Skip to content
2000
image of Innovations and Advancements in Green Hydrogen Production: A Review

Abstract

Amidst the global energy crisis, escalating pollution, and burgeoning population, green hydrogen emerges as a versatile solution, with the capacity for diverse production and applications, including generation from renewable sources. Its potential encompasses critical sectors such as the heavy transport industry, as well as energy storage and industrial processes, aiding in decarbonizing challenging domains. The hydrogen-based energy system consists of four main stages; production, storage, safety and utilisation. This review specifically provides a comprehensive analysis of the production stage. Recognised as one of the ten breakthrough technologies of 2021, the global green hydrogen market is growing rapidly, and is expected to reach $141.29 billion by 2033. However, the widespread utilization of green hydrogen faces impediments due to production and storage challenges. This review paper aims to provide an overview of the conventional and cutting-edge technologies like steam methane reforming (SMR), electrolysis, photoelectrochemical processes, and biological methods pertinent to hydrogen manufacturing. It further delves into recent technological advancements encompassing electrolysis, gas reforming, C-ZEROS, HYSATA, DAE, and SRBW. This review article undergoes rigorous scrutiny, linking contemporary research progress in hydrogen production routes. The discourse also sheds light on recent developments while identifying knowledge gaps for a more nuanced understanding.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204394287250628013729
2025-07-11
2025-09-02
Loading full text...

Full text loading...

References

  1. Perera F. Nadeau K. Climate change, fossil-fuel pollution, and children’s health. N Engl J Med 2022 386 24 2303 2314 10.1056/NEJMra2117706 35704482
    [Google Scholar]
  2. Cheng G. Luo E. Zhao Y. Yang Y. Chen B. Cai Y. Wang X. Dong C. Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China. Energy 2023 284 129302 10.1016/j.energy.2023.129302
    [Google Scholar]
  3. Hassan Q. The renewable energy role in the global energy Transformations. Renew Energy Focus 2024 48 100545 10.1016/j.ref.2024.100545
    [Google Scholar]
  4. Going glacier gone: How Venezuela lost its last glacier, why this matters,” The Indian Express. Available from: https://indianexpress.com/article/explained/explained-climate/venezuela-glaciers-9337469/ 2024
  5. Gong J. A commentary of green hydrogen in MIT Technology Review 2021. Fundament Res 2021 1 6 848 850 10.1016/j.fmre.2021.11.013
    [Google Scholar]
  6. Velazquez Abad A. Dodds P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020 138 111300 10.1016/j.enpol.2020.111300
    [Google Scholar]
  7. Bianco E. Blanco H. Green hydrogen: A guide to policy making. Available from:https://www.h2knowledgecentre.com/content/researchpaper1616 2020
  8. Hydrogen global demand by sector 2070,” Statista. Available from: [Accessed: Nov. 22, 2023].https://www.statista.com/statistics/760001/global-hydrogen-demand-by-sector-sustainable-scenario/ 2023
  9. Nikolaidis P. Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017 67 597 611 10.1016/j.rser.2016.09.044
    [Google Scholar]
  10. The role of hydrogen and ammonia in meeting the net zero challenge. Available from: https://royalsociety.org/-/media/policy/projects/climate-change-science-solutions/climate-science-solutions-hydrogen-ammonia.pdf 2023
  11. Muhammed S.N.V. How AI can accelerate the transition to Green hydrogen. Available from:https://blog.se.com/industry/mining-metals-minerals/2023/07/12/ai-accelerating-transition-green-hydrogen/ 2024
  12. Hydrogen production and infrastructure projects database - data product. Available from: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database 2023
  13. Kojima H. Nagasawa K. Todoroki N. Ito Y. Matsui T. Nakajima R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. Int J Hydrogen Energy 2023 48 12 4572 4593 10.1016/j.ijhydene.2022.11.018
    [Google Scholar]
  14. Armijo J. Philibert C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int J Hydrogen Energy 2020 45 3 1541 1558 10.1016/j.ijhydene.2019.11.028
    [Google Scholar]
  15. Incer-Valverde J. Korayem A. Tsatsaronis G. Morosuk T. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers Manage 2023 291 117294 10.1016/j.enconman.2023.117294
    [Google Scholar]
  16. Ajanovic A. Sayer M. Haas R. The economics and the environmental benignity of different colors of hydrogen. Int J Hydrogen Energy 2022 47 57 24136 24154 10.1016/j.ijhydene.2022.02.094
    [Google Scholar]
  17. Ochu E.R. Braverman S. Smith G. Friedmann J. Production of low-carbon hydrogen. Available from:https://www.energypolicy.columbia.edu/sites/default/files/pictures/HydrogenProduction_CGEP_FactSheet_052621.pdf 2021
  18. Economics. Available from: https://www.sgh2energy.com/economics 2024
  19. Ji M. Wang J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int J Hydrogen Energy 2021 46 78 38612 38635 10.1016/j.ijhydene.2021.09.142
    [Google Scholar]
  20. Huang J. Balcombe P. Feng Z. Technical and economic analysis of different colours of producing hydrogen in China. Fuel 2023 337 127227 10.1016/j.fuel.2022.127227
    [Google Scholar]
  21. Yu M. Wang K. Vredenburg H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int J Hydrogen Energy 2021 46 41 21261 21273 10.1016/j.ijhydene.2021.04.016
    [Google Scholar]
  22. Collodi G. Azzaro G. Ferrari N. Santos S. Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with ng as feedstock and fuel. Energy Procedia 2017 114 2690 2712 10.1016/j.egypro.2017.03.1533
    [Google Scholar]
  23. IEA – International Energy Agency. Available from:https://www.iea.org/reports/hydrogen-projects-database 2024
  24. Shiva Kumar S. Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep 2022 8 13793 13813 10.1016/j.egyr.2022.10.127
    [Google Scholar]
  25. Arcos J.M.M. Santos D.M.F. The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production. Gases 2023 3 1 25 46 10.3390/gases3010002
    [Google Scholar]
  26. Green hydrogen economy - predicted development of tomorrow. Available from:https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html 2023
  27. Korányi T.I. Németh M. Beck A. Horváth A. Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies 2022 15 17 6342 10.3390/en15176342
    [Google Scholar]
  28. Amin A.M. Croiset E. Epling W. Review of methane catalytic cracking for hydrogen production. Int J Hydrogen Energy 2011 36 4 2904 2935 10.1016/j.ijhydene.2010.11.035
    [Google Scholar]
  29. Leal Pérez B.J. Medrano Jiménez J.A. Bhardwaj R. Goetheer E. van Sint Annaland M. Gallucci F. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. Int J Hydrogen Energy 2021 46 7 4917 4935 10.1016/j.ijhydene.2020.11.079
    [Google Scholar]
  30. McKenzie J. Whether green, blue, or turquoise, hydrogen needs to be clean and cheap. Available from:https://thebulletin.org/2022/01/whether-green-blue-or-turquoise-hydrogen-needs-to-be-clean-and-cheap/ 2022
  31. Dumančić A. Vlahinić Lenz N. Majstrović G. Can hydrogen production be economically viable on the existing gas-fired power plant location? new empirical evidence. Energies 2023 16 9 3737 10.3390/en16093737
    [Google Scholar]
  32. Sadik-Zada E.R. Political economy of green hydrogen rollout: A global perspective. Sustainability 2021 13 23 13464 10.3390/su132313464
    [Google Scholar]
  33. Loschan C. Schwabeneder D. Maldet M. Lettner G. Auer H. Hydrogen as short-term flexibility and seasonal storage in a sector-coupled electricity market. Energies 2023 16 14 5333 10.3390/en16145333
    [Google Scholar]
  34. Williams B. Exploring the wonders of yellow hydrogen - hydrogen news. Available from:https://www.hydrogenfuelnews.com/what-is-yellow-hydrogen/8552843/ 2024
  35. Scamman D. Newborough M. Using surplus nuclear power for hydrogen mobility and power-to-gas in France. Int J Hydrogen Energy 2016 41 24 10080 10089 10.1016/j.ijhydene.2016.04.166
    [Google Scholar]
  36. Milewski J. Kupecki J. Szczęśniak A. Uzunow N. Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. Int J Hydrogen Energy 2021 46 72 35765 35776 10.1016/j.ijhydene.2020.11.217
    [Google Scholar]
  37. There are more colors of hydrogen than green, blue, and gray—meet brown, turquoise, and purple. Available from: https://www.treehugger.com/more-colors-of-hydrogen-brown-turquoise-purple-5218320 2024
  38. Kim J. El-Hameed A.A. Soja R.J. Ramadhan H.H. Nandutu M. Hyun J.H. Estimation of the levelized cost of nuclear hydrogen production from light water reactors in the united states. Processes 2022 10 8 1620 10.3390/pr10081620
    [Google Scholar]
  39. Osselin F. Soulaine C. Fauguerolles C. Gaucher E.C. Scaillet B. Pichavant M. Orange hydrogen is the new green. Nat Geosci 2022 15 10 765 769 10.1038/s41561‑022‑01043‑9
    [Google Scholar]
  40. Neal C. Stanger G. Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett 1983 66 315 320 10.1016/0012‑821X(83)90144‑9
    [Google Scholar]
  41. Worman S.L. Pratson L.F. Karson J.A. Klein E.M. Global rate and distribution of H 2 gas produced by serpentinization within oceanic lithosphere. Geophys Res Lett 2016 43 12 6435 6443 10.1002/2016GL069066
    [Google Scholar]
  42. Prinzhofer A. Tahara Cissé C.S. Diallo A.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int J Hydrogen Energy 2018 43 42 19315 19326 10.1016/j.ijhydene.2018.08.193
    [Google Scholar]
  43. The white gold rush and the pursuit of natural hydrogen. Available from: https://www.rystadenergy.com/news/white-gold-rush-pursuit-natural-hydrogen 2024
  44. Kelemen P.B. Aines R. Bennett E. Benson S.M. Carter E. Coggon J.A. de Obeso J.C. Evans O. Gadikota G. Dipple G.M. Godard M. Harris M. Higgins J.A. Johnson K.T.M. Kourim F. Lafay R. Lambart S. Manning C.E. Matter J.M. Michibayashi K. Morishita T. Noël J. Okazaki K. Renforth P. Robinson B. Savage H. Skarbek R. Spiegelman M.W. Takazawa E. Teagle D. Urai J.L. Wilcox J. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods. Energy Procedia 2018 146 92 102 10.1016/j.egypro.2018.07.013
    [Google Scholar]
  45. Gíslason S.R. Sigurdardóttir H. Aradóttir E.S. Oelkers E.H. A brief history of CarbFix: Challenges and victories of the project’s pilot phase. Energy Procedia 2018 146 103 114 10.1016/j.egypro.2018.07.014
    [Google Scholar]
  46. McGrail B.P. Schaef H.T. Spane F.A. Horner J.A. Owen A.T. Cliff J.B. Qafoku O. Thompson C.J. Sullivan E.C. Wallula basalt pilot demonstration project: Post-injection results and conclusions. Energy Procedia 2017 114 5783 5790 10.1016/j.egypro.2017.03.1716
    [Google Scholar]
  47. Voigt M. Marieni C. Baldermann A. Galeczka I.M. Wolff-Boenisch D. Oelkers E.H. Gislason S.R. An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochim Cosmochim Acta 2021 308 21 41 10.1016/j.gca.2021.05.056
    [Google Scholar]
  48. Shaposhnikov D. Natural hydrogen as a mineral resource. Available from:https://medium.com/phystechventures/natural-hydrogen-as-a-mineral-resource-5e3281a177df 2023
  49. Martino M. Ruocco C. Meloni E. Pullumbi P. Palma V. Main hydrogen production processes: An overview. Catalysts 2021 11 5 547 10.3390/catal11050547
    [Google Scholar]
  50. El-Emam R.S. Özcan H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod 2019 220 593 609 10.1016/j.jclepro.2019.01.309
    [Google Scholar]
  51. Pareek A. Dom R. Gupta J. Chandran J. Adepu V. Borse P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater Sci Energy Technol 2020 3 319 327 10.1016/j.mset.2019.12.002
    [Google Scholar]
  52. Elbadawi A.H. Ge L. Li Z. Liu S. Wang S. Zhu Z. Catalytic partial oxidation of methane to syngas: Review of perovskite catalysts and membrane reactors. Catal Rev, Sci Eng 2021 63 1 1 67 10.1080/01614940.2020.1743420
    [Google Scholar]
  53. Rida Galaly A. Van Oost G. Dawood N. Sustainable plasma gasification treatment of plastic waste: Evaluating environmental, economic, and strategic dimensions. ACS Omega 2024 9 19 21174 21186 10.1021/acsomega.4c01084 38764658
    [Google Scholar]
  54. Kaiwen L. Bin Y. Tao Z. Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources B Econ Plan Policy 2018 13 2 109 115 10.1080/15567249.2017.1387619
    [Google Scholar]
  55. Boyano A. Morosuk T. Blanco-Marigorta A.M. Tsatsaronis G. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J Clean Prod 2012 20 1 152 160 10.1016/j.jclepro.2011.07.027
    [Google Scholar]
  56. Bartels J.R. Pate M.B. Olson N.K. An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 2010 35 16 8371 8384 10.1016/j.ijhydene.2010.04.035
    [Google Scholar]
  57. Hosseini S.E. Wahid M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev 2016 57 850 866 10.1016/j.rser.2015.12.112
    [Google Scholar]
  58. Ghasem N. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Int J Mol Sci 2022 23 24 16064 10.3390/ijms232416064 36555702
    [Google Scholar]
  59. Alshareef R. Nahil M.A. Williams P.T. Hydrogen production by three-stage (i) pyrolysis, (ii) catalytic steam reforming, and (iii) water gas shift processing of waste plastic. Energy Fuels 2023 37 5 3894 3907 10.1021/acs.energyfuels.2c02934 36897817
    [Google Scholar]
  60. Hydrogen production: Natural gas reforming. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming 2024
  61. Boretti A. Banik B.K. Advances in hydrogen production from natural gas reforming. Adv Energy Sustain Res 2021 2 11 2100097 10.1002/aesr.202100097
    [Google Scholar]
  62. Hamdani I.R. Ahmad A. Chulliyil H.M. Srinivasakannan C. Shoaibi A.A. Hossain M.M. Thermocatalytic decomposition of methane: A review on carbon-based catalysts. ACS Omega 2023 8 32 28945 28967 10.1021/acsomega.3c01936 37599913
    [Google Scholar]
  63. Steam reforming | hydrogen | definition, advantages and more. Available from:https://www.sfc.com/en/glossar/steam-reforming/ 2024
  64. Yang Y. Qiu Y. Zhang Z. Wang S. Chen H. Zeng D. Xiao R. Ni-promoted Fe2O3/Al2O3 for enhanced hydrogen production via chemical looping methane reforming. Energy Fuels 2023 37 17 12788 12795 10.1021/acs.energyfuels.3c01792
    [Google Scholar]
  65. Ranjekar A.M. Yadav G.D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope. Ind Eng Chem Res 2021 60 1 89 113 10.1021/acs.iecr.0c05041
    [Google Scholar]
  66. Anil S. Indraja S. Singh R. Appari S. Roy B. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders. Int J Hydrogen Energy 2022 47 13 8177 8213 10.1016/j.ijhydene.2021.12.183
    [Google Scholar]
  67. Vecchietti J. Pérez-Bailac P. Lustemberg P.G. Fornero E.L. Pascual L. Bosco M.V. Martínez-Arias A. Ganduglia-Pirovano M.V. Bonivardi A.L. Shape-controlled pathways in the hydrogen production from ethanol steam reforming over ceria nanoparticles. ACS Catal 2022 12 16 10482 10498 10.1021/acscatal.2c02117 36033370
    [Google Scholar]
  68. Fajín J.L.C. Cordeiro M.N.D.S. Insights into the mechanism of methanol steam reforming for hydrogen production over ni–cu-based catalysts. ACS Catal 2022 12 1 512 526 10.1021/acscatal.1c03997
    [Google Scholar]
  69. Zhou H. Liu S. Jing F. Luo S-Z. Shen J. Pang Y. Chu W. Synergetic bimetallic NiCo/CNT catalyst for hydrogen production by glycerol steam reforming: Effects of metal species distribution. Ind Eng Chem Res 2020 59 39 17259 17268 10.1021/acs.iecr.0c01258
    [Google Scholar]
  70. Horikoshi S. Takahashi L. Sueishi K. Tanizawa H. Serpone N. Microwave-driven hydrogen production (MDHP) from water and activated carbons (ACs). Application to wastewaters and seawater. RSC Advances 2021 11 50 31590 31600 10.1039/D1RA05977G 35496829
    [Google Scholar]
  71. Midilli A. Kucuk H. Topal M.E. Akbulut U. Dincer I. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. Int J Hydrogen Energy 2021 46 50 25385 25412 10.1016/j.ijhydene.2021.05.088
    [Google Scholar]
  72. Coughlin R.W. Farooque M. Hydrogen production from coal, water and electrons. Nature 1979 279 5711 301 303 10.1038/279301a0
    [Google Scholar]
  73. Zhovtyansky V. Valinčius V. Zhovtyansky V. Valinčius V. Efficiency of plasma gasification technologies for hazardous waste treatment. Gasification for Low-grade Feedstock London, UK IntechOpen 2018 10.5772/intechopen.74485
    [Google Scholar]
  74. Danthurebandara M. Van Passel S. Vanderreydt I. Van Acker K. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining. Waste Manag 2015 45 458 467 10.1016/j.wasman.2015.06.022 26119012
    [Google Scholar]
  75. Mazzoni L. Almazrouei M. Ghenai C. Janajreh I. A comparison of energy recovery from MSW through plasma gasification and entrained flow gasification. Energy Procedia 2017 142 3480 3485 10.1016/j.egypro.2017.12.233
    [Google Scholar]
  76. Qi H. Cui P. Liu Z. Xu Z. Yao D. Wang Y. Zhu Z. Yang S. Conceptual design and comprehensive analysis for novel municipal sludge gasification-based hydrogen production via plasma gasifier. Energy Convers Manage 2021 245 114635 10.1016/j.enconman.2021.114635
    [Google Scholar]
  77. Carta M. Drioli E. Giorno L. Gas separation. Encyclopedia of Membranes Berlin, Heidelberg Springer 2015 1 3 10.1007/978‑3‑642‑40872‑4_261‑1
    [Google Scholar]
  78. Cheng Z. Jin H. Liu S. Guo L. Xu J. Su D. Hydrogen production by semicoke gasification with a supercritical water fluidized bed reactor. Int J Hydrogen Energy 2016 41 36 16055 16063 10.1016/j.ijhydene.2016.06.075
    [Google Scholar]
  79. Li N. Li Y. Zhou H. Liu Y. Song Y. Zhi K. He R. Yang K. Liu Q. Direct production of high hydrogen syngas by steam gasification of Shengli lignite/chars: Significant catalytic effect of calcium and its possible active intermediate complexes. Fuel 2017 203 817 824 10.1016/j.fuel.2017.05.010
    [Google Scholar]
  80. Jiang Y. Yan H. Guo Q. Wang F. Wang J. Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char. Fuel Process Technol 2019 191 1 10 10.1016/j.fuproc.2019.03.017
    [Google Scholar]
  81. Yang F. Yu Q. Duan W. Qi Z. Qin Q. Study of electrochemical catalytic coal gasification: Gasification characteristics and char structure evolution. ACS Omega 2021 6 46 31026 31036 10.1021/acsomega.1c04135 34841145
    [Google Scholar]
  82. Kamble A.D. Saxena V.K. Chavan P.D. Mendhe V.A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int J Min Sci Technol 2019 29 2 171 186 10.1016/j.ijmst.2018.03.011
    [Google Scholar]
  83. Bian C. Zhang R. Dong L. Bai B. Li W. Jin H. Cao C. Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends. Energy Fuels 2020 34 9 11165 11174 10.1021/acs.energyfuels.0c02182
    [Google Scholar]
  84. Ali D.A. Gadalla M.A. Abdelaziz O.Y. Hulteberg C.P. Ashour F.H. Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities. J Nat Gas Sci Eng 2017 37 126 137 10.1016/j.jngse.2016.11.044
    [Google Scholar]
  85. Kuo P.C. Wu W. Thermodynamic analysis of a combined heat and power system with CO 2 utilization based on co-gasification of biomass and coal. Chem Eng Sci 2016 142 201 214 10.1016/j.ces.2015.11.030
    [Google Scholar]
  86. Olukayode N. Yang W. Xiang K. Ye S. Sun Z. Han Z. Sui S. A novel chemical–electrochemical hydrogen production from coal slurry by a two-step process: Oxidation of coal by ferric ions and electroreduction of hydrogen ions. ACS Omega 2022 7 9 7865 7873 10.1021/acsomega.1c06759 35284700
    [Google Scholar]
  87. Zhang Y. Zhang L. Kang L. Liu Y. Techno-economic analysis of a hybrid system with carbon capture for simultaneous power generation and coal-to-hydrogen conversion. Ind Eng Chem Res 2023 62 18 7048 7057 10.1021/acs.iecr.2c04325
    [Google Scholar]
  88. Freni S. Calogero G. Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources 2000 87 1-2 28 38 10.1016/S0378‑7753(99)00357‑2
    [Google Scholar]
  89. Gómez J. Mmbaga J.P. Hayes R.E. Toledo M. Gracia F. Modelling hydrogen production by the rich combustion of heavy fuel oil. Int J Hydrogen Energy 2016 41 40 17933 17943 10.1016/j.ijhydene.2016.08.111
    [Google Scholar]
  90. Figen H.E. Baykara S.Z. Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts. Int J Hydrogen Energy 2015 40 24 7439 7451 10.1016/j.ijhydene.2015.02.109
    [Google Scholar]
  91. Silva A.M. Farias A.M.D. Costa L.O.O. Barandas A.P.M.G. Mattos L.V. Fraga M.A. Noronha F.B. Partial oxidation and water–gas shift reaction in an integrated system for hydrogen production from ethanol. Appl Catal A Gen 2008 334 1-2 179 186 10.1016/j.apcata.2007.10.004
    [Google Scholar]
  92. Wang M. Wang G. Sun Z. Zhang Y. Xu D. Review of renewable energy-based hydrogen production processes for sustainable energy innovation. Global Energy Interconnect 2019 2 5 436 443 10.1016/j.gloei.2019.11.019
    [Google Scholar]
  93. Valizadeh S. Hakimian H. Farooq A. Jeon B.H. Chen W.H. Hoon Lee S. Jung S.C. Won Seo M. Park Y.K. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. Bioresour Technol 2022 365 128143 10.1016/j.biortech.2022.128143 36265786
    [Google Scholar]
  94. Scapini T. Dalastra C. Camargo A.F. Kubeneck S. Modkovski T.A. Júnior S.L.A. Treichel H. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. Bioresour Technol 2022 344 Pt B 126325 10.1016/j.biortech.2021.126325 34785329
    [Google Scholar]
  95. Demirbas M.F. Balat M. Balat H. Potential contribution of biomass to the sustainable energy development. Energy Convers Manage 2009 50 7 1746 1760 10.1016/j.enconman.2009.03.013
    [Google Scholar]
  96. Choi Y.K. Cho M.H. Kim J.S. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy 2015 91 160 167 10.1016/j.energy.2015.08.027
    [Google Scholar]
  97. Demirbas A. Products from Lignocellulosic Materials via Degradation Processes. Energy Sou Recov Util Environ Effects 2007 30 1 27 37 10.1080/00908310600626705
    [Google Scholar]
  98. Zuideveld P.L. Overview of shell gasification projects. Available from:https://www.osti.gov/etdeweb/biblio/20260225 2002
  99. Kaur R. Gera P. Jha M.K. Bhaskar T. thermochemical route for biohydrogen production. Biohydrogen Amsterdam, Netherlands Elsevier 2019 187 218 10.1016/B978‑0‑444‑64203‑5.00008‑3
    [Google Scholar]
  100. Coll R. Salvadó J. Farriol X. Montané D. Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation. Fuel Process Technol 2001 74 1 19 31 10.1016/S0378‑3820(01)00214‑4
    [Google Scholar]
  101. Yoon S.J. Choi Y.C. Lee J.G. Hydrogen production from biomass tar by catalytic steam reforming. Energy Convers Manage 2010 51 1 42 47 10.1016/j.enconman.2009.08.017
    [Google Scholar]
  102. Newborough M. Cooley G. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bull 2020 2020 11 16 22 10.1016/S1464‑2859(20)30546‑0
    [Google Scholar]
  103. Li J. Zeng J. Zhao F. Sun X. Wang S. Lu X.F. A review on highly efficient ru-based electrocatalysts for acidic oxygen evolution reaction. Energy Fuels 2024 38 13 11521 11540 10.1021/acs.energyfuels.4c02080
    [Google Scholar]
  104. Yang C. Bi L. Cai Z. Li Z. Sun S. Wang X. Zhang M. Yue M. Zheng D. Luo Y. Hamdy M.S. Farouk A. Yao Y. Sun X. Tang B. Poly(3-thiophenemalonic acid) Modified NiFe Layered Double Hydroxide Electrocatalyst for Stable Seawater Oxidation at an Ampere-Scale Current Density. ACS Mater Lett 2024 6 12 5248 5255 10.1021/acsmaterialslett.4c02054
    [Google Scholar]
  105. Hydrogen Shot. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-shot 2023
  106. Yu F. Yu L. Mishra I.K. Yu Y. Ren Z.F. Zhou H.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater Today Phys 2018 7 121 138 10.1016/j.mtphys.2018.11.007
    [Google Scholar]
  107. Yodwong B. Guilbert D. Phattanasak M. Kaewmanee W. Hinaje M. Vitale G. AC-DC converters for electrolyzer applications: State of the art and future challenges. Electronics 2020 9 6 912 10.3390/electronics9060912
    [Google Scholar]
  108. Hydrogen Production: Electrolysis. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis 2023
  109. Shiva Kumar S. Ramakrishna S.U.B. Krishna S.V. Srilatha K. Devi B.R. Himabindu V. Synthesis of titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis. S Afr J Chem Eng 2018 25 1 54 61 10.1016/j.sajce.2017.12.004
    [Google Scholar]
  110. Ursua A. Gandia L.M. Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proc IEEE 2012 100 2 410 426 10.1109/JPROC.2011.2156750
    [Google Scholar]
  111. Shiva Kumar S. Himabindu V. Hydrogen production by PEM water electrolysis – A review. Mater Sci Energy Technol 2019 2 3 442 454 10.1016/j.mset.2019.03.002
    [Google Scholar]
  112. Chi J. Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018 39 3 390 394 10.1016/S1872‑2067(17)62949‑8
    [Google Scholar]
  113. Rao X. Zhang S. Zhang J. Carbon semi-tubes for electrochemical energy catalysis. Electrochem Energy Rev 2025 8 1 7 10.1007/s41918‑025‑00238‑z
    [Google Scholar]
  114. Megía P.J. Vizcaíno A.J. Calles J.A. Carrero A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels 2021 35 20 16403 16415 10.1021/acs.energyfuels.1c02501
    [Google Scholar]
  115. Scott K. Introduction to electrolysis. Ener Environ Ser 2019 Nov 1 27 10.1039/9781788016049‑00001
    [Google Scholar]
  116. Brauns J. Turek T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020 8 2 248 10.3390/pr8020248
    [Google Scholar]
  117. Large scale alkaline electrolyzers may be built at €444/kW in 2030. Available from: https://www.pv-magazine.com/2022/02/09/large-scale-alkaline-electrolyzers-may-be-built-at-e444-kw-in-2030/ 2023
  118. Temam A.G. Alshoaibi A. Getaneh S.A. Awada C. Nwanya A.C. Ejikeme P.M. Ezema F.I. Recent advances in selected nanostructured electroactive materials for electrochemical water splitting. J Mater Sci 2025 60 14 6059 6086 10.1007/s10853‑025‑10814‑9
    [Google Scholar]
  119. Grigoriev S. Porembsky V. Fateev V. Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energy 2006 31 2 171 175 10.1016/j.ijhydene.2005.04.038
    [Google Scholar]
  120. Millet P. Dragoe D. Grigoriev S. Fateev V. Etievant C. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission. Int J Hydrogen Energy 2009 34 11 4974 4982 10.1016/j.ijhydene.2008.11.114
    [Google Scholar]
  121. Du Y. Liu J. Chen J. Wang S. Tang Y. Wang A-L. Fu G. Lu X.F. Design principle and regulation strategy of noble metal‐based materials for practical proton exchange membrane water electrolyzer. Adv Energy Mater 2025 15 10 2404113 10.1002/aenm.202404113
    [Google Scholar]
  122. Thakur V. Kumar P. Sharma S. Ahir P. Thakur A. Kumar S. Kothari R. Pathania D. Advanced techno-economic assessment methods of green hydrogen storage processes. ACS Symposium Series Washington, DC American Chemical Society 2024 vol. 1474 249 289 10.1021/bk‑2024‑1474.ch011
    [Google Scholar]
  123. Schmidt O. Gambhir A. Staffell I. Hawkes A. Nelson J. Few S. Future cost and performance of water electrolysis: An expert elicitation study. Int J Hydrogen Energy 2017 42 52 30470 30492 10.1016/j.ijhydene.2017.10.045
    [Google Scholar]
  124. Weiß A. Siebel A. Bernt M. Shen T.H. Tileli V. Gasteiger H.A. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer. J Electrochem Soc 2019 166 8 F487 F497 10.1149/2.0421908jes
    [Google Scholar]
  125. Krishnan S. Koning V. Theodorus de Groot M. de Groot A. Mendoza P.G. Junginger M. Kramer G.J. Present and future cost of alkaline and PEM electrolyser stacks. Int J Hydrogen Energy 2023 48 83 32313 32330 10.1016/j.ijhydene.2023.05.031
    [Google Scholar]
  126. Miller H.A. Bouzek K. Hnat J. Loos S. Bernäcker C.I. Weißgärber T. Röntzsch L. Meier-Haack J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain Energy Fuels 2020 4 5 2114 2133 10.1039/C9SE01240K
    [Google Scholar]
  127. Moreno-González M. Mardle P. Zhu S. Gholamkhass B. Jones S. Chen N. Britton B. Holdcroft S. One year operation of an anion exchange membrane water electrolyzer utilizing Aemion+® membrane: Minimal degradation, low H2 crossover and high efficiency. J Power Sou Adv 2023 19 100109 10.1016/j.powera.2023.100109
    [Google Scholar]
  128. Zheng Y. Ma W. Serban A. Allushi A. Hu X. Anion exchange membrane water electrolysis at 10 A ⋅ cm −2 over 800 hours. Angew Chem Int Ed 2025 64 1 202413698 10.1002/anie.202413698 39363762
    [Google Scholar]
  129. Pushkareva I.V. Pushkarev A.S. Grigoriev S.A. Modisha P. Bessarabov D.G. Comparative study of anion exchange membranes for low-cost water electrolysis. Int J Hydrogen Energy 2020 45 49 26070 26079 10.1016/j.ijhydene.2019.11.011
    [Google Scholar]
  130. Enapter eyes 83% cost reduction for its unique AEM hydrogen electrolysers by 2025. Available from: https://kleanindustries.com/insights/market-analysis-reports/enapter-eyes-83-percent-cost-reduction-unique-aem-hydrogen-electrolysers-by-2025/ 2025
  131. Green hydrogen at USD 3 per kilo - The global energy association. Available from: https://globalenergyprize.org/en/2022/10/07/green-hydrogen-at-usd-3-per-kilo/ 2025
  132. Park J.E. Kang S.Y. Oh S-H. Kim J.K. Lim M.S. Ahn C-Y. Cho Y-H. Sung Y-E. High-performance anion-exchange membrane water electrolysis. Electrochim Acta 2019 295 99 106 10.1016/j.electacta.2018.10.143
    [Google Scholar]
  133. Buttler A. Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew Sustain Energy Rev 2018 82 2440 2454 10.1016/j.rser.2017.09.003
    [Google Scholar]
  134. Hauch A. Küngas R. Blennow P. Hansen A.B. Hansen J.B. Mathiesen B.V. Mogensen M.B. Recent advances in solid oxide cell technology for electrolysis. Science 2020 370 6513 eaba6118 10.1126/science.aba6118 33033189
    [Google Scholar]
  135. Gaikwad P.S. Mondal K. Shin Y.K. van Duin A.C.T. Pawar G. Enhancing the Faradaic efficiency of solid oxide electrolysis cells: Progress and perspective. NPJ Comput Mater 2023 9 1 149 10.1038/s41524‑023‑01044‑1
    [Google Scholar]
  136. Bi L. Boulfrad S. Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev 2014 43 24 8255 8270 10.1039/C4CS00194J 25134016
    [Google Scholar]
  137. Nechache A. Hody S. Alternative and innovative solid oxide electrolysis cell materials: A short review. Renew Sustain Energy Rev 2021 149 111322 10.1016/j.rser.2021.111322
    [Google Scholar]
  138. Khan M.A. Zhao H. Zou W. Chen Z. Cao W. Fang J. Xu J. Zhang L. Zhang J. Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 2018 1 4 483 530 10.1007/s41918‑018‑0014‑z
    [Google Scholar]
  139. Bui T. Lee D. Ahn K.Y. Kim Y.S. Techno-economic analysis of high-power solid oxide electrolysis cell system. Energy Convers Manage 2023 278 116704 10.1016/j.enconman.2023.116704
    [Google Scholar]
  140. Electrolysers - energy system. Available from: https://www.iea.org/energy-system/low-emission-fuels/electrolysers 2023
  141. Holladay J.D. Hu J. King D.L. Wang Y. An overview of hydrogen production technologies. Catal Today 2009 139 4 244 260 10.1016/j.cattod.2008.08.039
    [Google Scholar]
  142. Abanades S. Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy. Chem Eng 2019 3 3 63 10.3390/chemengineering3030063
    [Google Scholar]
  143. Acar C. Bicer Y. Demir M.E. Dincer I. Transition to a new era with light-based hydrogen production for a carbon-free society: An overview. Int J Hydrogen Energy 2019 44 47 25347 25364 10.1016/j.ijhydene.2019.08.010
    [Google Scholar]
  144. Haggar A.M. Awadallah A.E. Aboul-Enein A.A. Sayed G.H. Correlation between the as-grown carbon nano tubes and prolonged activity toward hydrogen production over Co–Mo/MgO. Mater Chem Phys 2022 288 126386 10.1016/j.matchemphys.2022.126386
    [Google Scholar]
  145. Veksha A. Wang Y. Foo J.W. Naruse I. Lisak G. Defossilization and decarbonization of hydrogen production using plastic waste: Temperature and feedstock effects during thermolysis stage. J Hazard Mater 2023 452 131270 10.1016/j.jhazmat.2023.131270 36989781
    [Google Scholar]
  146. Baykara S. Experimental solar water thermolysis. Int J Hydrogen Energy 2004 29 14 1459 1469 10.1016/j.ijhydene.2004.02.011
    [Google Scholar]
  147. Rajaee Shooshtari S.H. Shahsavand A. Clean hydrogen energy production via purification of hydrogen sulfide thermolysis products employing supersonic separator. Int J Hydrogen Energy 2023 48 98 38749 38765 10.1016/j.ijhydene.2023.06.148
    [Google Scholar]
  148. Beghi G. E. A decade of research on thermochemical hydrogen at the Joint Research Centre - Ispra. Hydrogen Systems Aeolis Pergamon 1986 153 171 10.1016/B978‑1‑4832‑8375‑3.50022‑9
    [Google Scholar]
  149. Oruc O. Dincer I. Assessing the potential of thermo-chemical water splitting cycles: A bridge towards clean and sustainable hydrogen generation. Fuel 2021 286 119325 10.1016/j.fuel.2020.119325
    [Google Scholar]
  150. Hydrogen production: Thermochemical water splitting. Available from:https://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting 2023
  151. Kamat P.V. Sivula K. Celebrating 50 years of photocatalytic hydrogen generation. ACS Energy Lett 2022 7 9 3149 3150 10.1021/acsenergylett.2c01889
    [Google Scholar]
  152. Ganguly P. Harb M. Cao Z. Cavallo L. Breen A. Dervin S. Dionysiou D.D. Pillai S.C. 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 2019 4 7 1687 1709 10.1021/acsenergylett.9b00940
    [Google Scholar]
  153. Takata T. Jiang J. Sakata Y. Nakabayashi M. Shibata N. Nandal V. Seki K. Hisatomi T. Domen K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020 581 7809 411 414 10.1038/s41586‑020‑2278‑9 32461647
    [Google Scholar]
  154. Ganguly P. Byrne C. Breen A. Pillai S.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl Catal B 2018 225 51 75 10.1016/j.apcatb.2017.11.018
    [Google Scholar]
  155. Kumar M. Meena B. Subramanyam P. Suryakala D. Subrahmanyam C. Recent trends in photoelectrochemical water splitting: The role of cocatalysts. NPG Asia Mater 2022 14 1 88 10.1038/s41427‑022‑00436‑x
    [Google Scholar]
  156. Preethi V. Kanmani S. Photocatalytic hydrogen production. Mater Sci Semicond Process 2013 16 3 561 575 10.1016/j.mssp.2013.02.001
    [Google Scholar]
  157. Chen X. Shen S. Guo L. Mao S.S. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010 110 11 6503 6570 10.1021/cr1001645 21062099
    [Google Scholar]
  158. Corredor J. Rivero M.J. Rangel C.M. Gloaguen F. Ortiz I. Comprehensive review and future perspectives on the photocatalytic hydrogen production. J Chem Technol Biotechnol 2019 94 10 3049 3063 10.1002/jctb.6123
    [Google Scholar]
  159. Wu L. Longo A. Dzade N.Y. Sharma A. Hendrix M.M.R.M. Bol A.A. de Leeuw N.H. Hensen E.J.M. Hofmann J.P. The origin of high activity of amorphous MoS 2 in the hydrogen evolution reaction. ChemSusChem 2019 12 19 4383 4389 10.1002/cssc.201901811 31319020
    [Google Scholar]
  160. Das D. Veziroǧlu T.N. Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy 2001 26 1 13 28 10.1016/S0360‑3199(00)00058‑6
    [Google Scholar]
  161. Kapdan I.K. Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol 2006 38 5 569 582 10.1016/j.enzmictec.2005.09.015
    [Google Scholar]
  162. Najafpour G.D. Shahavi M.H. Neshat S.A. Assessment of biological Hydrogen production processes: A review. IOP Conf Ser Earth Environ Sci 2016 36 1 012068 10.1088/1755‑1315/36/1/012068
    [Google Scholar]
  163. Adeli K. Nachtane M. Faik A. Saifaoui D. Boulezhar A. How green hydrogen and ammonia are revolutionizing the future of energy production: A comprehensive review of the latest developments and future prospects. Appl Sci 2023 13 15 8711 10.3390/app13158711
    [Google Scholar]
  164. Turquoise hydrogen production by methane pyrolysis. Available from: https://www.digitalrefining.com/article/1002720/turquoise-hydrogen-production-by-methane-pyrolysis 2024
  165. Decarbonizing natural gas. Available from: https://www.eni.com/eninext/en-US/portfolio/sustainable-mobility/c-zero.html 2024
  166. C-zero | decarbonizing natural gas. Available from: https://www.czero.energy 2023
  167. Michael McCoy C-Zero. Glob Enterp 2021 99 42 34 35 10.1021/cen‑09942‑cover4
    [Google Scholar]
  168. C-zero raises $11.5m series a to produce clean hydrogen from natural gas. Available from: https://hydrogen-central.com/c-zero-raises-series-a-produce-clean-hydrogen/ 2024
  169. Gold Hydrogen | Natural hydrogen power production. Available from: https://www.goldhydrogen.com.au/ 2024
  170. Waltham D. ‘Gold’ hydrogen: Natural deposits are turning up all over the world – but how useful is it in our move away from fossil fuels? Available from: http://theconversation.com/gold-hydrogen-natural-deposits-are-turning-up-all-over-the-world-but-how-useful-is-it-in-our-move-away-from-fossil-fuels-220230 2024
  171. Gold Hydrogen | Carbon-Neutral Fuel | Cemvita. Available from:https://www.cemvita.com/gold-hydrogen 2024
  172. Green hydrogen prices have nearly tripled as energy costs climb: S&P. Available from:https://www.utilitydive.com/news/green-hydrogen-prices-global-report/627776/ 2024
  173. Cemvita’s Successful Field Test Demonstrates Gold HydrogenTM Production in situ. Available from: https://www.cemvita.com/news/cemvitas-successful-field-test-demonstrates-gold-hydrogen-tm-production-in-situ 2024
  174. Hysata. Available from: https://hysata.com/ 2024
  175. Hodges A. Hoang A.L. Tsekouras G. Wagner K. Lee C.Y. Swiegers G.F. Wallace G.G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat Commun 2022 13 1 1304 10.1038/s41467‑022‑28953‑x 35292657
    [Google Scholar]
  176. Collins L. Hysata: ‘This is why our innovative electrolyser will make green hydrogen significantly cheaper. Available from:https://www.hydrogeninsight.com/innovation/hysata-this-is-why-our-innovative-electrolyser-will-make-green-hydrogen-significantly-cheaper/2-1-1549658 2024
  177. Collins L. World’s cheapest green hydrogen’ | Start-up with ultra-efficient electrolyser to develop pilot factory after securing $29m. Available from:https://www.rechargenews.com/energy-transition/worlds-cheapest-green-hydrogen-start-up-with-ultra-efficient-electrolyser-to-develop-pilot-factory-after-securing-29m/2-1-1270403 2024
  178. Next steps for pioneering renewable hydrogen technology. Available from: https://arena.gov.au/news/next-steps-for-pioneering-renewable-hydrogen-technology/ 2024
  179. Hysata puts hydrogen electrolyser tech to test in real-world setting. Available from: https://www.pv-magazine-australia.com/2023/08/14/hysata-puts-hydrogen-electrolyser-tech-to-test-in-real-world-setting/ 2024
  180. Hysata (A$42M for revolutionary high-efficiency electrolyzer producing the world’s lowest cost green hydrogen) - Technology Wealth. Available from: https://technologywealth.com/startups/hysata/ 2024
  181. Guo J. Zhang Y. Zavabeti A. Chen K. Guo Y. Hu G. Fan X. Li G.K. Hydrogen production from the air. Nat Commun 2022 13 1 5046 10.1038/s41467‑022‑32652‑y 36068193
    [Google Scholar]
  182. Generating hydrogen fuel from the very air we breathe. Available from: https://cosmosmagazine.com/technology/hydrogen-air-electrolysis/ 2024
  183. Davies P. A new device creates hydrogen from air | climate hub. Available from:https://research.unimelb.edu.au/strengths/initiatives/environment-hub/our-capability/a-new-device-creates-hydrogen-from-air 2023
  184. Nesenyuk V. PV-powered direct air electrolysis module to produce hydrogen from moisture in air. Available from:https://www.pv-magazine.com/2022/09/08/pv-powered-direct-air-electrolysis-module-to-produce-hydrogen-from-moisture-in-air/ 2024
  185. World’s first direct air electrolyzer makes hydrogen from humidity. Available from: https://newatlas.com/energy/direct-air-electrolyzer-hydrogen-humidity/ 2024
  186. Ehrnst Y. Sherrell P.C. Rezk A.R. Yeo L.Y. Acoustically‐induced water frustration for enhanced hydrogen evolution reaction in neutral electrolytes. Adv Energy Mater 2023 13 7 2203164 10.1002/aenm.202203164
    [Google Scholar]
  187. Rezk A.R. Tan J.K. Yeo L.Y. HYbriD resonant acoustics (HYDRA). Adv Mater 2016 28 10 1970 1975 10.1002/adma.201504861 26743122
    [Google Scholar]
  188. University R. Sound vibrations turbo charge green hydrogen production. Available from: [Accessed: Apr. 14, 2024].https://techxplore.com/news/2022-12-vibrations-turbo-green-hydrogen-production.html 2024
  189. Hydrogen Production via Methane Pyrolysis: An Overview of ‘Turquoise’ H2. Available from:https://www.chemengonline.com/fullscreen/hydrogen-production-via-methane-pyrolysis-an-overview-of-turquoise-h2/ 2025
  190. Gold H2 launches microbial hydrogen tech | the energy data. Available from: https://theenergydata.com/gold-h2-launches-microbial-hydrogen-tech/ 2025
  191. Hysata - high-efficiency ‘capillary-fed’ electrolyser pilot project. Available from: https://arena.gov.au/projects/high-efficiency-capillary-fed-electrolyser-pilot-project/ 2025
  192. Sound vibrations turbo charge green hydrogen production. Available from:https://techxplore.com/news/2022-12-vibrations-turbo-green-hydrogen-production.html 2025
  193. Green hydrogen economy - predicted development of tomorrow. Available from: https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html 2025
  194. Top 10 green hydrogen producing companies in the world. Available from:https://www.blackridgeresearch.com/blog/list-of-top-green-hydrogen-producing-companies-in-the-world 2024
  195. Executive summary – Global hydrogen review 2021 – analysis. Available from: https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary 2024
  196. Hydrogen energy industry opportunities in Scotland. Available from:https://www.sdi.co.uk/business-in-scotland/find-your-industry/energy-transition-industries/hydrogen 2024
  197. Hydrogen overview | ministry of new and renewable energy | india. Available from:https://mnre.gov.in/hydrogen-overview/ 2024
  198. National green hydrogen mission| national portal of india. Available from:https://www.india.gov.in/spotlight/national-green-hydrogen-mission 2024
  199. SJVN inaugurates India’s first multipurpose Green Hydrogen pilot project. Available from: https://auto.economictimes.indiatimes.com/news/industry/sjvn-inaugurates-indias-first-multipurpose-green-hydrogen-pilot-project/109612051 2024
  200. Report R.I.L-I.A. Reliance industries ltd - integrated annual report 2022 - 2023. Available from:https://www.ril.com/ar2022-23/accelerating-progress-towards-a-net-carbon-zero-future.html 2024
  201. T. text provides general information S. Assumes no liability for the information given being complete or correct D. to varying update cycles and S. C. D. M. up-to-D. D. T. Available from: https://www.statista.com/topics/9608/renewable-energy-in-india/ 2024
  202. Squadrito G. Maggio G. Nicita A. The green hydrogen revolution. Renew Energy 2023 216 119041 10.1016/j.renene.2023.119041
    [Google Scholar]
  203. Ishaq H. Dincer I. Crawford C. A review on hydrogen production and utilization: Challenges and opportunities. Int J Hydrogen Energy 2022 47 62 26238 26264 10.1016/j.ijhydene.2021.11.149
    [Google Scholar]
  204. Green Hydrogen: Challenges for Commercialization - IEEE Smart Grid. Available from: https://smartgrid.ieee.org/bulletins/february-2021/green-hydrogen-challenges-for-commercialization 2024
  205. Maka A.O.M. Mehmood M. Green hydrogen energy production: Current status and potential. Clean Energy 2024 8 2 1 7 10.1093/ce/zkae012
    [Google Scholar]
/content/journals/rice/10.2174/0124055204394287250628013729
Loading
/content/journals/rice/10.2174/0124055204394287250628013729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test