Skip to content
2000
image of Experimental Investigations of Single Bubbles Rising in Ethanol-Aqueous Solutions

Abstract

Introduction

In industrial processes, some impurities in industrial liquids are usually adsorbed on the bubble interface, thus affecting the bubble interface mobility. Sometimes, additives are also intentionally added to industrial liquids to optimize the hydrodynamic properties of discrete bubbles and improve industrial efficiency. Therefore, an in-depth study of the hydrodynamics of discrete bubbles in impure liquids is of great significance. The objective of this study is to explore the dynamics of bubble rising in ethanol-aqueous solutions, with the aim of understanding the relationship between bubble rising dynamics and the ethanol mass fraction.

Method

The effect of the free-rising motion of individual bubbles was studied by controlling the ethanol mass fraction and bubble size, and images of the bubbles were recorded with the aid of a high-speed video camera when the rising motion of the bubbles reached an approximate steady state.

Results

When the equivalent diameter of the bubble was fixed, the ascending trajectories of bubbles changed from spiral lines to straight ones as the ethanol mass fraction increased. The larger the equivalent diameter of bubbles is, the higher the transitional mass fraction of the bubble ascending trajectory is. For single bubbles with the same equivalent diameter, as the ethanol mass fraction increased, the terminal ascending velocity of bubbles approximately decreased first and then increased; however, the aspect ratio of single bubbles initially increased and then decreased. There were three concentration regions corresponding to the apparent changes in the terminal ascending speed and the terminal aspect ratio of single bubbles as the ethanol mass fraction increased.

Discussion

The impact of the ethanol mass fraction on bubble rising dynamics, including the bubble equivalent diameter, terminal ascending velocity, and ascending trajectory, was thoroughly analyzed and discussed. The related mechanism of bubble dynamics was also discussed.

Conclusion

The bubble ascending dynamics were found to be related to ethanol mass fraction, and the dependence of the ascending dynamics of single bubbles on ethanol mass fraction was complex. The bubble terminal ascending speed did not change monotonically as the ethanol mass fraction increased.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204397799250925071106
2025-10-02
2025-11-16
Loading full text...

Full text loading...

References

  1. Risso F. Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 2018 50 1 25 48 10.1146/annurev‑fluid‑122316‑045003
    [Google Scholar]
  2. Cardoso S.S.S. Cartwright J.H.E. Bubble plumes in nature. Annu. Rev. Fluid Mech. 2024 56 1 295 317 10.1146/annurev‑fluid‑120720‑011833
    [Google Scholar]
  3. Zenit R. Feng J.J. Hydrodynamic interactions among bubbles, drops, and particles in non-newtonian liquids. Annu. Rev. Fluid Mech. 2018 50 1 505 534 10.1146/annurev‑fluid‑122316‑045114
    [Google Scholar]
  4. Ni R. Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 2024 56 1 319 347 10.1146/annurev‑fluid‑121021‑034541
    [Google Scholar]
  5. Elghobashi S. Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 2019 51 1 217 244 10.1146/annurev‑fluid‑010518‑040401
    [Google Scholar]
  6. Cheng G. Li Z. Cao Y. Jiang Z. Research progress in lignite flotation intensification. Int. J. Coal Prep. Util. 2020 40 1 59 76 10.1080/19392699.2018.1541894
    [Google Scholar]
  7. Tian C. Feng J. Prud’homme R.K. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants. J. Colloid Interface Sci. 2020 575 416 424 10.1016/j.jcis.2020.03.106 32388288
    [Google Scholar]
  8. Li Z. Fu Y. Li Z. Nan N. Zhu Y. Li Y. Froth flotation giant surfactants. Polymer (Guildf.) 2019 162 58 62 10.1016/j.polymer.2018.12.023
    [Google Scholar]
  9. Guo D.S. Li X.B. Zhang H.N. Li F.C. Su W.T. Zhu H. Bubble behaviors during subcooled pool boiling in water and nonionic surfactant aqueous solution. Int. J. Heat Mass Transf. 2020 159 120087 10.1016/j.ijheatmasstransfer.2020.120087
    [Google Scholar]
  10. Takagi S. Matsumoto Y. Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 2011 43 1 615 636 10.1146/annurev‑fluid‑122109‑160756
    [Google Scholar]
  11. Jávor Z. Schreithofer N. Heiskanen K. Multi-scale analysis of the effect of surfactants on bubble properties. Miner. Eng. 2016 99 170 178 10.1016/j.mineng.2016.09.026
    [Google Scholar]
  12. Tagawa Y. Takagi S. Matsumoto Y. Surfactant effect on path instability of a rising bubble. J. Fluid Mech. 2014 738 124 142 10.1017/jfm.2013.571
    [Google Scholar]
  13. Jarek E. Warszynski P. Krzan M. Influence of different electrolytes on bubble motion in ionic surfactants solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016 505 171 178 10.1016/j.colsurfa.2016.03.071
    [Google Scholar]
  14. Huang J. Saito T. Influences of gas–liquid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer. Chem. Eng. Sci. 2017 157 182 199 10.1016/j.ces.2016.05.013
    [Google Scholar]
  15. Huang J. Saito T. Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization. Chem. Eng. Sci. 2017 170 105 115 10.1016/j.ces.2017.03.030
    [Google Scholar]
  16. Basařová P. Crha J. Pilíková L. Orvalho S. Mutable bubble surface mobility in water – propanol mixtures and its impact on bubble motion and deformation. Chem. Eng. Sci. 2022 260 117861 10.1016/j.ces.2022.117861
    [Google Scholar]
  17. Basařová P. Pišlová J. Mills J. Orvalho S. Influence of molecular structure of alcohol-water mixtures on bubble behaviour and bubble surface mobility. Chem. Eng. Sci. 2018 192 74 84 10.1016/j.ces.2018.07.008
    [Google Scholar]
  18. Ogasawara T. Takahira H. The effect of contamination on the bubble cluster formation in swarm of spherical bubbles rising along an inclined flat wall. Nucl. Eng. Des. 2018 337 141 147 10.1016/j.nucengdes.2018.06.019
    [Google Scholar]
  19. Aoyama S. Hayashi K. Hosokawa S. Tomiyama A. Shapes of single bubbles in infinite stagnant liquids contaminated with surfactant. Exp. Therm. Fluid Sci. 2018 96 460 469 10.1016/j.expthermflusci.2018.03.015
    [Google Scholar]
  20. Pawliszak P. Ulaganathan V. Bradshaw-Hajek B.H. Manica R. Beattie D.A. Krasowska M. Mobile or immobile? rise velocity of air bubbles in high–purity water. J. Phys. Chem. C 2019 123 24 15131 15138 10.1021/acs.jpcc.9b03526
    [Google Scholar]
  21. Chen J. Hayashi K. Hosokawa S. Tomiyama A. Drag correlations of ellipsoidal bubbles in clean and fully contaminated systems. Multiph Sci Technol 2019 31 3 215 234 10.1615/MultScienTechn.2019031210
    [Google Scholar]
  22. Liu B. Manica R. Liu Q. Klaseboer E. Xu Z. Xie G. Coalescence of bubbles with mobile interfaces in water. Phys. Rev. Lett. 2019 122 19 194501 10.1103/PhysRevLett.122.194501 31144923
    [Google Scholar]
  23. Hessenkemper H. Ziegenhein T. Lucas D. Contamination effects on the lift force of ellipsoidal air bubbles rising in saline water solutions. Chem. Eng. J. 2020 386 121589 10.1016/j.cej.2019.04.169
    [Google Scholar]
  24. Sá’adiyah D.S. Hayashi K. Kurimoto R. Tomiyama A. Spatial evolution of CO2–contaminated water bubble flows in a vertical pipe. Chemieingenieurtechnik 2021 93 1-2 247 259 10.1002/cite.202000138
    [Google Scholar]
  25. Néel B. Deike L. Collective bursting of free-surface bubbles, and the role of surface contamination. J. Fluid Mech. 2021 917 A46 10.1017/jfm.2021.272
    [Google Scholar]
  26. Shmyrova A. Shmyrov A. Experimental study of the flow structure stability on the bubble surface. J. Phys. Conf. Ser. 2021 1945 012053 10.1088/1742‑6596/1945/1/012053
    [Google Scholar]
  27. Luo Y. Wang Z. Zhang B. Experimental study of the effect of the surfactant on the single bubble rising in stagnant surfactant solutions and a mathematical model for the bubble motion. Ind. Eng. Chem. Res. 2022 61 26 9514 9527 10.1021/acs.iecr.2c01620
    [Google Scholar]
  28. Ju E. Cai R. Sun H. Fan Y. Chen W. Sun J. Dynamic behavior of an ellipsoidal bubble contaminated by surfactant near a vertical wall. Korean J. Chem. Eng. 2022 39 5 1165 1181 10.1007/s11814‑021‑1035‑6
    [Google Scholar]
  29. Vakarelski I.U. Kamoliddinov F. Thoroddsen S.T. Bubble mobility in seawater during free-rise, bouncing, and coalescence with the seawater-air interface. Colloids Surf. A Physicochem. Eng. Asp. 2022 651 129775 10.1016/j.colsurfa.2022.129775
    [Google Scholar]
  30. Ma T. Hessenkemper H. Lucas D. Bragg A.D. Effects of surfactants on bubble-induced turbulence. J. Fluid Mech. 2023 970 A13 10.1017/jfm.2023.614
    [Google Scholar]
  31. Arkhipov V.A. Usanina A.S. Churkin R.A. Laws of the monodispersed bubble cluster ascent in a viscous liquid in the presence of surfactant. Thermophys. Aeromech. 2024 30 6 1061 1072 10.1134/S0869864323060094
    [Google Scholar]
  32. Sun H.P. Sun J. Su Z.Y. Experimental study on the lateral migration of a bubble contaminated by surfactant in a linear shear flow. Phys. Fluids 2023 35 4 043301 10.1063/5.0140708
    [Google Scholar]
  33. Liu Y. Wang B. Zhao D. Investigation of surfactant effect on ozone bubble motion and mass transfer characteristics. J. Environ. Chem. Eng. 2023 11 5 110805 10.1016/j.jece.2023.110805
    [Google Scholar]
  34. Rai R. Tripathi A. Bhattacharyya A. Bubble growth and detachment process in surfactant solutions: a study of 90% pure sodium dodecyl sulfate. Particul. Sci. Technol. 2023 41 5 740 748 10.1080/02726351.2022.2141162
    [Google Scholar]
  35. Vega E.J. Montanero J.M. Influence of a surfactant on bubble bursting. Exp. Therm. Fluid Sci. 2024 151 111097 10.1016/j.expthermflusci.2023.111097
    [Google Scholar]
  36. Wang A. Banks E. Evans G. Mitra S. Effect of surfactant concentration and surface loading on the dynamics of a rising particle-laden bubble. Chem. Eng. Sci. 2024 288 119812 10.1016/j.ces.2024.119812
    [Google Scholar]
  37. Borzenko E.I. Usanin A.S. Shrager G.R. Experimental and theoretical investigation of the effect of dissolved surfactant on the dynamics of gas bubble floating-up. Fluid Dyn. 2024 59 4 741 755 10.1134/S0015462824603073
    [Google Scholar]
  38. Hoque M.M. Mitra S. Evans G. Bubble size distribution and turbulence characterization in a bubbly flow in the presence of surfactant. Exp. Therm. Fluid Sci. 2024 155 111199 10.1016/j.expthermflusci.2024.111199
    [Google Scholar]
  39. Li B. Zheng J. Dang C. Kang Y. Jia H. Experimental investigation on bubble dynamic behaviors in pool boiling of surfactant solutions. Int. J. Therm. Sci. 2024 198 108858 10.1016/j.ijthermalsci.2023.108858
    [Google Scholar]
  40. Rubio A. Vega E.J. Cabezas M.G. Montanero J.M. López-Herrera J.M. Herrada M.A. Bubble rising in the presence of a surfactant at very low concentrations. Phys. Fluids 2024 36 6 062112 10.1063/5.0206793
    [Google Scholar]
  41. Li H. Yu X. Fu Z. Qiu K. Wang J. Lu S. Kinetics and dynamics of Gas-liquid separation and bubble generation in surfactant solutions: Role of bulk/interfacial properties and hydrodynamic conditions. Separ. Purif. Tech. 2025 355 129483 10.1016/j.seppur.2024.129483
    [Google Scholar]
  42. Zakari A.G. Mainul Hoque M. Ireland P. Evans G. Mitra S. Dynamics of gas dispersion in a rising bubble plume in presence of surfactant. Miner. Eng. 2025 222 109145 10.1016/j.mineng.2024.109145
    [Google Scholar]
  43. Zednikova M. Semlerová T. Orvalho S. Havlica J. Tihon J. Surfactant effect on bubble deformation and breakup after interaction with vortex structure. Chem. Eng. Sci. 2025 305 121144 10.1016/j.ces.2024.121144
    [Google Scholar]
  44. Krzan M. Malysa K. Profiles of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions. Colloids Surf. A Physicochem. Eng. Asp. 2002 207 1-3 279 291 10.1016/S0927‑7757(02)00163‑2
    [Google Scholar]
  45. Krzan M. Zawala J. Malysa K. Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyltrimethylammonium bromides (C8, C12, C16). Colloids Surf. A Physicochem. Eng. Asp. 2007 298 1-2 42 51 10.1016/j.colsurfa.2006.12.056
    [Google Scholar]
  46. Wu M. Gharib M. Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 2002 14 7 L49 L52 10.1063/1.1485767
    [Google Scholar]
  47. Saboni A. Alexandrova S. Karsheva M. Effects of interface contamination on mass transfer into a spherical bubble. J Chem Technol Metall 2015 50 5 589 596
    [Google Scholar]
  48. Veldhuis C. Biesheuvel A. van Wijngaarden L. Shape oscillations on bubbles rising in clean and in tap water. Phys. Fluids 2008 20 4 040705 10.1063/1.2911042
    [Google Scholar]
  49. Manoharan S Deodhar AM Manglik RM Jog MA Computational modeling of adiabatic bubble growth dynamics from submerged capillary−tube orifices in aqueous solutions of surfactants. J Heat Transf 2019 141 (5) 052002.1- 10.1115/1.4042700
    [Google Scholar]
  50. Tomiyama A. Celata G.P. Hosokawa S. Yoshida S. Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 2002 28 9 1497 1519 10.1016/S0301‑9322(02)00032‑0
    [Google Scholar]
/content/journals/rice/10.2174/0124055204397799250925071106
Loading
/content/journals/rice/10.2174/0124055204397799250925071106
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: velocity ; interface pollution ; Surfactants ; bubble dynamics ; impure liquids ; hydrodynamics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test