MoraesJ.Z. Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors.Front. Immunol.201910102310.3389/fimmu.2019.01023 31156623
    [Google Scholar]
  70. PanZ. ZhuangJ. JiC. CaiZ. LiaoW. HuangZ. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression.Oncol. Lett.20181544821482610.3892/ol.2018.7988
    [Google Scholar]
  71. DaW. ZhangJ. ZhangR. ZhuJ. Curcumin inhibits the lymphangiogenesis of gastric cancer cells by inhibiton of HMGB1/VEGF-D signaling.Int. J. Immunopathol. Pharmacol.201933205873841986160010.1177/2058738419861600 31266378
    [Google Scholar]
  72. LiX. FangQ. TianX. WangX. AoQ. HouW. TongH. FanJ. BaiS. Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation.Mol. Med. Rep.20171644455446210.3892/mmr.2017.7169 28791384
    [Google Scholar]
  73. GligorijevićN. DobrijevićZ. ŠunderićM. RobajacD. ČetićD. PenezićA. MiljušG. NedićO. The insulin-like growth factor system and colorectal cancer.Life (Basel)2022128127410.3390/life12081274 36013453
    [Google Scholar]
  74. HuangB.L. WeiL.F. LinY.W. HuangL.S. QuQ.Q. LiX.H. ChuL.Y. XuY.W. WangW.D. PengY.H. WuF.C. Serum IGFBP-1 as a promising diagnostic and prognostic biomarker for colorectal cancer.Sci. Rep.2024141183910.1038/s41598‑024‑52220‑2 38246959
    [Google Scholar]
  75. YangS.F. YehC.B. ChouY.E. LeeH.L. LiuY.F. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma.Sci. Rep.2016612660510.1038/srep26605 27221742
    [Google Scholar]
  76. ZhangP. LiX. HeQ. ZhangL. SongK. YangX. HeQ. WangY. HongX. MaJ. LiuN. TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis.J. Biomed. Sci.20202713010.1186/s12929‑020‑0625‑7 32005234
    [Google Scholar]
  77. LiuB.X. XieY. ZhangJ. ZengS. LiJ. TaoQ. YangJ. ChenY. ZengC. SERPINB5 promotes colorectal cancer invasion and migration by promoting EMT and angiogenesis via the TNF-α/NF-κB pathway.Int. Immunopharmacol.202413111175910.1016/j.intimp.2024.111759 38460302
    [Google Scholar]
  78. GouletB. KennetteW. AblackA. PostenkaC.O. HagueM.N. MymrykJ.S. TuckA.B. GiguèreV. ChambersA.F. LewisJ.D. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis.Lab. Invest.20119181181118710.1038/labinvest.2011.66 21502940
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206336788241029050155
Loading
/content/journals/acamc/10.2174/0118715206336788241029050155
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test