Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Phospholipases A2 enzymes are found in many mammalian tissues and in animal venoms. Those present in bee venom (bvPLA2) and snake venom (svPLA2) have been studied more particularly for their biological activities of interest. Although they belong to the same family of secreted PLA2 (sPLA2), bvPLA2 and svPLA2 differ from a structural and functional point of view. In this review, we describe the morphological characteristics of these two enzymes and the structural determinants that govern their functions. After describing their cytotoxicity, we compared their biological activities, including antimicrobial, anti-tumor, anti-inflammatory, anti-neurodegenerative, and anti-nociceptive effects. In addition, we highlighted their therapeutical applications and deduced that bvPLA2 has better potential than svPLA2 in biotechnological and pharmaceutical innovations.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999210101225032
2022-04-01
2025-09-28
Loading full text...

Full text loading...

References

  1. SpolaoreB. FernándezJ. LomonteB. MassiminoM.L. TonelloF. Enzymatic labelling of snake venom phospholipase A2 toxins.Toxicon20191709910710.1016/j.toxicon.2019.09.01931563525
    [Google Scholar]
  2. KaiS. LiX. LiB. HanX. LuX. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface.Phys. Chem. Chem. Phys.2017201636710.1039/C7CP06344J29149234
    [Google Scholar]
  3. SchaloskeR.H. DennisE.A. The phospholipase A2 superfamily and its group numbering system.Biochim. Biophys. Acta20061761111246125910.1016/j.bbalip.2006.07.01116973413
    [Google Scholar]
  4. SixD.A. DennisE.A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization.Biochim. Biophys. Acta200014881-211910.1016/S1388‑1981(00)00105‑011080672
    [Google Scholar]
  5. DennisE.A. CaoJ. HsuY-H. MagriotiV. KokotosG. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention.Chem. Rev.2011111106130618510.1021/cr200085w21910409
    [Google Scholar]
  6. JangK. K. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A2 essential for pathogenesisJ. Biol. Chem.2017292 41 17129 17143
    [Google Scholar]
  7. TessmerM.H. AndersonD.M. PickrumA.M. RiegertM.O. FrankD.W. Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases.J. Bacteriol.201920141510.1128/JB.00623‑1830455285
    [Google Scholar]
  8. SoragniE. BolchiA. BalestriniR. GambarettoC. PercudaniR. BonfanteP. OttonelloS. A nutrient-regulated, dual localization phospholipase A(2) in the symbiotic fungus Tuber borchii.EMBO J.200120185079509010.1093/emboj/20.18.507911566873
    [Google Scholar]
  9. JablonickáV. MansfeldJ. HeilmannI. ObložinskýM. HeilmannM. Identification of a secretory phospholipase A2 from Papaver somniferum L. that transforms membrane phospholipids.Phytochemistry201612941310.1016/j.phytochem.2016.07.01027473012
    [Google Scholar]
  10. BurdgeG.C. CreaneyA. PostleA.D. WiltonD.C. Mammalian secreted and cytosolic phospholipase A2 show different specificities for phospholipid molecular species.Int. J. Biochem. Cell Biol.199527101027103210.1016/1357‑2725(95)00083‑27496992
    [Google Scholar]
  11. FairbairnD. The Phospholipase of the Venom of the Cottonmouth Moccasin (agkistrodon Piscivorus L)J. Biol. Chem.20201572633644 http://www.jbc.org/content/157/2/633
    [Google Scholar]
  12. AccaryC. MantashA. MallemY. FajlounZ. ElkakA. Separation and Biological Activities of Phospholipase A2 (Mb-PLA2) from the Venom of Montivipera bornmuelleri, a Lebanese Viper.J. Liq. Chromatogr. Relat. Technol.201538883383910.1080/10826076.2014.968660
    [Google Scholar]
  13. Valdez-CruzN.A. SegoviaL. CoronaM. PossaniL.D. Sequence analysis and phylogenetic relationship of genes encoding heterodimeric phospholipases A2 from the venom of the scorpion Anuroctonus phaiodactylus.Gene2007396114915810.1016/j.gene.2007.03.00717466468
    [Google Scholar]
  14. FrangiehJ. SalmaY. HaddadK. MatteiC. LegrosC. FajlounZ. El ObeidD. First Characterization of The Venom from Apis mellifera syriaca, A Honeybee from The Middle East Region.Toxins (Basel)20191143010.3390/toxins1104019130935025
    [Google Scholar]
  15. MurakamiM. TaketomiY. MikiY. SatoH. YamamotoK. LambeauG. Emerging roles of secreted phospholipase A2 enzymesBiochimie (3rd edition).2014107 105 113 10.1016/j.biochi.2014.09.003
    [Google Scholar]
  16. SeilhamerJ.J. PruzanskiW. VadasP. PlantS. MillerJ.A. KlossJ. JohnsonL.K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid.J. Biol. Chem.198926410533553382925608
    [Google Scholar]
  17. BoyanovskyB.B. WebbN.R. Biology of secretory phospholipase A2.Cardiovasc. Drugs Ther.2009231617210.1007/s10557‑008‑6134‑718853244
    [Google Scholar]
  18. TatulianS.A. Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation.Biophys. J.200180278980010.1016/S0006‑3495(01)76058‑411159446
    [Google Scholar]
  19. WehbeR. FrangiehJ. RimaM. El ObeidD. SabatierJ-M. FajlounZ. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests.Molecules20192416E299710.3390/molecules2416299731430861
    [Google Scholar]
  20. CarregariV.C. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversitySci Rep 20188 1 12067
    [Google Scholar]
  21. RimaM. Alavi NainiS.M. KaramM. SadekR. SabatierJ-M. FajlounZ. Vipers of the Middle East: A Rich Source of Bioactive Molecules.Molecules2018231010.3390/molecules2310272130360399
    [Google Scholar]
  22. AccaryC. Hraoui-BloquetS. HamzeM. MallemY. El OmarF. SabatierJ.M. DesfontisJ.C. FajlounZ. Protein content analysis and antimicrobial activity of the crude venom of Montivipera bornmuelleri; a viper from Lebanon.Infect. Disord. Drug Targets2014141495510.2174/187152651466614052211475424853875
    [Google Scholar]
  23. CondreaE. DevriesA. MagerJ. “Hemolysis and splitting of human erythrocyte phospholipids by snake venoms,” Biochimica et Biophysica Acta (BBA) -. Biochim. Biophys. Acta1964841607310.1016/0926‑6542(64)90101‑514124757
    [Google Scholar]
  24. ArniR.K. WardR.J. Phospholipase A2- a structural review.Toxicon199634882784110.1016/0041‑0101(96)00036‑08875770
    [Google Scholar]
  25. ScottD.L. OtwinowskiZ. GelbM.H. SiglerP.B. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue.Science199025049871563156610.1126/science.22747882274788
    [Google Scholar]
  26. HuY. YangL. YangH. HeS. WeiJ-F. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting.Toxicon2017125131810.1016/j.toxicon.2016.11.25127867095
    [Google Scholar]
  27. CorrêaE.A. KayanoA.M. Diniz-SousaR. SetúbalS.S. ZanchiF.B. ZulianiJ.P. MatosN.B. AlmeidaJ.R. ResendeL.M. MarangoniS. da SilvaS.L. SoaresA.M. CalderonL.A. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential.Toxicon2016115132110.1016/j.toxicon.2016.02.02126927324
    [Google Scholar]
  28. ShipoliniR.A. CallewaertG.L. CottrellR.C. VernonC.A. The amino-acid sequence and carbohydrate content of phospholipase A2 from bee venom.Eur. J. Biochem.197448246547610.1111/j.1432‑1033.1974.tb03787.x4448181
    [Google Scholar]
  29. WelkerS. MarkertY. KöditzJ. MansfeldJ. Ulbrich-HofmannR. Disulfide bonds of phospholipase A2 from bee venom yield discrete contributions to its conformational stability.Biochimie201193219520110.1016/j.biochi.2010.09.01220884319
    [Google Scholar]
  30. ZambelliV.O. PicoloG. FernandesC.A.H. FontesM.R.M. CuryY. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.Toxins (Basel)20179121910.3390/toxins912040629311537
    [Google Scholar]
  31. FremontD.H. AndersonD.H. WilsonI.A. DennisE.A. XuongN.H. Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association.Proc. Natl. Acad. Sci. USA199390134234610.1073/pnas.90.1.3428419939
    [Google Scholar]
  32. TzengM.C. YenC.H. HseuM.J. DupureurC.M. TsaiM.D. Conversion of bovine pancreatic phospholipase A2 at a single site into a competitor of neurotoxic phospholipases A2 by site-directed mutagenesis.J. Biol. Chem.199527052120212310.1074/jbc.270.5.21207836440
    [Google Scholar]
  33. RosmanY. NashefF. Cohen-EnglerA. Meir-ShafrirK. Lachover-RothI. Confino-CohenR. Exclusive Bee Venom Allergy: Risk Factors and Outcome of Immunotherapy.Int. Arch. Allergy Immunol.2019180212813410.1159/00050095731216540
    [Google Scholar]
  34. KuipersO.P. ThunnissenM.M. de GeusP. DijkstraB.W. DrenthJ. VerheijH.M. de HaasG.H. Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop.Science19892444900828510.1126/science.27049922704992
    [Google Scholar]
  35. SobotkaA.K. FranklinR.M. AdkinsonN.F.Jr ValentineM. BaerH. LichtensteinL.M. Allergy to insect stings. II. Phospholipase A: the major allergen in honeybee venom.J. Allergy Clin. Immunol.1976571294010.1016/0091‑6749(76)90076‑254382
    [Google Scholar]
  36. TaketomiY. UenoN. KojimaT. SatoH. MuraseR. YamamotoK. TanakaS. SakanakaM. NakamuraM. NishitoY. KawanaM. KambeN. IkedaK. TaguchiR. NakamizoS. KabashimaK. GelbM.H. AritaM. YokomizoT. NakamuraM. WatanabeK. HiraiH. NakamuraM. OkayamaY. RaC. AritakeK. UradeY. MorimotoK. SugimotoY. ShimizuT. NarumiyaS. HaraS. MurakamiM. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis.Nat. Immunol.201314655456310.1038/ni.258623624557
    [Google Scholar]
  37. DudlerT. MachadoD.C. KolbeL. AnnandR.R. RhodesN. GelbM.H. KoelschK. SuterM. HelmB.A. A link between catalytic activity, IgE-independent mast cell activation, and allergenicity of bee venom phospholipase A2.J. Immunol.19951555260526137544378
    [Google Scholar]
  38. MustafaF.B. NgF.S.P. NguyenT.H. LimL.H.K. Honeybee venom secretory phospholipase A2 induces leukotriene production but not histamine release from human basophils.Clin. Exp. Immunol.200815119410010.1111/j.1365‑2249.2007.03542.x18005261
    [Google Scholar]
  39. PalmN.W. RosensteinR.K. YuS. SchentenD.D. FlorsheimE. MedzhitovR. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.Immunity201339597698510.1016/j.immuni.2013.10.00624210353
    [Google Scholar]
  40. BourgeoisE.A. SubramaniamS. ChengT.Y. De JongA. LayreE. LyD. SalimiM. LegaspiA. ModlinR.L. SalioM. CerundoloV. MoodyD.B. OggG. Bee venom processes human skin lipids for presentation by CD1a.J. Exp. Med.2015212214916310.1084/jem.2014150525584012
    [Google Scholar]
  41. LanducciE.C.T. ToyamaM. MarangoniS. OliveiraB. CirinoG. AntunesE. de NucciG. Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2.Toxicon200038219920810.1016/S0041‑0101(99)00143‑910665801
    [Google Scholar]
  42. TitsworthW.L. OniferS.M. LiuN-K. XuX-M. Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination.Exp. Neurol.2007207115016210.1016/j.expneurol.2007.06.01017678647
    [Google Scholar]
  43. LiuN-K. ZhangY.P. TitsworthW.L. JiangX. HanS. LuP.H. ShieldsC.B. XuX.M. A novel role of phospholipase A2 in mediating spinal cord secondary injury.Ann. Neurol.200659460661910.1002/ana.2079816498630
    [Google Scholar]
  44. WatalaC. KowalczykJ.K. Hemolytic potency and phospholipase activity of some bee and wasp venoms.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.199097118719410.1016/0742‑8413(90)90191‑B1981342
    [Google Scholar]
  45. OršolićN. Bee venom in cancer therapy.Cancer Metastasis Rev.2012311-217319410.1007/s10555‑011‑9339‑322109081
    [Google Scholar]
  46. Arce-BejaranoR. LomonteB. GutiérrezJ.M. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: identification of directly hemolytic phospholipases A2.Toxicon201490263510.1016/j.toxicon.2014.07.01025088177
    [Google Scholar]
  47. AccaryC. Hraoui-BloquetS. SadekR. AlameddineA. FajlounZ. DesfontisJ.C. MallemY. The relaxant effect of the Montivipera bornmuelleri snake venom on vascular contractility.J. Venom Res.20167101527826409
    [Google Scholar]
  48. Casais-EL.L. -Silva, C. F. P. Teixeira, I. Lebrun, B. Lomonte, A. Alape-Girón, and J. M. Gutiérrez, “Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2.Toxicol. Lett.2016257607110.1016/j.toxlet.2016.06.005
    [Google Scholar]
  49. DixonR.W. HarrisJ.B. Myotoxic activity of the toxic phospholipase, notexin, from the venom of the Australian tiger snake.J. Neuropathol. Exp. Neurol.199655121230123710.1097/00005072‑199612000‑000068957446
    [Google Scholar]
  50. LogonderU. Jenko-PražnikarZ. Scott-DaveyT. PungerčarJ. KrižajI. HarrisJ.B. Ultrastructural evidence for the uptake of a neurotoxic snake venom phospholipase A2 into mammalian motor nerve terminals.Exp. Neurol.2009219259159410.1016/j.expneurol.2009.07.01719631643
    [Google Scholar]
  51. RamazanovaA.S. ZavadaL.L. StarkovV.G. KovyazinaI.V. SubbotinaT.F. KostyukhinaE.E. DementievaI.N. OvchinnikovaT.V. UtkinY.N. Heterodimeric neurotoxic phospholipases A2--the first proteins from venom of recently established species Vipera nikolskii: implication of venom composition in viper systematics.Toxicon200851452453710.1016/j.toxicon.2007.11.00118083205
    [Google Scholar]
  52. SampaioS.C. HyslopS. FontesM.R. Prado-FranceschiJ. ZambelliV.O. MagroA.J. BrigatteP. GutierrezV.P. CuryY. Crotoxin: novel activities for a classic beta-neurotoxin.Toxicon20105561045106010.1016/j.toxicon.2010.01.01120109480
    [Google Scholar]
  53. TeixeiraC.F.P. LanducciE.C.T. AntunesE. ChacurM. CuryY. Inflammatory effects of snake venom myotoxic phospholipases A2.Toxicon200342894796210.1016/j.toxicon.2003.11.00615019493
    [Google Scholar]
  54. YacoubT. RimaM. SadekR. HleihelW. FajlounZ. KaramM. Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice.Toxicol. Rep.2018531832310.1016/j.toxrep.2018.02.01129854600
    [Google Scholar]
  55. CedroR.C.A. MenaldoD.L. CostaT.R. ZoccalK.F. SartimM.A. Santos-FilhoN.A. FaccioliL.H. SampaioS.V. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom.J. Venom. Anim. Toxins Incl. Trop. Dis.20182413310.1186/s40409‑018‑0170‑y30498509
    [Google Scholar]
  56. MamedeC.C.N. de SousaB.B. PereiraD.F. MatiasM.S. de QueirozM.R. de MoraisN.C. VieiraS.A. StanziolaL. de OliveiraF. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations.Toxicon2016117374510.1016/j.toxicon.2016.03.00626975252
    [Google Scholar]
  57. Cintra-FrancischinelliM. CaccinP. ChiavegatoA. PizzoP. CarmignotoG. AnguloY. LomonteB. GutiérrezJ.M. MontecuccoC. Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain.Proc. Natl. Acad. Sci. USA201010732141401414510.1073/pnas.100912810720660736
    [Google Scholar]
  58. Perumal SamyR. GopalakrishnakoneP. ThwinM.M. ChowT.K. BowH. YapE.H. ThongT.W. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes.J. Appl. Microbiol.2007102365065910.1111/j.1365‑2672.2006.03161.x17309613
    [Google Scholar]
  59. YacoubT. RimaM. KaramM. FajlounJ.S.A.Z. Antimicrobials from Venomous Animals: An Overview.Molecules2020251010.3390/molecules2510240232455792
    [Google Scholar]
  60. LeandroL.F. MendesC.A. CasemiroL.A. VinholisA.H. CunhaW.R. de AlmeidaR. MartinsC.H. Antimicrobial activity of apitoxin, melittin and phospholipase A of honey bee (Apis mellifera) venom against oral pathogens.An. Acad. Bras. Cienc.201587114715510.1590/0001‑376520152013051125806982
    [Google Scholar]
  61. ZolfagharianH. MohajeriM. BabaieM. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria.J. Pharmacopuncture2016193225230 https://www.journal.ac/article/19/3/22510.3831/KPI.2016.19.02327695631
    [Google Scholar]
  62. Foreman-WykertA.K. WeinrauchY. ElsbachP. WeissJ. Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteriaJ Clin Invest20201035715721 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC408128/
    [Google Scholar]
  63. KoduriR.S. GrönroosJ.O. LaineV.J. Le CalvezC. LambeauG. NevalainenT.J. GelbM.H. Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2).J. Biol. Chem.200227785849585710.1074/jbc.M10969920011694541
    [Google Scholar]
  64. BoutrinM-C.F. FosterH.A. PentreathV.W. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria.Exp. Parasitol.2008119224625110.1016/j.exppara.2008.02.00218343372
    [Google Scholar]
  65. SamelM. VijaH. KurvetI. Künnis-BeresK. TrummalK. SubbiJ. KahruA. SiigurJ. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells.Toxins (Basel)20135220322310.3390/toxins502020323348053
    [Google Scholar]
  66. ZielerH. KeisterD. B. DvorakJ. A. RibeiroJ. M. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surfaceJ. Exp. Biol. 2001204 23 41574167
    [Google Scholar]
  67. AnnandR.R. KontoyianniM. PenzottiJ.E. DudlerT. LybrandT.P. GelbM.H. Active site of bee venom phospholipase A2: the role of histidine-34, aspartate-64 and tyrosine-87.Biochemistry199635144591460110.1021/bi95284128605210
    [Google Scholar]
  68. FenardD. LambeauG. ValentinE. LefebvreJ-C. LazdunskiM. DoglioA. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells.J. Clin. Invest.1999104561161810.1172/JCI691510487775
    [Google Scholar]
  69. FenardD. LambeauG. MaurinT. LefebvreJ-C. DoglioA. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor.Mol. Pharmacol.200160234134710.1124/mol.60.2.34111455021
    [Google Scholar]
  70. CecilioA.B. CaldasS. OliveiraR.A. SantosA.S. RichardsonM. NaumannG.B. SchneiderF.S. AlvarengaV.G. Estevão-CostaM.I. FulyA.L. EbleJ.A. SanchezE.F. Molecular characterization of Lys49 and Asp49 phospholipases A from snake venom and their antiviral activities against Dengue virus.Toxins (Basel)20135101780179810.3390/toxins510178024131891
    [Google Scholar]
  71. ZarrinnahadH. MahmoodzadehA. HamidiM.P. MahdaviM. MoradiA. BagheriK.P. ShahbazzadehD. Apoptotic Effect of Melittin Purified from Iranian Honey Bee Venom on Human Cervical Cancer HeLa Cell Line.Int. J. Pept. Res. Ther.201824456357010.1007/s10989‑017‑9641‑130416405
    [Google Scholar]
  72. JeongY-J. ParkY-Y. ParkK-K. ChoiY.H. KimC-H. ChangY-C. Bee Venom Suppresses EGF-Induced Epithelial-Mesenchymal Transition and Tumor Invasion in Lung Cancer Cells.Am. J. Chin. Med.20194781869188310.1142/S0192415X1950095231786944
    [Google Scholar]
  73. FergusonE.L. DuncanR. Dextrin-phospholipase A2: synthesis and evaluation as a bioresponsive anticancer conjugate.Biomacromolecules20091061358136410.1021/bm801302219354276
    [Google Scholar]
  74. SonD.J. LeeJ.W. LeeY.H. SongH.S. LeeC.K. HongJ.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds.Pharmacol. Ther.2007115224627010.1016/j.pharmthera.2007.04.00417555825
    [Google Scholar]
  75. PutzT. RamonerR. GanderH. RahmA. BartschG. BernardoK. RamsayS. ThurnherM. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells.Cancer Immunol. Immunother.200756562764010.1007/s00262‑006‑0220‑016947021
    [Google Scholar]
  76. TokerA. Phosphoinositides and signal transduction.Cell. Mol. Life Sci.200259576177910.1007/s00018‑002‑8465‑z12088277
    [Google Scholar]
  77. SawanS. YaacoubT. Hraoui-BloquetS. SadekR. HleihelW. FajlounZ. KaramM. Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines.Exp. Toxicol. Pathol.201769417317810.1016/j.etp.2017.01.00128077256
    [Google Scholar]
  78. YanC-H. LiangZ-Q. GuZ-L. YangY-P. ReidP. QinZ-H. Contributions of autophagic and apoptotic mechanisms to CrTX-induced death of K562 cells.Toxicon200647552153010.1016/j.toxicon.2006.01.01016542694
    [Google Scholar]
  79. YanC.H. YangY.P. QinZ.H. Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells.Acta Pharmacol. Sin.200728454054810.1111/j.1745‑7254.2007.00530.x17376294
    [Google Scholar]
  80. YeB. XieY. QinZ.H. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549.Acta Pharmacol. Sin.201132111397140110.1038/aps.2011.11621946324
    [Google Scholar]
  81. ChenK-C. LiuW-H. ChangL-S. Taiwan cobra phospholipase A2-elicited JNK activation is responsible for autocrine fas-mediated cell death and modulating Bcl-2 and Bax protein expression in human leukemia K562 cells.J. Cell. Biochem.2010109124525410.1002/jcb.2240419937732
    [Google Scholar]
  82. HiguchiD.A. BarbosaC.M. BincolettoC. ChagasJ.R. MagalhaesA. RichardsonM. SanchezE.F. PesqueroJ.B. AraujoR.C. PesqueroJ.L. Purification and partial characterization of two phospholipases A2 from Bothrops leucurus (white-tailed-jararaca) snake venom.Biochimie200789331932810.1016/j.biochi.2006.10.01017110015
    [Google Scholar]
  83. MurakamiT. KamikadoN. FujimotoR. HamaguchiK. NakamuraH. ChijiwaT. OhnoM. Oda-UedaN. A [Lys]phospholipase A from Protobothrops flavoviridis venom induces caspase-independent apoptotic cell death accompanied by rapid plasma-membrane rupture in human leukemia cells.Biosci. Biotechnol. Biochem.201175586487010.1271/bbb.10078321597201
    [Google Scholar]
  84. BazaaA. LuisJ. Srairi-AbidN. Kallech-ZiriO. Kessentini-ZouariR. DefillesC. LissitzkyJ.C. El AyebM. MarrakchiN. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration.Matrix Biol.200928418819310.1016/j.matbio.2009.03.00719351557
    [Google Scholar]
  85. BazaaA. PasquierE. DefillesC. LimamI. Kessentini-ZouariR. Kallech-ZiriO. El BattariA. BraguerD. El AyebM. MarrakchiN. LuisJ. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.PLoS One20105410.1371/journal.pone.001012420405031
    [Google Scholar]
  86. SpenceA. KlementowiczJ.E. BluestoneJ.A. TangQ. Targeting Treg signaling for the treatment of autoimmune diseases.Curr. Opin. Immunol.201537112010.1016/j.coi.2015.09.00226432763
    [Google Scholar]
  87. ShinD. LeeG. SohnS.H. ParkS. JungK.H. LeeJ.M. YangJ. ChoJ. BaeH. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A in Mice.Toxins (Basel)2016853010.3390/toxins805013127144583
    [Google Scholar]
  88. ChungE.S. LeeG. LeeC. YeM. ChungH.S. KimH. BaeS.J. HwangD.S. BaeH. Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson’s Disease.J. Immunol.2015195104853486010.4049/jimmunol.150038626453752
    [Google Scholar]
  89. ParkS. BaekH. JungK.H. LeeG. LeeH. KangG.H. LeeG. BaeH. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.Immun. Inflamm. Dis.20153438639710.1002/iid3.7626734460
    [Google Scholar]
  90. KimH. LeeH. LeeG. JangH. KimS.S. YoonH. KangG.H. HwangD.S. KimS.K. ChungH.S. BaeH. Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor.Kidney Int.201588355055910.1038/ki.2015.14725993317
    [Google Scholar]
  91. CaramalhoI. MeloA. PedroE. BarbosaM.M. VictorinoR.M. Pereira SantosM.C. SousaA.E. Bee venom enhances the differentiation of human regulatory T cells.Allergy201570101340134510.1111/all.1269126179427
    [Google Scholar]
  92. Pereira-SantosM.C. BaptistaA.P. MeloA. AlvesR.R. SoaresR.S. PedroE. Pereira-BarbosaM. VictorinoR.M. SousaA.E. Expansion of circulating Foxp3+)D25bright CD4+ T cells during specific venom immunotherapy.Clin. Exp. Allergy200838229129710.1111/j.1365‑2222.2007.02887.x18070166
    [Google Scholar]
  93. ShinD. ChoiW. BaeH. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor.Toxins (Basel)2018104410.3390/toxins1004014629614845
    [Google Scholar]
  94. GiannottiK.C. LeiguezE. CarvalhoA.E.Z. NascimentoN.G. MatsubaraM.H. Fortes-DiasC.L. MoreiraV. TeixeiraC. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages.Sci. Rep.201771409810.1038/s41598‑017‑04498‑828642580
    [Google Scholar]
  95. MasudaS. YamamotoK. HirabayashiT. IshikawaY. IshiiT. KudoI. MurakamiM. Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival.Biochem. J.2008409242943810.1042/BJ2007084417868035
    [Google Scholar]
  96. JeongJ-K. MoonM-H. BaeB-C. LeeY-J. SeolJ-W. ParkS-Y. Bee venom phospholipase A2 prevents prion peptide induced-cell death in neuronal cells.Int. J. Mol. Med.201128586787310.3892/ijmm.2011.73021701769
    [Google Scholar]
  97. TerryA.V.Jr BuccafuscoJ.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development.J. Pharmacol. Exp. Ther.2003306382182710.1124/jpet.102.04161612805474
    [Google Scholar]
  98. YeM. ChungH.S. LeeC. YoonM.S. YuA.R. KimJ.S. HwangD.S. ShimI. BaeH. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease.J. Neuroinflammation2016131010.1186/s12974‑016‑0476‑z26772975
    [Google Scholar]
  99. BaekH. LeeC.J. ChoiD.B. KimN.S. KimY.S. YeY.J. KimY.S. KimJ.S. ShimI. BaeH. Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model.Sci. Rep.2018811736910.1038/s41598‑018‑35030‑130478329
    [Google Scholar]
  100. LiD. LeeY. KimW. LeeK. BaeH. KimS.K. Analgesic Effects of Bee Venom Derived Phospholipase A(2) in a Mouse Model of Oxaliplatin-Induced Neuropathic Pain.Toxins (Basel)2015772422243410.3390/toxins707242226131771
    [Google Scholar]
  101. Nogueira-NetoF. de S. AmorimR.L. BrigatteP. PicoloG. FerreiraW.A.Jr GutierrezV.P. ConceiçãoI.M. Della-CasaM.S. TakahiraR.K. NicolettiJ.L. CuryY. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators.Pharmacol. Biochem. Behav.200891225226010.1016/j.pbb.2008.08.01618778727
    [Google Scholar]
  102. DyachenkoI.A. MurashevA.N. AndreevaT.V. TsetlinV.I. UtkinY.N. Analysis of nociceptive effects of neurotoxic phospholipase A2 from Vipera nikolskii venom in mice.J. Venom Res.201341423577231
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999210101225032
Loading
/content/journals/vat/10.2174/2666121701999210101225032
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bee venom; bvPLA2; phospholipase A2; snake venom; svPLA2; therapeutical applications; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test