Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Polycystic Ovary Syndrome (PCOS) is a highly prevalent endocrine disorder that affects women of reproductive age. PCOS is further correlated with infertility, menstrual dysfunction, and hyperandrogenism. Despite the advanced understanding of reproductive biology, the exact causes of PCOS remain ambiguous. Nevertheless, several factors are believed to contribute to the development of PCOS, including insulin resistance, hyperinsulinemia, obesity, and genetic predispositions. The diagnosis of PCOS is complicated by its phenotypic heterogeneity, which manifests differently in different individuals. Presently, the therapeutic management of PCOS-afflicted infertility depends upon proper pharmaceutical-based therapies aimed at treating underlying symptoms, such as the use of clomiphene citrate, metformin, ovulation-inducing agents, anti-androgens, exogenous gonadotropin administration, laparoscopic ovarian drilling, and fertilization. The present review focuses on narrating present therapeutic interventions along with lifestyle modifications in PCOS. Furthermore, it focuses on the ongoing clinical trials of various chemotherapeutics to counter PCOS-induced infertility among women.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871325070241008101355
2024-10-17
2025-09-30
Loading full text...

Full text loading...

References

  1. PundirC.S. DeswalR. NarwalV. DangA. The prevalence of polycystic ovary syndrome: A brief systematic review.J. Hum. Reprod. Sci.202013426127110.4103/jhrs.JHRS_95_1833627974
    [Google Scholar]
  2. SteinI.F. LeventhalM.L. Amenorrhea associated with bilateral polycystic ovaries.Am. J. Obstet. Gynecol.193529218119110.1016/S0002‑9378(15)30642‑6
    [Google Scholar]
  3. LiuJ. WuQ. HaoY. JiaoM. WangX. JiangS. HanL. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: Global Burden of Disease Study 2017.Hum. Reprod.20213641108111910.1093/humrep/deaa37133501984
    [Google Scholar]
  4. TeedeH.J. MissoM.L. CostelloM.F. DokrasA. LavenJ. MoranL. PiltonenT. NormanR.J. AndersenM. AzzizR. BalenA. BayeE. BoyleJ. BrennanL. BroekmansF. DabadghaoP. DevotoL. DewaillyD. DownesL. FauserB. FranksS. GaradR.M. Gibson-HelmM. HarrisonC. HartR. HawkesR. HirschbergA. HoegerK. HohmannF. HutchisonS. JohamA. JohnsonL. JordanC. KulkarniJ. LegroR.S. LiR. LujanM. MalhotraJ. MansfieldD. MarshK. McAllisterV. MocanuE. MolB.W. NgE. OberfieldS. OtteyS. PeñaA. QiaoJ. RedmanL. RodgersR. RombautsL. RomualdiD. ShahD. SpeightJ. SpritzerP.M. Stener-VictorinE. SteptoN. TapanainenJ.S. TassoneE.C. ThangaratinamS. ThondanM. TzengC-R. van der SpuyZ. VankyE. VogiatziM. WanA. WijeyaratneC. WitchelS. WoolcockJ. YildizB.O. International PCOS Network Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome†.Hum. Reprod.20183391602161810.1093/humrep/dey25630052961
    [Google Scholar]
  5. AlchamiA. O’DonovanO. DaviesM. PCOS: diagnosis and management of related infertility.Obstetrics, Gynaecol. Reprod. Med.2015251027928210.1016/j.ogrm.2015.07.005
    [Google Scholar]
  6. PundirJ. SunkaraS.K. El-ToukhyT. KhalafY. Meta-analysis of GnRH antagonist protocols: Do they reduce the risk of OHSS in PCOS?Reprod. Biomed. Online201224162210.1016/j.rbmo.2011.09.01722133908
    [Google Scholar]
  7. DennettC.C. SimonJ. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment.Diabetes Spectr.201528211612010.2337/diaspect.28.2.11625987810
    [Google Scholar]
  8. Abraham GnanadassS. Divakar PrabhuY. Valsala GopalakrishnanA. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update.Arch. Gynecol. Obstet.2021303363164310.1007/s00404‑020‑05951‑233439300
    [Google Scholar]
  9. Practice Committee of the American Society for Reproductive Medicine Definitions of infertility and recurrent pregnancy loss: A committee opinion.Fertil. Steril.20139916310.1016/j.fertnstert.2012.09.02323095139
    [Google Scholar]
  10. EshireT.T. Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Consensus on infertility treatment related to polycystic ovary syndrome.Fertil. Steril.200889350552210.1016/j.fertnstert.2007.09.04118243179
    [Google Scholar]
  11. SiddiquiS. MateenS. AhmadR. MoinS. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS).J. Assist. Reprod. Genet.202239112439247310.1007/s10815‑022‑02625‑736190593
    [Google Scholar]
  12. Kahsar-MillerM.D. NixonC. BootsL.R. GoR.C. AzzizR. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS.Fertil. Steril.2001751535810.1016/S0015‑0282(00)01662‑911163816
    [Google Scholar]
  13. LegroR.S. DriscollD. StraussJ.F.III FoxJ. DunaifA. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome.Proc. Natl. Acad. Sci. USA19989525149561496010.1073/pnas.95.25.149569843997
    [Google Scholar]
  14. AjmalN. KhanS.Z. ShaikhR. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article.Eur. J. Obstet. Gynecol. Reprod. Biol. X2019310006010.1016/j.eurox.2019.10006031403134
    [Google Scholar]
  15. Escobar-MorrealeH.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment.Nat. Rev. Endocrinol.201814527028410.1038/nrendo.2018.2429569621
    [Google Scholar]
  16. HaradaM. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research.Reprod. Med. Biol.2022211e1248710.1002/rmb2.1248736310656
    [Google Scholar]
  17. Diamanti-KandarakisE. Polycystic ovarian syndrome: Pathophysiology, molecular aspects and clinical implications.Expert Rev. Mol. Med.200810e310.1017/S146239940800059818230193
    [Google Scholar]
  18. SoniT. PrabhakarP.K. Pathophysiology of polycystic ovarian syndrome.Polycystic Ovary Syndrome-Functional Investigation and Clinical Application.IntechOpen2022
    [Google Scholar]
  19. KanbourS.A. DobsA.S. Hyperandrogenism in women with polycystic ovarian syndrome: Pathophysiology and controversies. Androgens.Androgens: Clinical Research and Therapeutics202231223010.1089/andro.2021.0020
    [Google Scholar]
  20. StrangeR.C. KönigC.S. PuttannaA. RaoA. HackettG. HaiderA. HaiderK.S. DesnerckP. SaadF. RamachandranS. Klinefelters syndrome: Change in T -scores with testosterone, bisphosphonate, and vitamin D treatment over 6 years.Androgens: Clinical Research and Therapeutics20212111112010.1089/andro.2021.0002
    [Google Scholar]
  21. BulsaraJ. PatelP. SoniA. AcharyaS. A review: Brief insight into polycystic ovarian syndrome.Endocrine. Metabol. Sci.20213100085
    [Google Scholar]
  22. WaltersK.A. GilchristR.B. LedgerW.L. TeedeH.J. HandelsmanD.J. CampbellR.E. New perspectives on the pathogenesis of PCOS: Neuroendocrine origins.Trends Endocrinol. Metab.2018291284185210.1016/j.tem.2018.08.00530195991
    [Google Scholar]
  23. WitchelS.F. OberfieldS.E. PeñaA.S. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls.J. Endocr. Soc.2019381545157310.1210/js.2019‑0007831384717
    [Google Scholar]
  24. De LeoV. la MarcaA. PetragliaF. Insulin-lowering agents in the management of polycystic ovary syndrome.Endocr. Rev.200324563366710.1210/er.2002‑001514570747
    [Google Scholar]
  25. MarshallJ.C. DunaifA. Should all women with PCOS be treated for insulin resistance?Fertil. Steril.2012971182210.1016/j.fertnstert.2011.11.03622192137
    [Google Scholar]
  26. DingH. ZhangJ. ZhangF. ZhangS. ChenX. LiangW. XieQ. Resistance to the insulin and elevated level of androgen: A major cause of polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20211274176410.3389/fendo.2021.74176434745009
    [Google Scholar]
  27. YurtdaşG. AkdevelioğluY. A new approach to polycystic ovary syndrome: the gut microbiota.J. Am. Coll. Nutr.202039437138210.1080/07315724.2019.165751531513473
    [Google Scholar]
  28. Elkind-HirschK. MarrioneauxO. BhushanM. VernorD. BhushanR. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome.J. Clin. Endocrinol. Metab.20089372670267810.1210/jc.2008‑011518460557
    [Google Scholar]
  29. SalamunV. JensterleM. JanezA. Vrtacnik BokalE. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: A pilot randomized study.Eur. J. Endocrinol.2018179111110.1530/EJE‑18‑017529703793
    [Google Scholar]
  30. PapadakisG.E. DumontA. BouligandJ. ChasseloupF. RaggiA. Catteau-JonardS. Boute-BenejeanO. PitteloudN. YoungJ. DewaillyD. Non-classic cytochrome P450 oxidoreductase deficiency strongly linked with menstrual cycle disorders and female infertility as primary manifestations.Hum. Reprod.202035493994910.1093/humrep/deaa02032242900
    [Google Scholar]
  31. Wawrzkiewicz-JałowieckaA. KowalczykK. TrybekP. JaroszT. RadoszP. SetlakM. MadejP. In search of new therapeutics—molecular aspects of the PCOS pathophysiology: Genetics, hormones, metabolism and beyond.Int. J. Mol. Sci.20202119705410.3390/ijms2119705432992734
    [Google Scholar]
  32. Piri-GharaghieT. Polycystic ovary syndrome and genetic factors influencing its development: A review article.Personalized Medicine Journal20216232529
    [Google Scholar]
  33. HeidarzadehpilehroodR. PirhoushiaranM. AbdollahzadehR. Binti OsmanM. SakinahM. NordinN. Abdul HamidH. A review on CYP11A1, CYP17A1, and CYP19A1 polymorphism studies: Candidate susceptibility genes for polycystic ovary syndrome (PCOS) and infertility.Genes (Basel)202213230210.3390/genes1302030235205347
    [Google Scholar]
  34. GorsicL.K. KosovaG. WersteinB. SiskR. LegroR.S. HayesM.G. TeixeiraJ.M. DunaifA. UrbanekM. Pathogenic anti-Müllerian hormone variants in polycystic ovary syndrome.J. Clin. Endocrinol. Metab.201710282862287210.1210/jc.2017‑0061228505284
    [Google Scholar]
  35. RudnickaE. KunickiM. Calik-KsepkaA. SuchtaK. DuszewskaA. SmolarczykK. SmolarczykR. Anti-müllerian hormone in pathogenesis, diagnostic and treatment of PCOS.Int. J. Mol. Sci.202122221250710.3390/ijms22221250734830389
    [Google Scholar]
  36. PersaniL. RossettiR. CacciatoreC. FabreS. Genetic defects of ovarian TGF-β-like factors and premature ovarian failure.J. Endocrinol. Invest.201134324425110.1007/BF0334707321297384
    [Google Scholar]
  37. HoegerK.M. DokrasA. PiltonenT. Update on PCOS: consequences, challenges, and guiding treatment.J. Clin. Endocrinol. Metab.20211063e1071e108310.1210/clinem/dgaa83933211867
    [Google Scholar]
  38. GiraseT. PatilJ. TatiyaA. PatilD. PatilM. Clomiphene citrate as nanomedicine assistance in ovulatory disorders and its hyphenated techniques.Materials Proceedings20231416
    [Google Scholar]
  39. SadeghiH.M. AdeliI. CalinaD. DoceaA.O. MousaviT. DanialiM. NikfarS. TsatsakisA. AbdollahiM. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing.Int. J. Mol. Sci.202223258310.3390/ijms2302058335054768
    [Google Scholar]
  40. AmerS.A. SmithJ. MahranA. FoxP. FakisA. Double-blind randomized controlled trial of letrozole versus clomiphene citrate in subfertile women with polycystic ovarian syndrome.Hum. Reprod.20173281631163810.1093/humrep/dex22728854590
    [Google Scholar]
  41. BansalS. GoyalM. SharmaC. ShekharS. Letrozole versus clomiphene citrate for ovulation induction in anovulatory women with polycystic ovarian syndrome: A randomized controlled trial.Int. J. Gynaecol. Obstet.2021152334535010.1002/ijgo.1337532920843
    [Google Scholar]
  42. CunhaA. PóvoaA.M. Infertility management in women with polycystic ovary syndrome: a review.Porto Biomed. J.202161e11610.1097/j.pbj.000000000000011633532657
    [Google Scholar]
  43. TanboT. MellembakkenJ. BjerckeS. RingE. ÅbyholmT. FedorcsakP. Ovulation induction in polycystic ovary syndrome.Acta Obstet. Gynecol. Scand.201897101162116710.1111/aogs.1339529889977
    [Google Scholar]
  44. WangL. LvS. LiF. BaiE. YangX. Letrozole versus clomiphene citrate and natural cycle: Endometrial receptivity during implantation window in women with polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20211153269210.3389/fendo.2020.53269233537000
    [Google Scholar]
  45. Al-FadhliR. SylvestreC. BuckettW. TanS.L. TulandiT. A randomized trial of superovulation with two different doses of letrozole.Fertil. Steril.200685116116410.1016/j.fertnstert.2005.07.128316412748
    [Google Scholar]
  46. AhmedM.S.N. KandilH.O. ShaabanM.M. RamadanM. Combined chromium with letrozole versus letrozole only in induction of ovulation in patients with polycystic ovary syndrome: A Randomized controlled trial.Journal of Survey in Fisheries Sciences2023103S32213232
    [Google Scholar]
  47. AttiaG.R. RaineyW.E. CarrB.R. Metformin directly inhibits androgen production in human thecal cells.Fertil. Steril.200176351752410.1016/S0015‑0282(01)01975‑611532475
    [Google Scholar]
  48. LapiceE. CocozzaS. RiccardiG. VaccaroO. Comment on: Zhang et al. Peroxisome proliferator-activated receptor γ polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: evidence from meta-analysis of 18 studies. Diabetes Care 2012;35:1388-1393.Diabetes Care2013361e1810.2337/dc12‑199323264301
    [Google Scholar]
  49. ten KulveJ.S. VeltmanD.J. van BloemendaalL. GrootP.F.C. RuhéH.G. BarkhofF. DiamantM. IjzermanR.G. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption.J. Endocrinol.2016229111210.1530/JOE‑15‑046126769912
    [Google Scholar]
  50. LiuX. ZhangY. ZhengS. LinR. XieY. ChenH. ZhengY. LiuE. ChenL. YanJ. XuW. MaiT. GongY. Efficacy of exenatide on weight loss, metabolic parameters and pregnancy in overweight/obese polycystic ovary syndrome.Clin. Endocrinol. (Oxf.)201787676777410.1111/cen.1345428834553
    [Google Scholar]
  51. StathatosN. BourdeauI. EspinosaA.V. SajiM. VaskoV.V. BurmanK.D. StratakisC.A. RingelM.D. KiSS-1/G protein-coupled receptor 54 metastasis suppressor pathway increases myocyte-enriched calcineurin interacting protein 1 expression and chronically inhibits calcineurin activity.J. Clin. Endocrinol. Metab.20059095432544010.1210/jc.2005‑096315998767
    [Google Scholar]
  52. WangX. HaoJ. ZhangF. LiJ. KongH. GuoY. Effects of female and male body mass indices on the treatment outcomes and neonatal birth weights associated with in vitro fertilization/intracytoplasmic sperm injection treatment in China.Fertil. Steril.2016106246046610.1016/j.fertnstert.2016.04.02127155105
    [Google Scholar]
  53. SampelilingY. TahirA.M. HartonoE. KasimF. Clomiphene citrate and anastrozole: Effects on follicular diameter and endometrial thickness in polycystic ovary syndrome.Eur. J. Mol. Clin. Med.20207072020
    [Google Scholar]
  54. KaderA. ThiyagarajanA. MahfouzR.Z. SharmaR.K. SabaneghE. AgarwalA. Sperm equilibration with a novel triple action cryoprotectant improves sperm kinetics compared to two combinations standard.Fertil. Steril.2009923S21310.1016/j.fertnstert.2009.07.1493
    [Google Scholar]
  55. EzcurraD. RangnowJ. CraigM. SchertzJ. The Human Oocyte Preservation Experience (HOPE) a phase IV, prospective, multicenter, observational oocyte cryopreservation registry.Reprod. Biol. Endocrinol.2009715310.1186/1477‑7827‑7‑5319473532
    [Google Scholar]
  56. MeloA.S. FerrianiR.A. NavarroP.A. Treatment of infertility in women with polycystic ovary syndrome: approach to clinical practice.Clinics (São Paulo)2015701176576910.6061/clinics/2015(11)0926602525
    [Google Scholar]
  57. ShiS. HongT. JiangF. ZhuangY. ChenL. HuangX. Letrozole and human menopausal gonadotropin for ovulation induction in clomiphene resistance polycystic ovary syndrome patients.Medicine (Baltimore)2020994e1838310.1097/MD.000000000001838331977842
    [Google Scholar]
  58. AshryH. AlyT. RagabA.H.M.E.D. Comparison between letrozole with and without gonadotropins injection on pregnancy rates in infertile PCOS patients : A multicenter randomized observational trial.Evidence Based Women’s Health Journal202212215716510.21608/ebwhj.2021.113640.1164
    [Google Scholar]
  59. DanjumaM.I. MukherjeeI. MakaronidisJ. OsulaS. Converging indications of aldosterone antagonists (spironolactone and eplerenone): a narrative review of safety profiles.Curr. Hypertens. Rep.201416241410.1007/s11906‑013‑0414‑824407447
    [Google Scholar]
  60. ArmaniniD. AndrisaniA. BordinL. SabbadinC. Spironolactone in the treatment of polycystic ovary syndrome.Expert Opin. Pharmacother.201617131713171510.1080/14656566.2016.121543027450358
    [Google Scholar]
  61. GanieM.A. KhuranaM.L. NisarS. ShahP.A. ShahZ.A. KulshresthaB. GuptaN. ZargarM.A. WaniT.A. MudasirS. MirF.A. TaingS. Improved efficacy of low-dose spironolactone and metformin combination than either drug alone in the management of women with polycystic ovary syndrome (PCOS): a six-month, open-label randomized study.J. Clin. Endocrinol. Metab.20139893599360710.1210/jc.2013‑104023846820
    [Google Scholar]
  62. AdeyanjuO.A. FalodunT.O. FabunmiO.A. OlatunjiL.A. SoladoyeA.O. Very low dose spironolactone protects experimentally-induced polycystic ovarian syndrome from insulin-resistant metabolic disturbances by suppressing elevated circulating testosterone.Chem. Biol. Interact.201931010874210.1016/j.cbi.2019.10874231295448
    [Google Scholar]
  63. OlaniyiK.S. OniyideA.A. AdeyanjuO.A. OjulariL.S. OmoagheA.O. OlaiyaO.E. Low dose spironolactone-mediated androgen-adiponectin modulation alleviates endocrine-metabolic disturbances in letrozole-induced PCOS.Toxicol. Appl. Pharmacol.202141111538110.1016/j.taap.2020.11538133359182
    [Google Scholar]
  64. AreloegbeS.E. PeterM.U. OyelekeM.B. OlaniyiK.S. Low-dose spironolactone ameliorates adipose tissue inflammation and apoptosis in letrozole-induced PCOS rat model.BMC Endocr. Disord.202222122410.1186/s12902‑022‑01143‑y36071485
    [Google Scholar]
  65. GanieM.A. KhuranaM.L. EuniceM. GulatiM. DwivediS.N. AmminiA.C. AmminiA.C. Comparison of efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study.J. Clin. Endocrinol. Metab.20048962756276210.1210/jc.2003‑03178015181054
    [Google Scholar]
  66. EsfandyariS. ChughR.M. ParkH. HobeikaE. UlinM. Al-HendyA. Mesenchymal stem cells as a bio organ for treatment of female infertility.Cells2020910225310.3390/cells910225333050021
    [Google Scholar]
  67. SamsonrajR.M. RaghunathM. NurcombeV. HuiJ.H. van WijnenA.J. CoolS.M. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine.Stem Cells Transl. Med.20176122173218510.1002/sctm.17‑012929076267
    [Google Scholar]
  68. SaeedY. LiuX. Mesenchymal stem cells to treat female infertility; future perspective and challenges: A review.Int. J. Reprod. Biomed. (Yazd)202220970972210.18502/ijrm.v20i9.1206136340664
    [Google Scholar]
  69. PrayitnoG.D. LestariK. SartikaC.R. DjuwantonoT. WidjayaA. MuharamR. HidayatY.M. WulandariD. HaifaR. NauraN.F. MarbunK.T. ZahrahA. Potential of Mesenchymal Stem Cells and Their Secretomes in Decreasing Inflammation Markers in Polycystic Ovary Syndrome Treatment: A Systematic Review.Medicines (Basel)2022101310.3390/medicines1001000336662487
    [Google Scholar]
  70. NatadisastraM. KurniawanR.H. MalikD.M. Pentoxifylline as a therapy for thin endometrial lining in infertility.Indonesian Soc. Obstetrician. Gynecol.2015333
    [Google Scholar]
  71. VitaleS.G. PalumboM. RapisardaA.M.C. CarugnoJ. Conde-LópezC. MendozaN. Mendoza-TesarikR. TesarikJ. Use of pentoxifylline during ovarian stimulation to improve oocyte and embryo quality: A retrospective study.J. Gynecol. Obstet. Hum. Reprod.202251610239810.1016/j.jogoh.2022.10239835508290
    [Google Scholar]
  72. RezvanfarM.A. SaadatS. Shojaei SaadiH.A. MansooriP. SaeediS. GoosheM. BaeeriM. AbdollahiM. Cellular and molecular mechanisms of pentoxifylline’s beneficial effects in experimental polycystic ovary.Theriogenology201583696897710.1016/j.theriogenology.2014.11.03425557188
    [Google Scholar]
  73. GuaranoA. CapozziA. CristodoroM. Di SimoneN. LelloS. Alpha Lipoic Acid Efficacy in PCOS Treatment: What Is the Truth?Nutrients20231514320910.3390/nu1514320937513627
    [Google Scholar]
  74. ZhaoJ.F. LiB.X. ZhangQ. Vitamin D improves levels of hormonal, oxidative stress and inflammatory parameters in polycystic ovary syndrome: a meta-analysis study.Ann. Palliat. Med.202110116918310.21037/apm‑20‑220133545754
    [Google Scholar]
  75. WangL. LvS. LiF. YuX. BaiE. YangX. VitaminD. Vitamin D Deficiency Is Associated With Metabolic Risk Factors in Women With Polycystic Ovary Syndrome: A Cross-Sectional Study in Shaanxi China.Front. Endocrinol. (Lausanne)20201117110.3389/fendo.2020.0017132296394
    [Google Scholar]
  76. RoqueM. TostesA.C.I. ValleM. SampaioM. GeberS. Letrozole versus clomiphene citrate in polycystic ovary syndrome: Systematic review and meta-analysis.Gynecol. Endocrinol.2015311291792110.3109/09513590.2015.109633726479460
    [Google Scholar]
  77. PrittsE.A. Letrozole for ovulation induction and controlled ovarian hyperstimulation.Curr. Opin. Obstet. Gynecol.201022428929410.1097/GCO.0b013e32833beebf20592587
    [Google Scholar]
  78. FranikS. LeQ.K. KremerJ.A. KieselL. FarquharC. Aromatase inhibitors (letrozole) for ovulation induction in infertile women with polycystic ovary syndrome.Cochrane Database Syst. Rev.202299CD01028736165742
    [Google Scholar]
  79. RakicD. JakovljevicV. JovicN. Bicanin IlicM. DimitrijevicA. VulovicT. ArsenijevicP. SretenovicJ. NikolicM. Petrovich FisenkoV. BolevichS. ZarkovicG. Joksimovic JovicJ. The Potential of SGLT-2 Inhibitors in the Treatment of Polycystic Ovary Syndrome: The Current Status and Future Perspectives.Biomedicines202311499810.3390/biomedicines1104099837189616
    [Google Scholar]
  80. SinhaB. GhosalS. A Meta-Analysis of the Effect of Sodium Glucose Cotransporter-2 Inhibitors on Metabolic Parameters in Patients With Polycystic Ovary Syndrome.Front. Endocrinol. (Lausanne)20221383040110.3389/fendo.2022.83040135265039
    [Google Scholar]
  81. Elkind-HirschK.E. ChappellN. SeidemannE. StormentJ. BellangerD. Exenatide, Dapagliflozin, or Phentermine/Topiramate Differentially Affect Metabolic Profiles in Polycystic Ovary Syndrome.J. Clin. Endocrinol. Metab.2021106103019303310.1210/clinem/dgab40834097062
    [Google Scholar]
  82. GuanY. WangD. BuH. ZhaoT. WangH. The Effect of Metformin on Polycystic Ovary Syndrome in Overweight Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.Int. J. Endocrinol.2020202011210.1155/2020/515068433014044
    [Google Scholar]
  83. AbbaraA. DhilloW.S. Targeting Elevated GnRH Pulsatility to Treat Polycystic Ovary Syndrome.J. Clin. Endocrinol. Metab.202110610e4275e427710.1210/clinem/dgab42234117885
    [Google Scholar]
  84. AbbaraA. PhylactouM. EngP.C. ClarkeS.A. PhamT.D. HoT.M. NgK.Y. MillsE.G. PuruggananK. HunjanT. SalimR. ComninosA.N. VuongL.N. DhilloW.S. Endocrine Responses to Triptorelin in Healthy Women, Women With Polycystic Ovary Syndrome, and Women With Hypothalamic Amenorrhea.J. Clin. Endocrinol. Metab.202310871666167510.1210/clinem/dgad02636653328
    [Google Scholar]
  85. Van PoppelH. KlotzL. Gonadotropin‐releasing hormone: An update review of the antagonists versus agonists.Int. J. Urol.201219759460110.1111/j.1442‑2042.2012.02997.x22416801
    [Google Scholar]
  86. ZhaiX.H. ZhangP. WuF.X. WangA.C. LiuP.S. GnRH antagonist for patients with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer in fresh cycles.Exp. Ther. Med.20171363097310210.3892/etm.2017.430928587385
    [Google Scholar]
  87. ColléeJ. MawetM. TebacheL. NisolleM. BrichantG. Polycystic ovarian syndrome and infertility: overview and insights of the putative treatments.Gynecol. Endocrinol.2021371086987410.1080/09513590.2021.195831034338572
    [Google Scholar]
  88. PandaS.R. SharmilaV. KalidossV.K. HotaS. A triple-blind, randomized controlled trial, comparing combined letrozole and clomiphene versus only letrozole for ovulation induction in women with polycystic ovarian syndrome.Int. J. Gynaecol. Obstet.20231611637010.1002/ijgo.1447636149885
    [Google Scholar]
  89. TsiamiA.P. GoulisD.G. SotiriadisA.I. KolibianakisE.M. Higher ovulation rate with letrozole as compared with clomiphene citrate in infertile women with polycystic ovary syndrome: a systematic review and meta-analysis.Hormones (Athens)202120344946110.1007/s42000‑021‑00289‑z34033068
    [Google Scholar]
  90. MervielP. JamesP. BouéeS. Le GuillouM. RinceC. NachtergaeleC. KerlanV. Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies.Reprod. Health20211811310.1186/s12978‑021‑01073‑333468143
    [Google Scholar]
  91. ShivaniD. SravanthiP. GN.J. Comparative study on efficacy of myo inositol over metformin in Polycystic ovary syndrome patients.Int. J. Reprod. Contracept. Obstet. Gynecol.20211051899190610.18203/2320‑1770.ijrcog20211508
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871325070241008101355
Loading
/content/journals/rrct/10.2174/0115748871325070241008101355
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): endocrine disorder; infertility; insulin resistance; metformin; PCOS; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test