Skip to content
2000
image of Chemically Modified Banana Stem Adsorbent for Adsorption of Reactive Orange 16 from Aqueous Solutions

Abstract

Introduction

Anionic azo dye contamination poses environmental hazards. This study investigated surfactant-modified banana stem (SMBS) as an adsorbent for the removal of Reactive Orange 16 (RO16), with RO16 serving as a model for anionic azo dyes.

Methods

SMBS was prepared NaOH mercerization and CTAB modification for enhanced porosity/surface charge. FTIR and SEM confirmed functionalization, showing morphological changes and an increase in positive surface charge (pH 5.48 to 6.8). Kinetics, isotherms, desorption, and real-world application studies were evaluated.

Results

The adsorption kinetics best fit the pseudo-second-order model. Isotherms fit the Freundlich model, suggesting multilayer adsorption. Maximum RO16 removal (19.83 mg/g, 98%) occurred at pH 3 electrostatic attraction. Minimal dye leaching (1.25-4.02%) was observed with 95% removal efficiency maintained in lake water.

Discussion

SMBS demonstrated high efficacy and viability as an eco-friendly adsorbent from agricultural waste for industrial wastewater treatment. Strong pH dependence and minimal desorption suggest robust electrostatic binding, confirming enhanced adsorption properties.

Conclusion

This study highlights SMBS's significant potential as an efficient RO16 adsorbent, offering a promising alternative for treating industrial wastewater using agricultural waste.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204399644250811120305
2025-08-29
2025-11-16
Loading full text...

Full text loading...

References

  1. Asgher M. Biosorption of reactive dyes: A review. Water Air Soil Pollut. 2012 223 5 2417 2435 10.1007/s11270‑011‑1034‑z
    [Google Scholar]
  2. Hussein A.O. Abbas R.A. Al-Zinkee J.M.M. Jarad A. Synthesis, characterization, industrial and biological studies of azo dye] ligand and their some metallic ions. Baghdad Sci J 2024 21 10 3108 3121 10.21123/bsj.2024.8319
    [Google Scholar]
  3. Kuate M. Conde M.A. Nchimi K.N. Paboudam A.G. Ntum S.J.E. Ndifon P.T. Synthesis, characterization and antimicrobial studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes of (E)-2-(4-dimethylbenzydimino)-glycylglycine,(glygly-DAB) a schiff base derived from 4-dimethylaminobenzaldehyde and glycylglycine. Int. J. Org. Chem. (Irvine) 2018 8 3 298 308 10.4236/ijoc.2018.83022
    [Google Scholar]
  4. Piaskowski K. Świderska-Dąbrowska R. Zarzycki P.K. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 2018 101 5 1371 1384 10.5740/jaoacint.18‑0051 29669626
    [Google Scholar]
  5. Ahmad A. Mohd-Setapar S.H. Chuong C.S. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Advances 2015 5 39 30801 30818 10.1039/C4RA16959J
    [Google Scholar]
  6. Husien S. El-taweel R.M. Salim A.I. Fahim I.S. Said L.A. Radwan A.G. Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Curr Res Green Sustain Chem 2022 5 100325 10.1016/j.crgsc.2022.100325
    [Google Scholar]
  7. Raninga M. Mudgal A. Patel V.K. Patel J. Sinha K.M. Modification of activated carbon-based adsorbent for removal of industrial dyes and heavy metals: A review. Mater. Today Proc. 2023 77 286 294 10.1016/j.matpr.2022.11.358
    [Google Scholar]
  8. Farhadi A. Ameri A. Tamjidi S. Application of agricultural wastes as a low-cost adsorbent for removal of heavy metals and dyes from wastewater: A review study. Physical Chem Res 2021 9 2 211 226
    [Google Scholar]
  9. Liu G. Dai Z. Liu X. Dahlgren R.A. Xu J. Modification of agricultural wastes to improve sorption capacities for pollutant removal from water: A review. Carbon Research 2022 1 1 24 10.1007/s44246‑022‑00025‑1
    [Google Scholar]
  10. Kadhom M. Albayati N. Alalwan H. Al-Furaiji M. Removal of dyes by agricultural waste. Sustain. Chem. Pharm. 2020 16 100259 10.1016/j.scp.2020.100259
    [Google Scholar]
  11. Danish M. Ahmad T. Majeed S. Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies. Bioresour. Technol. Rep. 2018 3 127 137 10.1016/j.biteb.2018.07.007
    [Google Scholar]
  12. Misran E. Bani O. Situmeang E.M. Purba A.S. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex. Eng. J. 2022 61 3 1946 1955 10.1016/j.aej.2021.07.022
    [Google Scholar]
  13. Roa K. Oyarce E. Boulett A. Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain Mat Technol 2021 29 e00320 10.1016/j.susmat.2021.e00320
    [Google Scholar]
  14. Kumar U. Vibhute B. Sharma N. Sahay A. Efficient removal of methylene blue dye by alkaline-treated banana stem biochar through adsorption method. Appl Ecol Environ Sci 2022 10 4 236 243 10.12691/aees‑10‑4‑8
    [Google Scholar]
  15. Hanafiah M.A.K. Ibrahim S. Subberi N.I.F. Kantasamy N. Fatimah I. Application of cationic surfactant modified mengkuang leaves (Pandanus atrocapus) for the removal of reactive orange 16 from batik wastewater: A column study. Nat Environ Pollution Technol 2021 20 4 1703 1708 10.46488/NEPT.2021.v20i04.034
    [Google Scholar]
  16. Rashid T.U. Kabir S.M.F. Biswas M.C. Bhuiyan M.A.R. Sustainable wastewater treatment via dye-surfactant interaction: A critical review. Ind. Eng. Chem. Res. 2020 59 21 9719 9745 10.1021/acs.iecr.0c00676
    [Google Scholar]
  17. Han B. Shu D. Cao S. Role of surfactants in the degradation and sustainable dyeing for reactive dyeing wastewater. J. Mol. Liq. 2024 410 125657 10.1016/j.molliq.2024.125657
    [Google Scholar]
  18. Bhattacharjee S. Kuila S.B. Mazumder A. Surfactant-modified coconut coir powder (SMCCP) as a low-cost adsorbent for the treatment of dye-contaminated wastewater: parameters and adsorption mechanism. Environ. Sci. Pollut. Res. Int. 2024 ••• 1 19 10.1007/s11356‑024‑34022‑1 38904878
    [Google Scholar]
  19. Lafi R. Hafiane A. Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J. Taiwan Inst. Chem. Eng. 2016 58 424 433 10.1016/j.jtice.2015.06.035
    [Google Scholar]
  20. Wan Ngah W.S. Hanafiah M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008 99 10 3935 3948 10.1016/j.biortech.2007.06.011 17681755
    [Google Scholar]
  21. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963 11 2 431 441 10.1137/0111030
    [Google Scholar]
  22. Singh P.K. Banerjee S. Srivastava A.L. Sharma Y.C. Kinetic and equilibrium modeling for removal of nitrate from aqueous solutions and drinking water by a potential adsorbent, hydrous bismuth oxide. RSC Advances 2015 5 45 35365 35376 10.1039/C4RA11213J
    [Google Scholar]
  23. Haque A.N.M.A. Sultana N. Sayem A.S.M. Smriti S.A. Sustainable adsorbents from plant-derived agricultural wastes for anionic dye removal: A review. Sustainability 2022 14 17 11098 10.3390/su141711098
    [Google Scholar]
  24. Egbedina A.O. Ugwuja C.G. Dare P.A. Sulaiman H.D. Olu-Owolabi B.I. Adebowale K.O. CTAB-activated carbon from peanut husks for the removal of antibiotics and antibiotic-resistant bacteria from water. Environ. Process. 2023 10 2 20 10.1007/s40710‑023‑00636‑9
    [Google Scholar]
  25. Poletto M. Ornaghi H. Zattera A. Native cellulose: Structure,] characterization and thermal properties. Materials 2014 7 9 6105 6119 10.3390/ma7096105 28788179
    [Google Scholar]
  26. Tan G. Xiao D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 2009 164 2-3 1359 1363 10.1016/j.jhazmat.2008.09.082 18990497
    [Google Scholar]
  27. Saidin N.S. Megat Hanafiah M.A.K. Fatimah I. Shaharuddin S.F. Ibrahim S. Utilisation of cationic surfactant modified grated coconut residue for the removal of reactive orange 16 dye from aqueous solutions: A fixed-bed column study. Malaysian J Chem 2022 24 2 150 157 10.55373/mjchem.v24i2.150
    [Google Scholar]
  28. Li Y. Wang M. Liu J. Han L. Qin Q. Liu X. Adsorption/desorption behavior of ionic dyes on sintered bone char. Mater. Chem. Phys. 2023 297 127405 10.1016/j.matchemphys.2023.127405
    [Google Scholar]
  29. Ho Y.S. McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999 34 5 451 465 10.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  30. Karaman C. Karaman O. Show P.L. Karimi-Maleh H. Zare N. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 2022 290 133346 10.1016/j.chemosphere.2021.133346 34929270
    [Google Scholar]
  31. Foo K.Y. Hameed B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010 156 1 2 10 10.1016/j.cej.2009.09.013
    [Google Scholar]
  32. Averheim A. Simões dos Reis G. Grimm A. Enhanced biobased carbon materials made from softwood bark via a steam explosion preprocessing step for reactive orange 16 dye adsorption. Bioresour. Technol. 2024 400 130698 10.1016/j.biortech.2024.130698 38615967
    [Google Scholar]
  33. Ashfaq Butt T. Cannabis weed biomass adsorbent for batch adsorption of RO16 dye from aqueous solution. Nat. Sci. 2024 6 5 18 31 10.36719/2707‑1146/44/18‑31
    [Google Scholar]
  34. Negarestani M. Tavassoli S. Reisi S. Preparation of sisal fiber/polyaniline/bio-surfactant rhamnolipid-layered double hydroxide nanocomposite for water decolorization: kinetic, equilibrium, and thermodynamic studies. Sci. Rep. 2023 13 1 11341 10.1038/s41598‑023‑38511‑0 37443396
    [Google Scholar]
  35. Kapoor R.T. Rafatullah M. Siddiqui M.R. Singh L. Sequestration of reactive orange 16 dye by nitrogen‐impregnated Terminalia arjuna Seed Biochar: Insights into kinetics, thermodynamics, reusability, and phytotoxicity assessment. ChemistrySelect 2025 10 1 e202405723 10.1002/slct.202405723
    [Google Scholar]
  36. Banerjee S. Chattopadhyaya M.C. Srivastava V. Sharma Y.C. Adsorption studies of methylene blue onto activated saw dust: Kinetics, equilibrium, and thermodynamic studies. Environ. Prog. Sustain. Energy 2014 33 3 790 799 10.1002/ep.11840
    [Google Scholar]
  37. Kamran U. Bhatti H.N. Noreen S. Tahir M.A. Park S.J. Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: Kinetics, isotherms, thermodynamics, and desorption studies. Chemosphere 2022 291 Pt 2 132796 10.1016/j.chemosphere.2021.132796 34774614
    [Google Scholar]
  38. Lu J. Zhou Y. Zhou Y. Recent advance in enhanced adsorption of ionic dyes from aqueous solution: A review. Crit. Rev. Environ. Sci. Technol. 2023 53 19 1709 1730 10.1080/10643389.2023.2200714
    [Google Scholar]
/content/journals/rice/10.2174/0124055204399644250811120305
Loading
/content/journals/rice/10.2174/0124055204399644250811120305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test