Skip to content
2000
image of Geospatial Deep Learning Model for Early Landslide Prediction Using Multispectral Remote Sensing Data

Abstract

Introduction

Early and precise landslide prediction remains a critical challenge for mitigating their devastating impacts. Traditional methods often struggle to integrate both spatial and temporal data effectively, leading to limited prediction accuracy. This study aims to develop a deep learning model that combines Convolutional Autoencoders (CAEs) for spatial feature extraction with Recurrent Neural Networks (RNNs) to capture temporal dynamics.

Methods

The proposed model leverages CAEs to learn robust spatial representations from the 14-band Landslide4Sense dataset, while the RNN component captures the temporal patterns crucial for landslide detection. This integrated approach enhances the prediction capability by considering both spatial and temporal factors.

Results

The approach demonstrates an impressive landslide prediction accuracy of 0.988, with performance metrics of precision: 0.987, recall: 0.972, and F1-score: 0.982, highlighting its effectiveness in landslide prediction.

Discussion

The model successfully integrates spatial and temporal dimensions, outperforming traditional prediction methods. Its deep learning design enhances robustness and adaptability across geospatial terrains.

Conclusion

This work paves the way for the application of advanced deep learning models in real-world landslide prediction. By integrating spatial and temporal data, the model offers a promising solution for mitigating landslide-related risks, potentially saving lives and infrastructure.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279381613250707181318
2025-07-22
2025-10-03
Loading full text...

Full text loading...

References

  1. Leal Filho W. Wall T. Rui Mucova S.A. Deploying artificial intelligence for climate change adaptation. Technol. Forecast. Soc. Change 2022 180 121662 10.1016/j.techfore.2022.121662
    [Google Scholar]
  2. Mantovani M. Bossi G. Dykes A.P. Pasuto A. Soldati M. Devoto S. Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Eng. Geol. 2022 296 106466 10.1016/j.enggeo.2021.106466
    [Google Scholar]
  3. Lu J. Li W. Zhan W. Tie Y. Distribution and mobility of coseismic landslides triggered by the 2018 Hokkaido earthquake in Japan. Remote Sens. 2022 14 16 3957 10.3390/rs14163957
    [Google Scholar]
  4. Cheng J. Dai X. Wang Z. Landslide susceptibility assessment model construction using typical Machine Learning for the three Gorges reservoir area in China. Remote Sens. 2022 14 9 2257 10.3390/rs14092257
    [Google Scholar]
  5. Loche M. Alvioli M. Marchesini I. Bakka H. Lombardo L. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth Sci. Rev. 2022 232 104125 10.1016/j.earscirev.2022.104125
    [Google Scholar]
  6. Niu C. Gao O. Lu W. Liu W. Lai T. Reg-SA–UNet++: A lightweight landslide detection network based on single-temporal images captured postlandslide. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022 15 9746 9759 10.1109/JSTARS.2022.3219897
    [Google Scholar]
  7. Aslam B. Maqsoom A. Khalil U. Evaluation of different landslide susceptibility models for a local scale in the Chitral District, Northern Pakistan. Sensors 2022 22 9 3107 10.3390/s22093107 35590797
    [Google Scholar]
  8. Ji S. Yu D. Shen C. Li W. Xu Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020 17 6 1337 1352 10.1007/s10346‑020‑01353‑2
    [Google Scholar]
  9. Yuan R. Chen J. A novel method based on deep learning model for national-scale landslide hazard assessment. Landslides 2023 20 11 2379 2403 10.1007/s10346‑023‑02101‑y
    [Google Scholar]
  10. Casagli N. Intrieri E. Tofani V. Gigli G. Raspini F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023 4 1 51 64 10.1038/s43017‑022‑00373‑x
    [Google Scholar]
  11. Barman J. Ali S.S. Biswas B. Das J. Application of index of entropy and Geospatial techniques for landslide prediction in Lunglei district, Mizoram, India. Nat. Hazards Rev. 2023 3 3 508 521 10.1016/j.nhres.2023.06.006
    [Google Scholar]
  12. Riaz M.T. Basharat M. Brunetti M.T. Assessing the effectiveness of alternative landslide partitioning in machine learning methods for landslide prediction in the complex Himalayan terrain. Prog. Phys. Geogr. 2023 47 3 315 347 10.1177/03091333221113660
    [Google Scholar]
  13. Huang P.C. Establishing a shallow-landslide prediction method by using machine-learning techniques based on the physics-based calculation of soil slope stability. Landslides 2023 20 12 2741 2756 10.1007/s10346‑023‑02139‑y
    [Google Scholar]
  14. Varangaonkar P. Rode S.V. Lightweight deep learning model for automatic landslide prediction and localization. Multimedia Tools Appl. 2023 82 21 33245 33266 10.1007/s11042‑023‑15049‑x
    [Google Scholar]
  15. Nanehkaran Y.A. Chen B. Cemiloglu A. Riverside landslide susceptibility overview: leveraging artificial neural networks and machine learning in accordance with the United Nations (UN) sustainable development goals. Water 2023 15 15 2707 10.3390/w15152707
    [Google Scholar]
  16. Zhou C. Cao Y. Gan L. A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques. Eng. Geol. 2024 334 107497 10.1016/j.enggeo.2024.107497
    [Google Scholar]
  17. Alqadhi S. Mallick J. Alkahtani M. Integrated deep learning with explainable artificial intelligence for enhanced landslide management. Nat. Hazards 2024 120 2 1343 1365 10.1007/s11069‑023‑06260‑y
    [Google Scholar]
  18. Ishibashi H. Framework for risk assessment of economic loss from structures damaged by rainfall-induced landslides using machine learning. Georisk. Georisk 2024 18 1 228 243
    [Google Scholar]
  19. Liu L.L. Yin H.D. Xiao T. Huang L. Cheng Y.M. Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning. Geoscience Frontiers 2024 15 2 101758 10.1016/j.gsf.2023.101758
    [Google Scholar]
  20. Harsa H. Hidayat A.M. Mulsandi A. Machine learning and artificial intelligence models development in rainfall-induced landslide prediction. IJ-AI 2023 12 1 262 10.11591/ijai.v12.i1.pp262‑270
    [Google Scholar]
  21. Chang Z. Catani F. Huang F. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng. 2023 15 5 1127 1143 10.1016/j.jrmge.2022.07.009
    [Google Scholar]
  22. Nava L. Carraro E. Reyes-Carmona C. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 2023 20 10 2111 2129 10.1007/s10346‑023‑02104‑9
    [Google Scholar]
  23. Shen Y. Ahmadi Dehrashid A. Bahar R.A. Moayedi H. Nasrollahizadeh B. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Environ. Sci. Pollut. Res. Int. 2023 30 59 123527 123555 10.1007/s11356‑023‑30762‑8 37987977
    [Google Scholar]
  24. Chang Z. Huang J. Huang F. Bhuyan K. Meena S.R. Catani F. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models. Gondwana Res. 2023 117 307 320 10.1016/j.gr.2023.02.007
    [Google Scholar]
  25. Achu A.L. Aju C.D. Di Napoli M. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geoscience Frontiers 2023 14 6 101657 10.1016/j.gsf.2023.101657
    [Google Scholar]
  26. Wei Y. Qiu H. Liu Z. Refined and dynamic susceptibility assessment of landslides using InSAR and machine learning models. Geoscience Frontiers 2024 15 6 101890 10.1016/j.gsf.2024.101890
    [Google Scholar]
  27. Chen L. Ge X. Yang L. Li W. Peng L. An improved multi-source data-driven landslide prediction method based on spatio-temporal knowledge graph. Remote Sens. 2023 15 8 2126 10.3390/rs15082126
    [Google Scholar]
  28. Chen C. Fan L. Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models. Stochastic Environ. Res. Risk Assess. 2023 1 26 10.1007/s00477‑023‑02556‑4
    [Google Scholar]
  29. Nocentini N. Rosi A. Segoni S. Fanti R. Towards landslide space-time forecasting through machine learning: the influence of rainfall parameters and model setting. Front Earth Sci 2023 11 1152130 10.3389/feart.2023.1152130
    [Google Scholar]
  30. Wu L. Zhou J.T. Zhang H. Time series analysis and gated recurrent neural network model for predicting landslide displacements. Georisk. Georisk 2024 18 1 172 185
    [Google Scholar]
  31. Gidon J.S. Borah J. Sahoo S. Majumdar S. Neural network approaches for enhanced landslide prediction: A comparative study for Mawiongrim, Meghalaya, India. Nat. Hazards 2025 121 3677 3699 10.1007/s11069‑024‑06948‑9
    [Google Scholar]
  32. He R. Zhang W. Dou J. Jiang N. Xiao H. Zhou J. Application of artificial intelligence in three aspects of landslide risk assessment: A comprehensive review. Rock Mechanics Bulletin 2024 100144
    [Google Scholar]
  33. Ghorbanzadeh O. Shahabi H. Crivellari A. Homayouni S. Blaschke T. Ghamisi P. Landslide detection using deep learning and object-based image analysis. Landslides 2022 19 4 929 939 10.1007/s10346‑021‑01843‑x
    [Google Scholar]
  34. Prakash N. Manconi A. Loew S. Mapping landslides on EO data: Performance of Deep Learning models vs. traditional Machine Learning models. Remote Sens. 2020 12 3 346 10.3390/rs12030346
    [Google Scholar]
  35. Qiu H. Chen X. Feng P. Advancing predictive accuracy of shallow landslide using strategic data augmentation. J. Rock Mech. Geotech. Eng. 2024 10.1016/j.jrmge.2024.09.010
    [Google Scholar]
  36. Maggiori E. Tarabalka Y. Charpiat G. Alliez P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017 55 2 645 657 10.1109/TGRS.2016.2612821
    [Google Scholar]
  37. Zhang G. Liu X. Zheng F. Sun Y. Liu G. Geological disaster information sharing based on Internet of Things standardization. Environ. Earth Sci. 2024 83 5 148 10.1007/s12665‑023‑11353‑9
    [Google Scholar]
  38. Broquet M. Cabral P. Campos F.S. What ecological factors to integrate in landslide susceptibility mapping? An exploratory review of current trends in support of eco-DRR. Prog Disaster Sci 2024 22 100328 10.1016/j.pdisas.2024.100328
    [Google Scholar]
  39. Ouyang S. Chen W. Liu H. Li Y. Xu Z. A novel landslide susceptibility prediction framework based on contrastive loss. GIsci. Remote Sens. 2024 61 1 2306740 10.1080/15481603.2024.2306740
    [Google Scholar]
  40. Feng X. Du J. Wu M. Chai B. Miao F. Wang Y. Potential of synthetic images in landslide segmentation in data-poor scenario: A framework combining GAN and transformer models. Landslides 2024 21 9 2211 2226 10.1007/s10346‑024‑02274‑0
    [Google Scholar]
  41. Zhao Z. Chen T. Dou J. Liu G. Plaza A. Landslide susceptibility mapping considering landslide local-global features based on CNN and transformer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024 17 7475 7489 10.1109/JSTARS.2024.3379350
    [Google Scholar]
  42. Wen-jing N. Yuan-xin C. Ben-guo H. Guang-mu C. Zhen-hua Q. Wen-yu F. Intelligent veins recognition method for slope rock mass geological images in complex background noise. Comput. Geosci. 2025 197 105885 10.1016/j.cageo.2025.105885
    [Google Scholar]
  43. Wang C.H. Fang L. Hu C.Y. Applying deep learning model to aerial image for landslide anomaly detection through optimizing process. Geomatics Nat. Hazards Risk 2025 16 1 2453072 10.1080/19475705.2025.2453072
    [Google Scholar]
  44. Koneru S.V. Badavathula H. Vadttitya P. Kosaraju S.S. Landslide identification using convolutional neural network.Applied Data Science and Smart Systems. CRC Press 2025 416 423
    [Google Scholar]
  45. Zeng T. Jin B. Glade T. Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry. Catena 2024 236 107732 10.1016/j.catena.2023.107732
    [Google Scholar]
  46. Han N. Miao W. Li M. Integrating multi-source monitoring data and deep convolutional autoencoder technology for slope failure pattern recognition. Front Earth Sci 2025 13 1531857 10.3389/feart.2025.1531857
    [Google Scholar]
  47. Aravinth J. Swaroop P.V. Unsupervised land use land cover mapping of Sentinel-2 data using convolutional autoencoders. 6th International Conference on Energy, Power and Environment (ICEPE) Shillong, India, 20-22 June 2024 1 6
    [Google Scholar]
  48. NaliniPriya G Laxmi Lydia G Alshenaifi G Kavuri G Khairi Ishak G A two-tiered bidirectional atrous spatial pyramid poolingbased semantic segmentation model for landslide classification using remote sensing images. IEEE Access 2024 12 811316 811331 10.1109/ACCESS.2024.3508881
    [Google Scholar]
  49. Ren F. Isobe K. Versatility evaluation of landslide risk with window sizes and sampling techniques based on Deep Learning. Appl. Sci. 2024 14 22 10571 10.3390/app142210571
    [Google Scholar]
  50. Song C.H. Lee J.S. Ha Y.S. Kim Y.T. Rainfall and earthquake-induced landslide susceptibility assessment. J Korean Soc Hazard Mitig 2023 23 1 165 177 10.9798/KOSHAM.2023.23.1.165
    [Google Scholar]
  51. Zhang B. Tang J. Huan Y. Song L. Shah S.Y.A. Wang L. Multi-scale convolutional neural networks (CNNs) for landslide inventory mapping from remote sensing imagery and landslide susceptibility mapping (LSM). Geomatics Nat. Hazards Risk 2024 15 1 2383309 10.1080/19475705.2024.2383309
    [Google Scholar]
  52. Tang L. Na S.H. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets. J. Rock Mech. Geotech. Eng. 2021 13 6 1274 1289 10.1016/j.jrmge.2021.08.006
    [Google Scholar]
  53. Zhang D Yang J Li F Han S Qin L Li Q Landslide risk prediction model using an attention-based temporal convolutional network connected to a recurrent neural network. IEEE Access 2022 10 37635 37645 10.1109/ACCESS.2022.3165051
    [Google Scholar]
  54. Li H. Xu Q. He Y. Fan X. Yang H. Li S. Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent. Geomatics Nat. Hazards Risk 2021 12 1 3089 3113 10.1080/19475705.2021.1994474
    [Google Scholar]
  55. Hussain M.A. Chen Z. Zhou Y. Meena S.R. Ali N. Shah S.U. Landslide susceptibility mapping using artificial intelligence models: A case study in the Himalayas. Landslides 2025 1 15 10.1007/s10346‑025‑02466‑2
    [Google Scholar]
  56. Moradmand R. Ahmadi H. Moeini A. Motamedvaziri B. Nazari Samani A.A. Enhancing landslide susceptibility mapping through advanced hybridization of bootstrap aggregating based decision tree algorithms. Earth Sci. Inform. 2025 18 1 111 10.1007/s12145‑024‑01496‑z
    [Google Scholar]
  57. Al-Selwi S.M. Hassan M.F. Abdulkadir S.J. RNN-LSTM: From applications to modeling techniques and beyond—Systematic review. J King Saud Univ Comput Inf Sci 2024 36 5 102068 10.1016/j.jksuci.2024.102068
    [Google Scholar]
  58. Wang L. Wu J. Zhang W. Wang L. Cui W. Efficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithms. Front Earth Sci 2021 9 807317 10.3389/feart.2021.807317
    [Google Scholar]
  59. Bai D. Lu G. Zhu Z. Tang J. Fang J. Wen A. Using time series analysis and dual-stage attention-based recurrent neural network to predict landslide displacement. Environ. Earth Sci. 2022 81 21 509 10.1007/s12665‑022‑10637‑w
    [Google Scholar]
  60. Gao C. Pan C. Dynamic prediction of landslide displacement using time series GRU and incorporating environmental variables. J Eng Sci Technol Rev 2024 17 6 208 215 10.25103/jestr.176.23
    [Google Scholar]
  61. Wang Y. Tang H. Wen T. Ma J. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl. Soft Comput. 2019 81 105506 10.1016/j.asoc.2019.105506
    [Google Scholar]
  62. Lim J. Santinelli G. Dahal A. Vrieling A. Lombardo L. An ensemble neural network approach for space–time landslide predictive modelling. Int. J. Appl. Earth Obs. Geoinf. 2024 132 104037 10.1016/j.jag.2024.104037
    [Google Scholar]
  63. Zhou C. Ye M. Xia Z. Wang W. Luo C. Muller J.P. An interpretable attention-based deep learning method for landslide prediction based on multi-temporal InSAR time series: A case study of Xinpu landslide in the TGRA. Remote Sens. Environ. 2025 318 114580 10.1016/j.rse.2024.114580
    [Google Scholar]
  64. Wang H. Ao Y. Wang C. Zhang Y. Zhang X. A dynamic prediction model of landslide displacement based on VMD–SSO–LSTM approach. Sci. Rep. 2024 14 1 9203 10.1038/s41598‑024‑59517‑2 38649403
    [Google Scholar]
  65. Wang H. Shao P. Wang H. A VMD-DES-TSAM-LSTM-based interpretability multi-step prediction approach for landslide displacement. Environ. Earth Sci. 2024 83 7 193 10.1007/s12665‑024‑11503‑7
    [Google Scholar]
  66. Takaoka S. A landscape-level study on vegetation richness of ancient landslide areas. Prog. Phys. Geogr. 2024 48 1 45 59 10.1177/03091333231206314
    [Google Scholar]
  67. Ghorbanzadeh O. Xu Y. Zhao H. The outcome of the 2022 landslide4sense competition: Advanced landslide detection from multisource satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022 15 January 9927 9942 10.1109/JSTARS.2022.3220845
    [Google Scholar]
  68. Zhang F. Shi Y. Xu Q. Xiong Z. Yao W. On the generalization of the semantic segmentation model for landslide detection. 2022 CDCEO 2022: 2nd Workshop on Complex Data Challenges in Earth Observation July 25, 2022 Vienna, Austria
    [Google Scholar]
  69. Jia L. Leng X. Wang X. Nie M. Recognizing landslides in remote sensing images based on enhancement of information in digital elevation models. Remote Sens. Lett. 2024 15 3 224 232 10.1080/2150704X.2024.2313611
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279381613250707181318
Loading
/content/journals/swcc/10.2174/0122103279381613250707181318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test