Skip to content
2000
image of Preparation of Sodium Lignosulfonate and Graphene Oxide-Based Porous Carbon for Supercapacitors

Abstract

Introduction

Supercapacitors have shown substantial promise in electrochemical energy storage devices, where porous carbon materials demonstrate exceptional potential applications in their electrodes owing to their large specific surface area, high electrical conductivity, and rationally tunable pore architectures.

Methods

Sodium lignosulfonate and graphene oxide-based porous carbon materials (LC/rGO) were prepared and characterized. The electrochemical performance of the samples was investigated with three-electrode configurations.

Results

LC/rGO demonstrated mesoporous architecture and excellent electrochemical performance. The kinetic analysis on the electrochemical properties of the materials revealed an electric double-layer capacitance dominated energy storage mechanism.

Discussion

XRD and Raman analysis on the structures of the as-prepared carbon materials suggested a relatively high degree of defects and disorder. Investigations on the morphology, the pore size distributions and the surface chemistry of the samples demonstrated that the materials had a high specific surface area, mesporous structures and multi-atomic doping of nitrogen and oxygen functional groups. All these features could be taken into account for the high electrochemical performance of carbon.

Conclusion

LC/rGO as an electrode material demonstrated a high specific capacitance of 296 F g-1 at 0.1 A g-1 and outstanding cycling stability with 97% of the initial capacitance after 10,000 cycles at 5 A g-1 in a 6 M KOH electrolyte. The assembled symmetric supercapacitor using the as-synthesized materials exhibited energy density of 10.6 Wh kg-1 at 300 W kg-1 and cycling stability of 95% capacitance after 10,000 charge-discharge cycles, promising for supercapacitor applications.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204420251250827064022
2025-10-02
2025-11-16
Loading full text...

Full text loading...

References

  1. Li J. Zhang W. Zhang X. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 5 2463 2471 10.1039/C9TA08850D
    [Google Scholar]
  2. Gopalakrishnan A. Badhulika S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 2020 480 228830 10.1016/j.jpowsour.2020.228830
    [Google Scholar]
  3. Gopalakrishnan A. Yu A. Badhulika S. Three‐dimensional nitrogen rich bubbled porous carbon sponge for supercapacitor & pressure sensing applications. Int. J. Energy Res. 2020 44 9 7242 7253 10.1002/er.5434
    [Google Scholar]
  4. Yang Z. Ren J. Zhang Z. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015 115 11 5159 5223 10.1021/cr5006217 25985835
    [Google Scholar]
  5. Endo M. Kim C. Nishimura K. Fujino T. Miyashita K. Recent development of carbon materials for Li ion batteries. Carbon 2000 38 2 183 197 10.1016/S0008‑6223(99)00141‑4
    [Google Scholar]
  6. Lu X. Li G. Tong Y. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 2015 58 11 1799 1808 10.1007/s11431‑015‑5931‑z
    [Google Scholar]
  7. Wang C. Wu D. Wang H. Gao Z. Xu F. Jiang K. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J. Colloid Interface Sci. 2018 523 133 143 10.1016/j.jcis.2018.03.009 29614422
    [Google Scholar]
  8. Guo N. Luo W. Guo R. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. J. Alloys Compd. 2020 834 155115 10.1016/j.jallcom.2020.155115
    [Google Scholar]
  9. Zheng L.H. Chen M.H. Liang S.X. Lü Q-F. Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode. Diamond Related Materials 2021 113 108267 10.1016/j.diamond.2021.108267
    [Google Scholar]
  10. Liu W.J. Jiang H. Yu H.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015 115 22 12251 12285 10.1021/acs.chemrev.5b00195 26495747
    [Google Scholar]
  11. Chen X.W. Timpe O. Hamid S.B.A. Schlögl R. Su D.S. Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon 2009 47 1 340 343 10.1016/j.carbon.2008.11.001
    [Google Scholar]
  12. Pang J. Zhang W. Zhang J. Cao G. Han M. Yang Y. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem. 2017 19 16 3916 3926 10.1039/C7GC01434A
    [Google Scholar]
  13. Sun R. Chen Y. Gao X. Sodium lignosulfonate-derived hierarchical porous carbon electrode materials for supercapacitor applications. J. Energy Storage 2024 91 112025 10.1016/j.est.2024.112025
    [Google Scholar]
  14. Ye W. Cai J. Yu F. Li X. Wang X. Nitrogen-doped bagasse carbon spheres/graphene composite for high-performance supercapacitors. Biomass Bioenergy 2021 145 105949 10.1016/j.biombioe.2020.105949
    [Google Scholar]
  15. Fathy N.A. Annamalai K.P. Tao Y. Effects of phosphoric acid activation on the nanopore structures of carbon xerogel/carbon nanotubes hybrids and their capacitance storage. Adsorption 2017 23 2-3 355 360 10.1007/s10450‑017‑9860‑y
    [Google Scholar]
  16. Sepehri S. García B.B. Zhang Q. Cao G. Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 2009 47 6 1436 1443 10.1016/j.carbon.2009.01.034
    [Google Scholar]
  17. Jiang Q. Cai Y. Sang X. Zhang Q. Ma J. Chen X. Nitrogen-doped carbon materials as supercapacitor electrodes: A mini review. Energy Fuels 2024 38 12 10542 10559 10.1021/acs.energyfuels.4c00918
    [Google Scholar]
  18. Chen X. Feng P. Zheng Y. Emerging nitrogen and sulfur Co‐doped carbon materials for electrochemical energy storage and conversion. Small 2025 21 11 2412191 10.1002/smll.202412191 39955747
    [Google Scholar]
  19. Yuan M. Luo F. Rao Y. Laser synthesis of superhydrophilic O/S co-doped porous graphene derived from sodium lignosulfonate for enhanced microsupercapacitors. J. Power Sources 2021 513 230558 10.1016/j.jpowsour.2021.230558
    [Google Scholar]
  20. Lu X.F. Lin J. Huang Z.X. Li G.R. Three-dimensional nickel oxide@carbon hollow hybrid networks with enhanced performance for electrochemical energy storage. Electrochim. Acta 2015 161 236 244 10.1016/j.electacta.2014.12.040
    [Google Scholar]
  21. Chatterjee S. Saito T. Lignin-derived advanced carbon materials. ChemSusChem 2015 8 23 3941 3958 10.1002/cssc.201500692 26568373
    [Google Scholar]
  22. Annamalai K.P. Gao J. Liu L. Mei J. Lau W. Tao Y. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J. Mater. Chem. 2018 3 2 11740 11744
    [Google Scholar]
  23. Annamalai K.P. Tao Y. A mini-review on functionalized porous nanocarbons for the applications in electro-chemical energy storage. Acc Mater Surf Res 2018 3 2 82 99
    [Google Scholar]
  24. Annamalai K.P. Liu L. Tao Y. Highly nanoporous nickel cobaltite hexagonal nanostructure‐graphene composites for the next generation energy storage/conversion devices. Adv. Mater. Interfaces 2017 4 16 1700219 10.1002/admi.201700219
    [Google Scholar]
  25. Jiang C. Wang Z. Li J. RGO-templated lignin-derived porous carbon materials for renewable high-performance supercapacitors. Electrochim. Acta 2020 353 136482 10.1016/j.electacta.2020.136482
    [Google Scholar]
  26. Zhang F. Lang H. Wu J. Huang J. Sorghum-derived porous carbon for outstanding green supercapacitors. New J. Chem. 2023 48 1 332 341 10.1039/D3NJ04881K
    [Google Scholar]
  27. Kang J. Zhong L. Li N. Oxygen-Enriched hierarchical nanoporous carbon electrodes for supercapacitors. ACS Appl. Nano Mater. 2023 6 13 11841 11855 10.1021/acsanm.3c01702
    [Google Scholar]
  28. Zheng L. Xu Y. Chen F. Jiang B. Liu C. Surface functionalization of PS/PEI-derived hierarchical porous carbons doped with nitrogen and oxygen using melamine activation for supercapacitors. Surf. Interfaces 2024 51 104531 10.1016/j.surfin.2024.104531
    [Google Scholar]
  29. Tao Y. Endo M. Ohsawa R. Kanoh H. Kaneko K. High capacitance carbon-based xerogel film produced without critical drying. Appl. Phys. Lett. 2008 93 19 193112 10.1063/1.2976684
    [Google Scholar]
  30. Shrestha R.L. Chaudhary R. Shrestha T. Nanoarchitectonics of lotus seed derived nanoporous carbon materials for supercapacitor applications. Materials 2020 13 23 5434 10.3390/ma13235434 33260344
    [Google Scholar]
  31. Meng S. Mo Z. Li Z. Guo R. Liu N. Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors. Mater. Chem. Phys. 2020 246 122830 10.1016/j.matchemphys.2020.122830
    [Google Scholar]
  32. Gong Y. Li D. Luo C. Fu Q. Pan C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017 19 17 4132 4140 10.1039/C7GC01681F
    [Google Scholar]
  33. Ma G. Hua F. Sun K. Porous carbon derived from sorghum stalk for symmetric supercapacitors. RSC Advances 2016 6 105 103508 103516 10.1039/C6RA23552B
    [Google Scholar]
  34. Luo L. Zhou Y. Yan W. Wu X. Wang S. Zhao W. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochim. Acta 2020 360 137010 10.1016/j.electacta.2020.137010
    [Google Scholar]
  35. Sun Y. Xu D. Wang S. Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon 2022 199 258 267 10.1016/j.carbon.2022.08.026
    [Google Scholar]
  36. Mainali K. Mood S.H. Pelaez-Samaniego M.R. Sierra-Jimenez V. Garcia-Perez M. Production and applications of N-doped carbons from bioresources: A review. Catal. Today 2023 423 114248 10.1016/j.cattod.2023.114248
    [Google Scholar]
/content/journals/rice/10.2174/0124055204420251250827064022
Loading
/content/journals/rice/10.2174/0124055204420251250827064022
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: graphene ; porous carbon ; nitrogen-doping ; supercapacitor ; EDLC ; porosity ; pore
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test