Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Alzheimer's disease (AD) is a multidimensional, complex condition that affects individuals all over the world. Despite decades of experimental and clinical research that has revealed various processes, many concerns concerning the origin of Alzheimer's disease remain unresolved. Despite the notion that there isn't a complete set of jigsaw pieces, the growing number of public data-sharing initiatives that collect biological, clinical, and lifestyle data from those suffering from Alzheimer's disease has resulted in virtually endless volumes of knowledge about the disorder, far beyond what humans can comprehend. Furthermore, combining Big Data from multi-omics research gives a chance to investigate the pathophysiological processes underlying the whole biological spectrum of Alzheimer's disease. To improve knowledge on the subject of Alzheimer's disease, Artificial Intelligence (AI) offers a wide variety of approaches for evaluating complex and significant data. The introduction of next-generation sequencing and microarray technologies has resulted in significant growth in genetic data research. When it comes to assessing such complex projects, AI technology beats conventional statistical techniques of data processing. This review focuses on current research and potential challenges for AI in Alzheimer's disease research. This article, in particular, examines how AI may assist healthcare practitioners with patient stratification, estimating an individual's chance of AD conversion, and diagnosing AD using computer-aided diagnostic methodologies. Ultimately, scientists want to develop individualized, efficient medicines.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871330861241030143321
2024-11-19
2025-09-29
Loading full text...

Full text loading...

References

  1. ScheltensP. StrooperD.B. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. FlierV.D.W.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  2. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  3. McKeithI.G. BoeveB.F. DicksonD.W. HallidayG. TaylorJ.P. WeintraubD. AarslandD. GalvinJ. AttemsJ. BallardC.G. BaystonA. BeachT.G. BlancF. BohnenN. BonanniL. BrasJ. BrundinP. BurnD. PlotkinC.A. DudaJ.E. AgnafE.O. FeldmanH. FermanT.J. FfytcheD. FujishiroH. GalaskoD. GoldmanJ.G. GompertsS.N. RadfordG.N.R. HonigL.S. IranzoA. KantarciK. KauferD. KukullW. LeeV.M.Y. LeverenzJ.B. LewisS. LippaC. LundeA. MasellisM. MasliahE. McLeanP. MollenhauerB. MontineT.J. MorenoE. MoriE. MurrayM. O’BrienJ.T. OrimoS. PostumaR.B. RamaswamyS. RossO.A. SalmonD.P. SingletonA. TaylorA. ThomasA. TiraboschiP. ToledoJ.B. TrojanowskiJ.Q. TsuangD. WalkerZ. YamadaM. KosakaK. Diagnosis and management of dementia with Lewy bodies.Neurology20178918810010.1212/WNL.000000000000405828592453
    [Google Scholar]
  4. RascovskyK. HodgesJ.R. KnopmanD. MendezM.F. KramerJ.H. NeuhausJ. SwietenV.J.C. SeelaarH. DopperE.G.P. OnyikeC.U. HillisA.E. JosephsK.A. BoeveB.F. KerteszA. SeeleyW.W. RankinK.P. JohnsonJ.K. TempiniG.M.L. RosenH. LathamP.C.E. LeeA. KippsC.M. LilloP. PiguetO. RohrerJ.D. RossorM.N. WarrenJ.D. FoxN.C. GalaskoD. SalmonD.P. BlackS.E. MesulamM. WeintraubS. DickersonB.C. SchmidD.J. PasquierF. DeramecourtV. LebertF. PijnenburgY. ChowT.W. ManesF. GrafmanJ. CappaS.F. FreedmanM. GrossmanM. MillerB.L. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia.Brain201113492456247710.1093/brain/awr17921810890
    [Google Scholar]
  5. BeachT.G. MonsellS.E. PhillipsL.E. KukullW. Accuracy of the clinical diagnosis of Alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010.J. Neuropathol. Exp. Neurol.201271426627310.1097/NEN.0b013e31824b211b22437338
    [Google Scholar]
  6. SancesarioG.M. BernardiniS. Diagnosis of neurodegenerative dementia: Where do we stand, now?Ann. Transl. Med.201861734010.21037/atm.2018.08.0430306079
    [Google Scholar]
  7. CrutchS.J. LehmannM. SchottJ.M. RabinoviciG.D. RossorM.N. FoxN.C. Posterior cortical atrophy.Lancet Neurol.201211217017810.1016/S1474‑4422(11)70289‑722265212
    [Google Scholar]
  8. AlbertM.S. DeKoskyS.T. DicksonD. DuboisB. FeldmanH.H. FoxN.C. GamstA. HoltzmanD.M. JagustW.J. PetersenR.C. SnyderP.J. CarrilloM.C. ThiesB. PhelpsC.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117327027910.1016/j.jalz.2011.03.00821514249
    [Google Scholar]
  9. HampelH. NisticòR. SeyfriedN.T. LeveyA.I. ModesteE. LemercierP. BaldacciF. ToschiN. GaraciF. PerryG. EmanueleE. ValenzuelaP.L. LuciaA. UrbaniA. SancesarioG.M. MapstoneM. CorboM. VergalloA. ListaS. Omics sciences for systems biology in Alzheimer’s disease: State-of-the-art of the evidence.Ageing Res. Rev.20216910134610.1016/j.arr.2021.10134633915266
    [Google Scholar]
  10. BraakH. BraakE. Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol.199182423925910.1007/BF003088091759558
    [Google Scholar]
  11. BraakH. VosR.A.I. JansenE.N.H. BratzkeH. BraakE. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases.Prog. Brain Res.199811726728510.1016/S0079‑6123(08)64021‑29932414
    [Google Scholar]
  12. FabrizioC. TermineA. CaltagironeC. SancesarioG. Artificial intelligence for Alzheimer’s Disease: Promise or challenge?Diagnostics2021118147310.3390/diagnostics1108147334441407
    [Google Scholar]
  13. LivingstonG. HuntleyJ. SommerladA. AmesD. BallardC. BanerjeeS. BrayneC. BurnsA. MansfieldC.J. CooperC. CostafredaS.G. DiasA. FoxN. GitlinL.N. HowardR. KalesH.C. KivimäkiM. LarsonE.B. OgunniyiA. OrgetaV. RitchieK. RockwoodK. SampsonE.L. SamusQ. SchneiderL.S. SelbækG. TeriL. MukadamN. Dementia prevention, intervention, and care: 2020 report of the lancet commission.Lancet20203961024841344610.1016/S0140‑6736(20)30367‑632738937
    [Google Scholar]
  14. ManouxS.A. DugravotA. FournierA. AbellJ. EbmeierK. KivimäkiM. SabiaS. Trajectories of depressive symptoms before diagnosis of dementia: A 28-year follow-up study.JAMA Psychiatry201774771271810.1001/jamapsychiatry.2017.066028514478
    [Google Scholar]
  15. SancesarioG.M. BernardiniS. Alzheimer’s disease in the omics era.Clin. Biochem.20185991610.1016/j.clinbiochem.2018.06.01129920246
    [Google Scholar]
  16. GunningD. StefikM. ChoiJ. MillerT. StumpfS. YangG.Z. XAI—Explainable artificial intelligence.Sci. Robot.2019437eaay712010.1126/scirobotics.aay712033137719
    [Google Scholar]
  17. QuinnJ.F. RamanR. ThomasR.G. MauroY.K. NelsonE.B. DyckV.C. GalvinJ.E. EmondJ. JackC.R.Jr WeinerM. ShintoL. AisenP.S. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial.JAMA2010304171903191110.1001/jama.2010.151021045096
    [Google Scholar]
  18. FallaS.D. GutierrezC.L. PorteliusE. VélezJ.I. DujardinS. OcampoB.A. DinkelF. HagelC. PuigB. MastronardiC. LoperaF. HymanB.T. BlennowK. BurgosA.M. StrooperD.B. GlatzelM. A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease.Acta Neuropathol.2021141221723310.1007/s00401‑020‑02249‑033319314
    [Google Scholar]
  19. RichardsB.A. LillicrapT.P. BeaudoinP. BengioY. BogaczR. ChristensenA. ClopathC. CostaR.P. BerkerD.A. GanguliS. GillonC.J. HafnerD. KepecsA. KriegeskorteN. LathamP. LindsayG.W. MillerK.D. NaudR. PackC.C. PoiraziP. RoelfsemaP. SacramentoJ. SaxeA. ScellierB. SchapiroA.C. SennW. WayneG. YaminsD. ZenkeF. ZylberbergJ. TherienD. KordingK.P. A deep learning framework for neuroscience.Nat. Neurosci.201922111761177010.1038/s41593‑019‑0520‑231659335
    [Google Scholar]
  20. GeertsH. DacksP.A. DevanarayanV. HaasM. KhachaturianZ.S. GordonM.F. MaudsleyS. RomeroK. StephensonD. InitiativeB.H.M. Big data to smart data in Alzheimer’s disease: The brain health modeling initiative to foster actionable knowledge.Alzheimers Dement.20161291014102110.1016/j.jalz.2016.04.00827238630
    [Google Scholar]
  21. VinyalsO. BabuschkinI. CzarneckiW.M. MathieuM. DudzikA. ChungJ. ChoiD.H. PowellR. EwaldsT. GeorgievP. OhJ. HorganD. KroissM. DanihelkaI. HuangA. SifreL. CaiT. AgapiouJ.P. JaderbergM. VezhnevetsA.S. LeblondR. PohlenT. DalibardV. BuddenD. SulskyY. MolloyJ. PaineT.L. GulcehreC. WangZ. PfaffT. WuY. RingR. YogatamaD. WünschD. McKinneyK. SmithO. SchaulT. LillicrapT. KavukcuogluK. HassabisD. AppsC. SilverD. Grandmaster level in starcraft II using multi-agent reinforcement learning.Nature2019575778235035410.1038/s41586‑019‑1724‑z31666705
    [Google Scholar]
  22. American medical association augmented intelligence in health care.2019
    [Google Scholar]
  23. MitchellJ.B.O. BuchananB. DeJongG. DietterichT. RosenbloomP. WaibelA. Machine learning methods in chemoinformatics.Wiley Interdiscip. Rev. Comput. Mol. Sci.20144546848110.1002/wcms.118325285160
    [Google Scholar]
  24. LeCunY. BengioY. HintonG. Deep learning.Nature20155217553436444
    [Google Scholar]
  25. TolarM. HeyJ. PowerA. AbushakraS. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression.Int. J. Mol. Sci.20212212635510.3390/ijms2212635534198582
    [Google Scholar]
  26. MishraR. LiB. The application of artificial intelligence in the genetic study of Alzheimer’s disease.Aging Dis.20201161567158410.14336/AD.2020.031233269107
    [Google Scholar]
  27. SchneiderG. Automating drug discovery.Nat. Rev. Drug Discov.20181729711310.1038/nrd.2017.23229242609
    [Google Scholar]
  28. ZhangM. UlmsS.G. SatoC. XiZ. ZhangY. ZhouY. HyslopS.G.P. RogaevaE. Drug repositioning for Alzheimer’s disease based on systematic omics data mining.PLoS One20161112e016881210.1371/journal.pone.016881228005991
    [Google Scholar]
  29. KumarS. ChowdhuryS. KumarS. In silico repurposing of antipsychotic drugs for Alzheimer’s disease.BMC Neurosci.20171817610.1186/s12868‑017‑0394‑829078760
    [Google Scholar]
  30. XuY. KongJ. HuP. Computational drug repurposing for Alzheimer’s disease using risk genes from GWAS and single-cell RNA sequencing studies.Front. Pharmacol.20211261753710.3389/fphar.2021.61753734276354
    [Google Scholar]
  31. HarrerS. ShahP. AntonyB. HuJ. Artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.00531326235
    [Google Scholar]
  32. HeJ. BaxterS.L. XuJ. XuJ. ZhouX. ZhangK. The practical implementation of artificial intelligence technologies in medicine.Nat. Med.2019251303610.1038/s41591‑018‑0307‑030617336
    [Google Scholar]
  33. TranB.X. VuG.T. HaG.H. VuongQ.H. HoM.T. VuongT.T. LaV.P. HoM.T. NghiemK.C.P. NguyenH.L.T. LatkinC.A. TamW.W.S. CheungN.M. NguyenH.K.T. HoC.S.H. HoR.C.M. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study.J. Clin. Med.20198336010.3390/jcm803036030875745
    [Google Scholar]
  34. TermineA. FabrizioC. StrafellaC. CaputoV. PetrosiniL. CaltagironeC. GiardinaE. CascellaR. Multi-layer picture of neurodegenerative diseases: Lessons from the use of big data through artificial intelligence.J. Pers. Med.202111428010.3390/jpm1104028033917161
    [Google Scholar]
  35. AshishN. BhattP. TogaA.W. Global data sharing in Alzheimer disease research.Alzheimer Dis. Assoc. Disord.201630216016810.1097/WAD.000000000000012126523713
    [Google Scholar]
  36. BertramL. McQueenM.B. MullinK. BlackerD. TanziR.E. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database.Nat. Genet.2007391172310.1038/ng193417192785
    [Google Scholar]
  37. BeeklyD.L. RamosE.M. LeeW.W. DeitrichW.D. JackaM.E. WuJ. HubbardJ.L. KoepsellT.D. MorrisJ.C. KukullW.A. The national Alzheimer’s coordinating center (NACC) database: The uniform data set.Alzheimer Dis. Assoc. Disord.200721324925810.1097/WAD.0b013e318142774e17804958
    [Google Scholar]
  38. HaiderF. FuenteD.L.S. LuzS. An assessment of paralinguistic acoustic features for detection of Alzheimer’s dementia in spontaneous speech.IEEE J. Sel. Top. Signal Process.202014227228110.1109/JSTSP.2019.2955022
    [Google Scholar]
  39. BeckerJ.T. BollerF. LopezO.L. SaxtonJ. McGonigleK.L. The natural history of Alzheimer’s disease. Description of study cohort and accuracy of diagnosis.Arch. Neurol.199451658559410.1001/archneur.1994.005401800630158198470
    [Google Scholar]
  40. EdgarR. DomrachevM. LashA.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.20711752295
    [Google Scholar]
  41. SudlowC. GallacherJ. AllenN. BeralV. BurtonP. DaneshJ. DowneyP. ElliottP. GreenJ. LandrayM. LiuB. MatthewsP. OngG. PellJ. SilmanA. YoungA. SprosenT. PeakmanT. CollinsR. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age.PLoS Med.2015123e100177910.1371/journal.pmed.100177925826379
    [Google Scholar]
  42. SpasovS. PassamontiL. DuggentoA. LiòP. ToschiN. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease.Neuroimage201918927628710.1016/j.neuroimage.2019.01.03130654174
    [Google Scholar]
  43. CabralC. MorgadoP.M. CostaC.D. SilveiraM. Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages.Comput. Biol. Med.20155810110910.1016/j.compbiomed.2015.01.00325625698
    [Google Scholar]
  44. ChengB. LiuM. ZhangD. MunsellB.C. ShenD. Domain transfer learning for MCI conversion prediction.IEEE Trans. Biomed. Eng.20156271805181710.1109/TBME.2015.240480925751861
    [Google Scholar]
  45. CuingnetR. GerardinE. TessierasJ. AuziasG. LehéricyS. HabertM.O. ChupinM. BenaliH. ColliotO. InitiativeA.S.D.N. Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database.Neuroimage2011562766781
    [Google Scholar]
  46. EngedalK. BarcaM.L. HøghP. Bo AndersenB. DombernowskyW.N. NaikM. GudmundssonT.E. ØksengaardA.R. WahlundL.O. SnaedalJ. The power of EEG to predict conversion from mild cognitive impairment and subjective cognitive decline to dementia.Dement. Geriatr. Cogn. Disord.2020491384710.1159/00050839232610316
    [Google Scholar]
  47. GrassiM. RouleauxN. CaldirolaD. LoewensteinD. SchruersK. PernaG. DumontierM. A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s disease using socio-demographic characteristics, clinical information, and neuropsychological measures.Front. Neurol.20191075610.3389/fneur.2019.0075631379711
    [Google Scholar]
  48. LeeG. NhoK. KangB. SohnK.A. KimD. WeinerM.W. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. KhachaturianZ. SorensenG. CarrilloM. KullerL. RaichleM. PaulS. DaviesP. FillitH. HeftiF. HoltzmanD. MesulamM.M. PotterW. SnyderP. MontineT. ThomasR.G. DonohueM. WalterS. SatherT. JiminezG. BalasubramanianA.B. MasonJ. SimI. HarveyD. BernsteinM. FoxN. ThompsonP. SchuffN. DeCArliC. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. ReinwaldT.L. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS. ShenL. FaberK. KimS. ThaL. FrankR. HsiaoJ. KayeJ. QuinnJ. SilbertL. LindB. CarterR. DolenS. AncesB. CarrollM. CreechM.L. FranklinE. MintunM.A. SchneiderS. OliverA. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. MarsonD. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. LoveM.N. HeidebrinkJ.L. LordJ.L. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. GrossmanH. MitsisE. ShahR.C. MorrellD.L. DoodyR.S. MeyerV.J. ChowdhuryM. RountreeS. DangM. DuaraR. VaronD. GreigM.T. RobertsP. SternY. HonigL.S. BellK.L. AlbertM. OnyikeC. D’AgostinoD.II KielbS. GalvinJ.E. CerboneB. MichelC.A. PogorelecD.M. RusinekH. LeonD.M.J. GlodzikL. SantiD.S. WomackK. MathewsD. QuicenoM. DoraiswamyP.M. PetrellaJ.R. NetoB.S. WongT.Z. ColemanE. LeveyA.I. LahJ.J. CellaJ.S. BurnsJ.M. SwerdlowR.H. BrooksW.M. ArnoldS.E. KarlawishJ.H. WolkD. ClarkC.M. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. RadfordG.N.R. ParfittF. KendallT. JohnsonH. LopezO.L. OakleyM. SimpsonD.M. FarlowM.R. HakeA.M. MatthewsB.R. BroschJ.R. HerringS. HuntC. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. OrtizM.A.C. DyckV.C.H. CarsonR.E. MacAvoyM.G. VarmaP. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. HsiungG.Y.R. FeldmanH. MudgeB. AssalyM. FingerE. PasternackS. RachiskyI. TrostD. KerteszA. BernickC. MunicD. LipowskiK. WeintraubM. BonakdarpourB. KerwinD. WuC.K. JohnsonN. SadowskyC. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. YesavageJ. TaylorJ.L. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. ObisesanT.O. WoldayS. AllardJ. LernerA. OgrockiP. TatsuokaC. FaticaP. FletcherE. MaillardP. OlichneyJ. CarmichaelO. KitturS. BorrieM. LeeT.Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PredaA. NguyenD. TariotP. BurkeA. TrncicN. FleisherA. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. FlashmanL.A. SeltzerM. HynesM.L. SantulliR.B. SinkK.M. GordineerL. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. PerryD. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. RogersJ. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. PontoL.L.B. ShimH. SmithK.E. RelkinN. ChaingG. LinM. RavdinL. SmithA. RajB.A. FargherK. Predicting Alzheimer’s disease progression using multi-modal deep learning approach.Sci. Rep.201991195210.1038/s41598‑018‑37769‑z30760848
    [Google Scholar]
  49. LiuS. LiuS. CaiW. CheH. PujolS. KikinisR. FengD. FulhamM.J. Adni Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease.IEEE Trans. Biomed. Eng.20156241132114010.1109/TBME.2014.237201125423647
    [Google Scholar]
  50. MoradiE. PepeA. GaserC. HuttunenH. TohkaJ. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.Neuroimage201510439841210.1016/j.neuroimage.2014.10.00225312773
    [Google Scholar]
  51. PanD. ZengA. JiaL. HuangY. FrizzellT. SongX. Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning.Front. Neurosci.20201425910.3389/fnins.2020.0025932477040
    [Google Scholar]
  52. PlateroC. TobarM.C. Predicting Alzheimer’s conversion in mild cognitive impairment patients using longitudinal neuroimaging and clinical markers.Brain Imaging Behav.20211541728173810.1007/s11682‑020‑00366‑833169305
    [Google Scholar]
  53. PusilS. DimitriadisS.I. LópezM.E. PeredaE. MaestúF. Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer’s disease.Neuroimage Clin.20192410197210.1016/j.nicl.2019.10197231522127
    [Google Scholar]
  54. TongT. GaoQ. GuerreroR. LedigC. ChenL. RueckertD. InitiativeA.D.N. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease.IEEE Trans. Biomed. Eng.201764115516510.1109/TBME.2016.254936327046891
    [Google Scholar]
  55. YanY. SomerE. GrauV. Classification of amyloid PET images using novel features for early diagnosis of Alzheimer’s disease and mild cognitive impairment conversion.Nucl. Med. Commun.201940324224810.1097/MNM.000000000000095330507747
    [Google Scholar]
  56. DavatzikosC. BhattP. ShawL.M. BatmanghelichK.N. TrojanowskiJ.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification.Neurobiol. Aging201132122322.e192322.e2710.1016/j.neurobiolaging.2010.05.02320594615
    [Google Scholar]
  57. BaeJ. StocksJ. HeywoodA. JungY. JenkinsL. HillV. KatsaggelosA. PopuriK. RosenH. BegM.F. WangL. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network.Neurobiol. Aging202199536410.1016/j.neurobiolaging.2020.12.00533422894
    [Google Scholar]
  58. PetersenR.C. How early can we diagnose Alzheimer disease (and is it sufficient)?Neurology201891939540210.1212/WNL.000000000000608830089620
    [Google Scholar]
  59. GrundmanM. PetersenR.C. FerrisS.H. ThomasR.G. AisenP.S. BennettD.A. FosterN.L. JackC.R.Jr GalaskoD.R. DoodyR. KayeJ. SanoM. MohsR. GauthierS. KimH.T. JinS. SchultzA.N. SchaferK. MulnardR. DyckV.C.H. MintzerJ. ZamriniE.Y. WeinerC.D. ThalL.J. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials.Arch. Neurol.2004611596610.1001/archneur.61.1.5914732621
    [Google Scholar]
  60. LinW. GaoQ. YuanJ. ChenZ. FengC. ChenW. DuM. TongT. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data.Front. Aging Neurosci.2020127710.3389/fnagi.2020.0007732296326
    [Google Scholar]
  61. KohannimO. HuaX. HibarD.P. LeeS. ChouY.Y. TogaA.W. JackC.R.Jr WeinerM.W. ThompsonP.M. Boosting power for clinical trials using classifiers based on multiple biomarkers.Neurobiol. Aging20103181429144210.1016/j.neurobiolaging.2010.04.02220541286
    [Google Scholar]
  62. WalhovdK.B. FjellA.M. BrewerJ. McEvoyL.K. NotestineF.C. HaglerD.J.Jr JenningsR.G. KarowD. DaleA.M. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease.AJNR Am. J. Neuroradiol.201031234735410.3174/ajnr.A180920075088
    [Google Scholar]
  63. WestmanE. MuehlboeckJ.S. SimmonsA. Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion.Neuroimage201262122923810.1016/j.neuroimage.2012.04.05622580170
    [Google Scholar]
  64. GaoJ. LiP. ChenZ. ZhangJ. A survey on deep learning for multimodal data fusion.Neural Comput.202032582986410.1162/neco_a_0127332186998
    [Google Scholar]
  65. SappaghE.S. AlonsoJ.M. IslamS.M.R. SultanA.M. KwakK.S. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease.Sci. Rep.2021111266010.1038/s41598‑021‑82098‑333514817
    [Google Scholar]
  66. SancesarioG.M. TonioloS. ChiasseriniD. SantoD.S.G. ZegeerJ. BernardiG. MusiccoM. CaltagironeC. ParnettiL. BernardiniS. The clinical use of cerebrospinal fluid biomarkers for Alzheimer’s disease diagnosis: The italian selfie.J. Alzheimers Dis.20165541659166610.3233/JAD‑16097527911328
    [Google Scholar]
  67. MattssonN. PalmqvistS. StomrudE. VogelJ. HanssonO. Staging β -Amyloid pathology with amyloid positron emission tomography.JAMA Neurol.201976111319132910.1001/jamaneurol.2019.221431314895
    [Google Scholar]
  68. RabinoviciG.D. GatsonisC. ApgarC. ChaudharyK. GareenI. HannaL. HendrixJ. HillnerB.E. OlsonC. SegevL.O.H. RomanoffJ. SiegelB.A. WhitmerR.A. CarrilloM.C. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia.JAMA2019321131286129410.1001/jama.2019.200030938796
    [Google Scholar]
  69. OssenkoppeleR. RabinoviciG.D. SmithR. ChoH. SchöllM. StrandbergO. PalmqvistS. MattssonN. JanelidzeS. SantilloA. OhlssonT. JögiJ. TsaiR. JoieL.R. KramerJ. BoxerA.L. TempiniG.M.L. MillerB.L. ChoiJ.Y. RyuY.H. LyooC.H. HanssonO. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders.JAMA2018320111151116210.1001/jama.2018.1291730326496
    [Google Scholar]
  70. PreischeO. SchultzS.A. ApelA. KuhleJ. KaeserS.A. BarroC. GräberS. BulettaK.E. LaFougereC. LaskeC. VögleinJ. LevinJ. MastersC.L. MartinsR. SchofieldP.R. RossorM.N. RadfordG.N.R. SallowayS. GhettiB. RingmanJ.M. NobleJ.M. ChhatwalJ. GoateA.M. BenzingerT.L.S. MorrisJ.C. BatemanR.J. WangG. FaganA.M. McDadeE.M. GordonB.A. JuckerM. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease.Nat. Med.201925227728310.1038/s41591‑018‑0304‑330664784
    [Google Scholar]
  71. PalmqvistS. JanelidzeS. StomrudE. ZetterbergH. KarlJ. ZinkK. BittnerT. MattssonN. EichenlaubU. BlennowK. HanssonO. Performance of fully automated plasma assays as screening tests for Alzheimer disease–related β-amyloid status.JAMA Neurol.20197691060106910.1001/jamaneurol.2019.163231233127
    [Google Scholar]
  72. SchindlerS.E. BollingerJ.G. OvodV. MawuenyegaK.G. LiY. GordonB.A. HoltzmanD.M. MorrisJ.C. BenzingerT.L.S. XiongC. FaganA.M. BatemanR.J. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis.Neurology20199317e1647e165910.1212/WNL.000000000000808131371569
    [Google Scholar]
  73. JanelidzeS. MattssonN. PalmqvistS. SmithR. BeachT.G. SerranoG.E. ChaiX. ProctorN.K. EichenlaubU. ZetterbergH. BlennowK. ReimanE.M. StomrudE. DageJ.L. HanssonO. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia.Nat. Med.202026337938610.1038/s41591‑020‑0755‑132123385
    [Google Scholar]
  74. PalmqvistS. TidemanP. CullenN. ZetterbergH. BlennowK. DageJ.L. StomrudE. JanelidzeS. CarlgrenM.N. HanssonO. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures.Nat. Med.20212761034104210.1038/s41591‑021‑01348‑z34031605
    [Google Scholar]
  75. SpallettaG. PirasF. PirasF. SancesarioG. IorioM. FratangeliC. CacciariC. CaltagironeC. OrfeiM.D. Neuroanatomical correlates of awareness of illness in patients with amnestic mild cognitive impairment who will or will not convert to Alzheimer’s disease.Cortex20146118319510.1016/j.cortex.2014.10.01025481475
    [Google Scholar]
  76. GiuliettiG. TorsoM. SerraL. SpanòB. MarraC. CaltagironeC. CercignaniM. BozzaliM. Whole brain white matter histogram analysis of diffusion tensor imaging data detects microstructural damage in mild cognitive impairment and alzheimer’s disease patients.J. Magn. Reson. Imaging201848376777910.1002/jmri.2594728815859
    [Google Scholar]
  77. McKhannG.M. KnopmanD.S. ChertkowH. HymanB.T. JackC.R.Jr KawasC.H. KlunkW.E. KoroshetzW.J. ManlyJ.J. MayeuxR. MohsR.C. MorrisJ.C. RossorM.N. ScheltensP. CarrilloM.C. ThiesB. WeintraubS. PhelpsC.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117326326910.1016/j.jalz.2011.03.00521514250
    [Google Scholar]
  78. SperlingR.A. AisenP.S. BeckettL.A. BennettD.A. CraftS. FaganA.M. IwatsuboT. JackC.R.Jr KayeJ. MontineT.J. ParkD.C. ReimanE.M. RoweC.C. SiemersE. SternY. YaffeK. CarrilloM.C. ThiesB. BogoradM.M. WagsterM.V. PhelpsC.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117328029210.1016/j.jalz.2011.03.00321514248
    [Google Scholar]
  79. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. Contributors NIA-AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  80. WilliamsonJ. GoldmanJ. MarderK.S. Genetic aspects of Alzheimer disease.Neurologist2009152808610.1097/NRL.0b013e318187e76b19276785
    [Google Scholar]
  81. GonzalezS.D. GórrizJ.M. RamírezJ. LópezM. ÁlvarezI. SegoviaF. ChavesR. PuntonetC.G. Computer-aided diagnosis of Alzheimer’s disease using support vector machines and classification trees.Phys. Med. Biol.201055102807281710.1088/0031‑9155/55/10/00220413829
    [Google Scholar]
  82. GórrizJ. RamírezJ. LasslA. GonzalezS.D. LangE. PuntonetC. ÁlvarezI. LópezM. RíoG.M. In Automatic computer aided diagnosis tool using component-based SVM.IEEE Nuclear Science Symposium Conference RecordDresden, Germany19-25 October20084392439510.1109/NSSMIC.2008.4774255
    [Google Scholar]
  83. MarcusD.S. WangT.H. ParkerJ. CsernanskyJ.G. MorrisJ.C. BucknerR.L. Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults.J. Cogn. Neurosci.20071991498150710.1162/jocn.2007.19.9.149817714011
    [Google Scholar]
  84. ZhangY. DongZ. PhillipsP. WangS. JiG. YangJ. YuanT.F. Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning.Front. Comput. Neurosci.201596610.3389/fncom.2015.0006626082713
    [Google Scholar]
  85. DingY. SohnJ.H. KawczynskiM.G. TrivediH. HarnishR. JenkinsN.W. LituievD. CopelandT.P. AboianM.S. ApariciM.C. BehrS.C. FlavellR.R. HuangS.Y. ZalocuskyK.A. NardoL. SeoY. HawkinsR.A. PampaloniH.M. HadleyD. FrancB.L. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain.Radiology2019290245646410.1148/radiol.201818095830398430
    [Google Scholar]
  86. RathoreS. HabesM. IftikharM.A. ShacklettA. DavatzikosC. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages.Neuroimage201715553054810.1016/j.neuroimage.2017.03.05728414186
    [Google Scholar]
  87. ChangC.H. LinC.H. LaneH.Y. Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease.Int. J. Mol. Sci.2021225276110.3390/ijms2205276133803217
    [Google Scholar]
  88. StamateD. KimM. ProitsiP. WestwoodS. BairdA. HolgadoN.A. HyeA. BosI. VosS.J.B. VandenbergheR. TeunissenC.E. KateM.T. ScheltensP. GabelS. MeersmansK. BlinO. RichardsonJ. RoeckD.E. EngelborghsS. SleegersK. BordetR. RamitL. KettunenP. TsolakiM. VerheyF. AlcoleaD. LléoA. PeyratoutG. TaintaM. JohannsenP. LeviF.Y. FrölichL. DobricicV. FrisoniG.B. MolinuevoJ.L. WallinA. PoppJ. LageM.P. BertramL. BlennowK. ZetterbergH. StrefferJ. VisserP.J. LovestoneS. QuigleyL.C. A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the european medical information framework for Alzheimer disease biomarker discovery cohort.Alzheimers Dement.20195193393810.1016/j.trci.2019.11.00131890857
    [Google Scholar]
  89. BinacoR. CalzarettoN. EpifanoJ. McGuireS. UmerM. EmraniS. WassermanV. LibonD.J. PolikarR. Machine learning analysis of digital clock drawing test performance for differential classification of mild cognitive impairment subtypes versus Alzheimer’s disease.J. Int. Neuropsychol. Soc.202026769070010.1017/S135561772000014432200771
    [Google Scholar]
  90. LiuQ. XieL. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.PLOS Comput. Biol.2021172e100865310.1371/journal.pcbi.100865333577560
    [Google Scholar]
  91. AnastasioT.J. Exploring the correlation between the cognitive benefits of drug combinations in a clinical database and the efficacies of the same drug combinations predicted from a computational model.J. Alzheimers Dis.201970128730210.3233/JAD‑19014431177222
    [Google Scholar]
  92. ZengX. ZhuS. LiuX. ZhouY. NussinovR. ChengF. DeepDR: A network-based deep learning approach to in silico drug repositioning.Bioinformatics201935245191519810.1093/bioinformatics/btz41831116390
    [Google Scholar]
  93. MartínezF.J.L. MachancosesA.Ó. GalianaD.E.J. BeaG. KloczkowskiA. Robust sampling of defective pathways in Alzheimer’s disease. Implications in drug repositioning.Int. J. Mol. Sci.20202110359410.3390/ijms2110359432438758
    [Google Scholar]
  94. LeeJ. KumarS. LeeS.Y. ParkS.J. KimM. Development of predictive models for identifying potential S100A9 inhibitors based on machine learning methods.Front Chem.2019777910.3389/fchem.2019.0077931824919
    [Google Scholar]
  95. SchultzK.J. ColbyS.M. YesiltepeY. NuñezJ.R. McGradyM.Y. RenslowR.S. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists.Phys. Chem. Chem. Phys.20212321197121410.1039/D0CP03620J33355332
    [Google Scholar]
  96. VignauxP.A. MineraliE. FoilD.H. PuhlA.C. EkinsS. Machine learning for discovery of GSK3β inhibitors.ACS Omega2020541265512656110.1021/acsomega.0c0330233110983
    [Google Scholar]
  97. VignauxP.A. MineraliE. LaneT.R. FoilD.H. MadridP.B. PuhlA.C. EkinsS. The antiviral drug tilorone is a potent and selective inhibitor of acetylcholinesterase.Chem. Res. Toxicol.20213451296130710.1021/acs.chemrestox.0c0046633400519
    [Google Scholar]
  98. PirzadaR.H. JavaidN. ChoiS. The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions.Genes202011213110.3390/genes1102013132012695
    [Google Scholar]
  99. CostamagnaG. ComiG.P. CortiS. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids.Int. J. Mol. Sci.2021225265910.3390/ijms2205265933800815
    [Google Scholar]
  100. TsujiS. HaseT. KinoshitaY.A. NishinoT. GhoshS. KikuchiM. ShimokawaK. AburataniH. KitanoH. TanakaH. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease.Alzheimers Res. Ther.20211319210.1186/s13195‑021‑00826‑333941241
    [Google Scholar]
  101. LuoP. TianL.P. RuanJ. WuF.X. Disease gene prediction by integrating ppi networks, clinical rna-seq data and omim data.IEEE/ACM Trans. Comput. Biol. Bioinformatics201916122223210.1109/TCBB.2017.277012029990218
    [Google Scholar]
  102. SpínolaS.A. BaldeirasI. ArraisJ.P. SantanaI. The road to personalized medicine in Alzheimer’s disease: The use of artificial intelligence.Biomedicines202210231510.3390/biomedicines1002031535203524
    [Google Scholar]
  103. ZengH. WuZ. ZhangJ. YangC. ZhangH. DaiG. KongW. EEG Emotion classification using an improved sincnet-based deep learning model.Brain Sci.201991132610.3390/brainsci911032631739605
    [Google Scholar]
  104. WuQ. YeY. LiuY. NgM.K. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.IEEE Trans. Nanobiosci.201211321622710.1109/TNB.2012.221423222987127
    [Google Scholar]
  105. NguyenT. HuangJ. WuQ. NguyenT. LiM. Genome-wide association data classification and snps selection using two-stage quality-based random forests.BMC Genomics2015162S510.1186/1471‑2164‑16‑S2‑S5
    [Google Scholar]
  106. HamidA.E.M.M. OmarY.M. MabroukM.S. In Identifying genetic biomarkers associated to Alzheimer's disease using support vector machine2016 8th Cairo International Biomedical Engineering Conference (CIBEC)Cairo, Egypt15-17 December201659
    [Google Scholar]
  107. LiQ. YangT. ZhanL. HibarD.P. JahanshadN. WangY. YeJ. ThompsonP.M. WangJ. In large-scale collaborative imaging genetics studies of risk genetic factors for Alzheimer’s disease across multiple institutions, medical image computing and computer-assisted Intervention–MICCAI 2016 19th International ConferenceAthens, GreeceOctober 17-212016335343
    [Google Scholar]
  108. LancourD. NajA. MayeuxR. HainesJ.L. VanceP.M.A. SchellenbergG.D. CrovellaM. FarrerL.A. KasifS. One for all and all for one: Improving replication of genetic studies through network diffusion.PLoS Genet.2018144e100730610.1371/journal.pgen.100730629684019
    [Google Scholar]
  109. TwamleyE.W. RopackiS.A.L. BondiM.W. Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease.J. Int. Neuropsychol. Soc.200612570773510.1017/S135561770606086316961952
    [Google Scholar]
  110. WangH. NieF. HuangH. RisacherS.L. SaykinA.J. ShenL. Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning.Bioinformatics20122812i127i13610.1093/bioinformatics/bts22822689752
    [Google Scholar]
  111. WangY. GohW. WongL. MontanaG. Random forests on hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.BMC Bioinformatics20131416S6
    [Google Scholar]
  112. DuL. YanJ. KimS. RisacherS.L. HuangH. InlowM. MooreJ.H. SaykinA.J. ShenL. In A novel structure-aware sparse learning algorithm for brain imaging genetics, medical image computing and computer-assisted Intervention–MICCAI2014 17th International ConferenceBoston, MA, USASeptember 14-182014329336
    [Google Scholar]
  113. DuL. HuangH. YanJ. KimS. RisacherS. InlowM. MooreJ. SaykinA. ShenL. Structured sparse CCA for brain imaging genetics via graph OSCAR.BMC Syst. Biol.201610S36810.1186/s12918‑016‑0312‑1
    [Google Scholar]
  114. HuoZ. ShenD. HuangH. In Genotype-phenotype association study via new multi-task learning model, pacific symposium on biocomputingPac Symp Biocomput201823353364
    [Google Scholar]
  115. SongA. YanJ. KimS. RisacherS. WongA. SaykinA. ShenL. GreeneC. Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer’s disease: A study of ADNI cohorts.BioData Min.201693
    [Google Scholar]
  116. HaoX. LiC. YanJ. YaoX. RisacherS.L. SaykinA.J. ShenL. ZhangD. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis.Bioinformatics20173314i341i34910.1093/bioinformatics/btx24528881979
    [Google Scholar]
  117. YangT. WangJ. SunQ. HibarD.P. JahanshadN. LiuL. WangY. ZhanL. ThompsonP.M. YeJ. In detecting genetic risk factors for Alzheimer's disease in whole genome sequence data via lasso screeningProc IEEE Int Symp Biomed Imaging20152015985989
    [Google Scholar]
  118. YangT. ThompsonP. ZhaoS. YeJ. Identifying genetic risk factors via sparse group lasso with group graph structure.arXiv20171709.03645
    [Google Scholar]
  119. BiaseD.L. RaianoL. CaminitiM.L. PecoraroP.M. LazzaroV.D. 3 - Artificial intelligence in Parkinson’s disease—symptoms identification and monitoring.Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence. PillaiA.S. MenonB. Academic Press2022355210.1016/B978‑0‑323‑90037‑9.00003‑5
    [Google Scholar]
  120. AnS. KangC. LeeH.W. Artificial intelligence and computational approaches for epilepsy.J. Epilepsy Res.202010181710.14581/jer.2000332983950
    [Google Scholar]
  121. AminM. HerasM.E. OntanedaD. CarrascoP.F. Artificial intelligence and multiple sclerosis.Curr. Neurol. Neurosci. Rep.202424823324310.1007/s11910‑024‑01354‑x38940994
    [Google Scholar]
  122. SeoK. ChungB. PanchaseelanH.P. KimT. ParkH. OhB. ChunM. WonS. KimD. BeomJ. JeonD. YangJ. Forecasting the walking assistance rehabilitation level of stroke patients using artificial intelligence.Diagnostics2021116109610.3390/diagnostics1106109634204000
    [Google Scholar]
  123. RossiniP.M. IorioD.R. VecchioF. AnfossiM. BabiloniC. BozzaliM. BruniA.C. CappaS.F. EscuderoJ. FragaF.J. GiannakopoulosP. GuntekinB. LogroscinoG. MarraC. MiragliaF. PanzaF. TecchioF. LeoneP.A. DuboisB. Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts.Clin. Neurophysiol.202013161287131010.1016/j.clinph.2020.03.00332302946
    [Google Scholar]
  124. PascarellaA. ManzoL. FerlazzoE. Modern neurophysiological techniques indexing normal or abnormal brain aging.Seizure2024S1059-131124001948
    [Google Scholar]
  125. LiuX. ChenK. WuT. WeidmanD. LureF. LiJ. Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer’s disease.Transl. Res.2018194566710.1016/j.trsl.2018.01.00129352978
    [Google Scholar]
  126. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  127. ShethD. GigerM.L. Artificial intelligence in the interpretation of breast cancer on MRI.J. Magn. Reson. Imaging20205151310132410.1002/jmri.2687831343790
    [Google Scholar]
  128. KalavarM. KhersanA.H. SridharJ. GorniakR.J. LakhaniP.C. FlandersA.E. KuriyanA.E. Applications of artificial intelligence for the detection, management, and treatment of diabetic retinopathy.Int. Ophthalmol. Clin.202060412714510.1097/IIO.000000000000033333093322
    [Google Scholar]
  129. KannB.H. HosnyA. AertsH.J.W.L. Artificial intelligence for clinical oncology.Cancer Cell202139791692710.1016/j.ccell.2021.04.00233930310
    [Google Scholar]
  130. RajkomarA. DeanJ. KohaneI. Machine learning in medicine.N. Engl. J. Med.2019380141347135810.1056/NEJMra181425930943338
    [Google Scholar]
  131. StafieC.S. SufaruI.G. GhiciucC.M. StafieI.I. SufaruE.C. SolomonS.M. HancianuM. Exploring the intersection of artificial intelligence and clinical healthcare: A multidisciplinary review.Diagnostics20231312199510.3390/diagnostics1312199537370890
    [Google Scholar]
  132. WolpertD.H. MacreadyW.G. No free lunch theorems for optimization.IEEE Trans. Evol. Comput.199711678210.1109/4235.585893
    [Google Scholar]
  133. WaringJ. LindvallC. UmetonR. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.Artif. Intell. Med.202010410182210.1016/j.artmed.2020.10182232499001
    [Google Scholar]
  134. WirthR. HippJ. In CRISP-DM: Towards a standard process model for data miningProceedings of the 4th international conference on the practical applications of knowledge discovery and data miningManchester20002939
    [Google Scholar]
  135. VougasK. SakellaropoulosT. KotsinasA. FoukasG.R.P. NtargarasA. KoinisF. PolyzosA. MyrianthopoulosV. ZhouH. NarangS. GeorgouliasV. AlexopoulosL. AifantisI. TownsendP.A. SfikakisP. FitzgeraldR. ThanosD. BartekJ. PettyR. TsirigosA. GorgoulisV.G. Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining.Pharmacol. Ther.201920310739510.1016/j.pharmthera.2019.10739531374225
    [Google Scholar]
  136. EschenbachV.W.J. Transparency and the black box problem: Why we do not trust AI.Philos. Technol.20213441607162210.1007/s13347‑021‑00477‑0
    [Google Scholar]
  137. CathC. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges.Philos. Trans. Royal Soc. Math. Phys. Eng. Sci.201837621332018008010.1098/rsta.2018.008030322996
    [Google Scholar]
  138. DwivediR. DaveD. NaikH. SinghalS. OmerR. PatelP. QianB. WenZ. ShahT. MorganG. RanjanR. ExplainableA.I. Explainable AI (XAI): Core ideas, techniques, and solutions.ACM Comput. Surv.202355913310.1145/3561048
    [Google Scholar]
  139. ZafarM.R. KhanN. Deterministic local interpretable model-agnostic explanations for stable explainability.Mach. Learn. Knowl. Extr.20213352554110.3390/make3030027
    [Google Scholar]
  140. McLennanS. FiskeA. TigardD. MüllerR. HaddadinS. BuyxA. Embedded ethics: A proposal for integrating ethics into the development of medical AI.BMC Med. Ethics2022231610.1186/s12910‑022‑00746‑335081955
    [Google Scholar]
  141. ParikhR.B. TeepleS. NavatheA.S. Addressing bias in artificial intelligence in health care.JAMA2019322242377237810.1001/jama.2019.1805831755905
    [Google Scholar]
  142. NasirS. KhanR.A. BaiS. Ethical framework for harnessing the power of AI in healthcare and beyond.IEEE Access202412310143103510.1109/ACCESS.2024.3369912
    [Google Scholar]
  143. MaudsleyS. DevanarayanV. MartinB. GeertsH. InitiativeB.H.M. Intelligent and effective informatic deconvolution of Big Data and its future impact on the quantitative nature of neurodegenerative disease therapy.Alzheimers Dement.201814796197510.1016/j.jalz.2018.01.01429551332
    [Google Scholar]
  144. VallianiA.A.A. RantiD. OermannE.K. Deep learning and neurology: A systematic review.Neurol. Ther.20198235136510.1007/s40120‑019‑00153‑831435868
    [Google Scholar]
  145. SinghA. SenguptaS. LakshminarayananV. Explainable deep learning models in medical image analysis.J. Imaging2020665210.3390/jimaging606005234460598
    [Google Scholar]
  146. FengX. YangJ. LiptonZ.C. SmallS.A. ProvenzanoF.A. Deep learning on MRI affirms the prominence of the hippocampal formation in Alzheimer’s disease classification.bioRxiv2018136
    [Google Scholar]
  147. LundbergS.M. LeeS-I. A unified approach to interpreting model predictions.arXiv20171705.07874
    [Google Scholar]
  148. GrapovD. FahrmannJ. WanichthanarakK. KhoomrungS. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine.OMICS2018221063063610.1089/omi.2018.009730124358
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871330861241030143321
Loading
/content/journals/rrct/10.2174/0115748871330861241030143321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test