Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Amidst the global energy crisis, escalating pollution, and burgeoning population, green hydrogen emerges as a versatile solution, with the capacity for diverse production and applications, including generation from renewable sources. Its potential encompasses critical sectors such as the heavy transport industry, as well as energy storage and industrial processes, aiding in decarbonizing challenging domains. The hydrogen-based energy system consists of four main stages; production, storage, safety and utilisation. This review specifically provides a comprehensive analysis of the production stage. Recognised as one of the ten breakthrough technologies of 2021, the global green hydrogen market is growing rapidly, and is expected to reach $141.29 billion by 2033. However, the widespread utilization of green hydrogen faces impediments due to production and storage challenges. This review paper aims to provide an overview of the conventional and cutting-edge technologies like steam methane reforming (SMR), electrolysis, photoelectrochemical processes, and biological methods pertinent to hydrogen manufacturing. It further delves into recent technological advancements encompassing electrolysis, gas reforming, C-ZEROS, HYSATA, DAE, and SRBW. This review article undergoes rigorous scrutiny, linking contemporary research progress in hydrogen production routes. The discourse also sheds light on recent developments while identifying knowledge gaps for a more nuanced understanding.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204394287250628013729
2025-07-11
2026-01-12
Loading full text...

Full text loading...

References

  1. PereraF. NadeauK. Climate change, fossil-fuel pollution, and children’s health.N Engl J Med2022386242303231410.1056/NEJMra211770635704482
    [Google Scholar]
  2. ChengG. LuoE. ZhaoY. YangY. ChenB. CaiY. WangX. DongC. Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China.Energy202328412930210.1016/j.energy.2023.129302
    [Google Scholar]
  3. HassanQ. The renewable energy role in the global energy Transformations.Renew Energy Focus20244810054510.1016/j.ref.2024.100545
    [Google Scholar]
  4. Going glacier gone: How Venezuela lost its last glacier, why this matters,” The Indian Express.Available from: https://indianexpress.com/article/explained/explained-climate/venezuela-glaciers-9337469/ 2024
  5. GongJ. A commentary of green hydrogen in MIT Technology Review 2021.Fundament Res20211684885010.1016/j.fmre.2021.11.013
    [Google Scholar]
  6. Velazquez AbadA. DoddsP.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges.Energy Policy202013811130010.1016/j.enpol.2020.111300
    [Google Scholar]
  7. BiancoE. BlancoH. Green hydrogen: A guide to policy making.Available from:https://www.h2knowledgecentre.com/content/researchpaper1616 2020
  8. Hydrogen global demand by sector 2070,” Statista.Available from: https://www.statista.com/statistics/760001/global-hydrogen-demand-by-sector-sustainable-scenario/ 2023
  9. NikolaidisP. PoullikkasA. A comparative overview of hydrogen production processes.Renew Sustain Energy Rev20176759761110.1016/j.rser.2016.09.044
    [Google Scholar]
  10. The role of hydrogen and ammonia in meeting the net zero challenge.Available from: https://royalsociety.org/-/media/policy/projects/climate-change-science-solutions/climate-science-solutions-hydrogen-ammonia.pdf 2023
  11. MuhammedS.N.V. How AI can accelerate the transition to Green hydrogen.Available from:https://blog.se.com/industry/mining-metals-minerals/2023/07/12/ai-accelerating-transition-green-hydrogen/ 2024
  12. Hydrogen production and infrastructure projects database - data product.Available from: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database 2023
  13. KojimaH. NagasawaK. TodorokiN. ItoY. MatsuiT. NakajimaR. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production.Int J Hydrogen Energy202348124572459310.1016/j.ijhydene.2022.11.018
    [Google Scholar]
  14. ArmijoJ. PhilibertC. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina.Int J Hydrogen Energy20204531541155810.1016/j.ijhydene.2019.11.028
    [Google Scholar]
  15. Incer-ValverdeJ. KorayemA. TsatsaronisG. MorosukT. “Colors” of hydrogen: Definitions and carbon intensity.Energy Convers Manage202329111729410.1016/j.enconman.2023.117294
    [Google Scholar]
  16. AjanovicA. SayerM. HaasR. The economics and the environmental benignity of different colors of hydrogen.Int J Hydrogen Energy20224757241362415410.1016/j.ijhydene.2022.02.094
    [Google Scholar]
  17. OchuE.R. BravermanS. SmithG. FriedmannJ. Production of low-carbon hydrogen.Available from:https://www.energypolicy.columbia.edu/sites/default/files/pictures/HydrogenProduction_CGEP_FactSheet_052621.pdf 2021
  18. Economics.Available from: https://www.sgh2energy.com/economics 2024
  19. JiM. WangJ. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators.Int J Hydrogen Energy20214678386123863510.1016/j.ijhydene.2021.09.142
    [Google Scholar]
  20. HuangJ. BalcombeP. FengZ. Technical and economic analysis of different colours of producing hydrogen in China.Fuel202333712722710.1016/j.fuel.2022.127227
    [Google Scholar]
  21. YuM. WangK. VredenburgH. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen.Int J Hydrogen Energy20214641212612127310.1016/j.ijhydene.2021.04.016
    [Google Scholar]
  22. CollodiG. AzzaroG. FerrariN. SantosS. Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with ng as feedstock and fuel.Energy Procedia20171142690271210.1016/j.egypro.2017.03.1533
    [Google Scholar]
  23. IEA – International Energy Agency.Available from:https://www.iea.org/reports/hydrogen-projects-database 2024
  24. Shiva KumarS. LimH. An overview of water electrolysis technologies for green hydrogen production.Energy Rep20228137931381310.1016/j.egyr.2022.10.127
    [Google Scholar]
  25. ArcosJ.M.M. SantosD.M.F. The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production.Gases202331254610.3390/gases3010002
    [Google Scholar]
  26. Green hydrogen economy - predicted development of tomorrow.Available from:https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html 2023
  27. KorányiT.I. NémethM. BeckA. HorváthA. Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production.Energies20221517634210.3390/en15176342
    [Google Scholar]
  28. AminA.M. CroisetE. EplingW. Review of methane catalytic cracking for hydrogen production.Int J Hydrogen Energy20113642904293510.1016/j.ijhydene.2010.11.035
    [Google Scholar]
  29. Leal PérezB.J. Medrano JiménezJ.A. BhardwajR. GoetheerE. van Sint AnnalandM. GallucciF. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment.Int J Hydrogen Energy20214674917493510.1016/j.ijhydene.2020.11.079
    [Google Scholar]
  30. McKenzieJ. Whether green, blue, or turquoise, hydrogen needs to be clean and cheap.Available from:https://thebulletin.org/2022/01/whether-green-blue-or-turquoise-hydrogen-needs-to-be-clean-and-cheap/ 2022
  31. DumančićA. Vlahinić LenzN. MajstrovićG. Can hydrogen production be economically viable on the existing gas-fired power plant location? new empirical evidence.Energies2023169373710.3390/en16093737
    [Google Scholar]
  32. Sadik-ZadaE.R. Political economy of green hydrogen rollout: A global perspective.Sustainability202113231346410.3390/su132313464
    [Google Scholar]
  33. LoschanC. SchwabenederD. MaldetM. LettnerG. AuerH. Hydrogen as short-term flexibility and seasonal storage in a sector-coupled electricity market.Energies20231614533310.3390/en16145333
    [Google Scholar]
  34. WilliamsB. Exploring the wonders of yellow hydrogen - hydrogen news.Available from:https://www.hydrogenfuelnews.com/what-is-yellow-hydrogen/8552843/ 2024
  35. ScammanD. NewboroughM. Using surplus nuclear power for hydrogen mobility and power-to-gas in France.Int J Hydrogen Energy20164124100801008910.1016/j.ijhydene.2016.04.166
    [Google Scholar]
  36. MilewskiJ. KupeckiJ. SzczęśniakA. UzunowN. Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors.Int J Hydrogen Energy20214672357653577610.1016/j.ijhydene.2020.11.217
    [Google Scholar]
  37. There are more colors of hydrogen than green, blue, and gray—meet brown, turquoise, and purple.Available from: https://www.treehugger.com/more-colors-of-hydrogen-brown-turquoise-purple-5218320 2024
  38. KimJ. El-HameedA.A. SojaR.J. RamadhanH.H. NandutuM. HyunJ.H. Estimation of the levelized cost of nuclear hydrogen production from light water reactors in the united states.Processes2022108162010.3390/pr10081620
    [Google Scholar]
  39. OsselinF. SoulaineC. FauguerollesC. GaucherE.C. ScailletB. PichavantM. Orange hydrogen is the new green.Nat Geosci2022151076576910.1038/s41561‑022‑01043‑9
    [Google Scholar]
  40. NealC. StangerG. Hydrogen generation from mantle source rocks in Oman.Earth Planet Sci Lett19836631532010.1016/0012‑821X(83)90144‑9
    [Google Scholar]
  41. WormanS.L. PratsonL.F. KarsonJ.A. KleinE.M. Global rate and distribution of H 2 gas produced by serpentinization within oceanic lithosphere.Geophys Res Lett201643126435644310.1002/2016GL069066
    [Google Scholar]
  42. PrinzhoferA. Tahara CisséC.S. DialloA.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali).Int J Hydrogen Energy20184342193151932610.1016/j.ijhydene.2018.08.193
    [Google Scholar]
  43. The white gold rush and the pursuit of natural hydrogen.Available from: https://www.rystadenergy.com/news/white-gold-rush-pursuit-natural-hydrogen 2024
  44. KelemenP.B. AinesR. BennettE. BensonS.M. CarterE. CoggonJ.A. de ObesoJ.C. EvansO. GadikotaG. DippleG.M. GodardM. HarrisM. HigginsJ.A. JohnsonK.T.M. KourimF. LafayR. LambartS. ManningC.E. MatterJ.M. MichibayashiK. MorishitaT. NoëlJ. OkazakiK. RenforthP. RobinsonB. SavageH. SkarbekR. SpiegelmanM.W. TakazawaE. TeagleD. UraiJ.L. WilcoxJ. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods.Energy Procedia20181469210210.1016/j.egypro.2018.07.013
    [Google Scholar]
  45. GíslasonS.R. SigurdardóttirH. AradóttirE.S. OelkersE.H. A brief history of CarbFix: Challenges and victories of the project’s pilot phase.Energy Procedia201814610311410.1016/j.egypro.2018.07.014
    [Google Scholar]
  46. McGrailB.P. SchaefH.T. SpaneF.A. HornerJ.A. OwenA.T. CliffJ.B. QafokuO. ThompsonC.J. SullivanE.C. Wallula basalt pilot demonstration project: Post-injection results and conclusions.Energy Procedia20171145783579010.1016/j.egypro.2017.03.1716
    [Google Scholar]
  47. VoigtM. MarieniC. BaldermannA. GaleczkaI.M. Wolff-BoenischD. OelkersE.H. GislasonS.R. An experimental study of basalt–seawater–CO2 interaction at 130 °C.Geochim Cosmochim Acta2021308214110.1016/j.gca.2021.05.056
    [Google Scholar]
  48. ShaposhnikovD. Natural hydrogen as a mineral resource.Available from:https://medium.com/phystechventures/natural-hydrogen-as-a-mineral-resource-5e3281a177df 2023
  49. MartinoM. RuoccoC. MeloniE. PullumbiP. PalmaV. Main hydrogen production processes: An overview.Catalysts202111554710.3390/catal11050547
    [Google Scholar]
  50. El-EmamR.S. ÖzcanH. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production.J Clean Prod201922059360910.1016/j.jclepro.2019.01.309
    [Google Scholar]
  51. PareekA. DomR. GuptaJ. ChandranJ. AdepuV. BorseP.H. Insights into renewable hydrogen energy: Recent advances and prospects.Mater Sci Energy Technol2020331932710.1016/j.mset.2019.12.002
    [Google Scholar]
  52. ElbadawiA.H. GeL. LiZ. LiuS. WangS. ZhuZ. Catalytic partial oxidation of methane to syngas: Review of perovskite catalysts and membrane reactors.Catal Rev, Sci Eng202163116710.1080/01614940.2020.1743420
    [Google Scholar]
  53. Rida GalalyA. Van OostG. DawoodN. Sustainable plasma gasification treatment of plastic waste: Evaluating environmental, economic, and strategic dimensions.ACS Omega2024919211742118610.1021/acsomega.4c0108438764658
    [Google Scholar]
  54. KaiwenL. BinY. TaoZ. Economic analysis of hydrogen production from steam reforming process: A literature review.Energy Sources B Econ Plan Policy201813210911510.1080/15567249.2017.1387619
    [Google Scholar]
  55. BoyanoA. MorosukT. Blanco-MarigortaA.M. TsatsaronisG. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production.J Clean Prod201220115216010.1016/j.jclepro.2011.07.027
    [Google Scholar]
  56. BartelsJ.R. PateM.B. OlsonN.K. An economic survey of hydrogen production from conventional and alternative energy sources.Int J Hydrogen Energy201035168371838410.1016/j.ijhydene.2010.04.035
    [Google Scholar]
  57. HosseiniS.E. WahidM.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development.Renew Sustain Energy Rev20165785086610.1016/j.rser.2015.12.112
    [Google Scholar]
  58. GhasemN. A review of the CFD modeling of hydrogen production in catalytic steam reforming reactors.Int J Mol Sci202223241606410.3390/ijms23241606436555702
    [Google Scholar]
  59. AlshareefR. NahilM.A. WilliamsP.T. Hydrogen production by three-stage (i) pyrolysis, (ii) catalytic steam reforming, and (iii) water gas shift processing of waste plastic.Energy Fuels20233753894390710.1021/acs.energyfuels.2c0293436897817
    [Google Scholar]
  60. Hydrogen production: Natural gas reforming.Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming 2024
  61. BorettiA. BanikB.K. Advances in hydrogen production from natural gas reforming.Adv Energy Sustain Res2021211210009710.1002/aesr.202100097
    [Google Scholar]
  62. HamdaniI.R. AhmadA. ChulliyilH.M. SrinivasakannanC. ShoaibiA.A. HossainM.M. Thermocatalytic decomposition of methane: A review on carbon-based catalysts.ACS Omega2023832289452896710.1021/acsomega.3c0193637599913
    [Google Scholar]
  63. Steam reforming | hydrogen | definition, advantages and more.Available from:https://www.sfc.com/en/glossar/steam-reforming/ 2024
  64. YangY. QiuY. ZhangZ. WangS. ChenH. ZengD. XiaoR. Ni-promoted Fe2O3/Al2O3 for enhanced hydrogen production via chemical looping methane reforming.Energy Fuels20233717127881279510.1021/acs.energyfuels.3c01792
    [Google Scholar]
  65. RanjekarA.M. YadavG.D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope.Ind Eng Chem Res20216018911310.1021/acs.iecr.0c05041
    [Google Scholar]
  66. AnilS. IndrajaS. SinghR. AppariS. RoyB. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders.Int J Hydrogen Energy202247138177821310.1016/j.ijhydene.2021.12.183
    [Google Scholar]
  67. VecchiettiJ. Pérez-BailacP. LustembergP.G. ForneroE.L. PascualL. BoscoM.V. Martínez-AriasA. Ganduglia-PirovanoM.V. BonivardiA.L. Shape-controlled pathways in the hydrogen production from ethanol steam reforming over ceria nanoparticles.ACS Catal20221216104821049810.1021/acscatal.2c0211736033370
    [Google Scholar]
  68. FajínJ.L.C. CordeiroM.N.D.S. Insights into the mechanism of methanol steam reforming for hydrogen production over Ni–Cu-based catalysts.ACS Catal202212151252610.1021/acscatal.1c03997
    [Google Scholar]
  69. ZhouH. LiuS. JingF. LuoS-Z. ShenJ. PangY. ChuW. Synergetic bimetallic NiCo/CNT catalyst for hydrogen production by glycerol steam reforming: Effects of metal species distribution.Ind Eng Chem Res20205939172591726810.1021/acs.iecr.0c01258
    [Google Scholar]
  70. HorikoshiS. TakahashiL. SueishiK. TanizawaH. SerponeN. Microwave-driven hydrogen production (MDHP) from water and activated carbons (ACs). Application to wastewaters and seawater.RSC Advances20211150315903160010.1039/D1RA05977G35496829
    [Google Scholar]
  71. MidilliA. KucukH. TopalM.E. AkbulutU. DincerI. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities.Int J Hydrogen Energy20214650253852541210.1016/j.ijhydene.2021.05.088
    [Google Scholar]
  72. CoughlinR.W. FarooqueM. Hydrogen production from coal, water and electrons.Nature1979279571130130310.1038/279301a0
    [Google Scholar]
  73. ZhovtyanskyV. ValinčiusV. ZhovtyanskyV. ValinčiusV. Efficiency of plasma gasification technologies for hazardous waste treatment.Gasification for Low-grade FeedstockLondon, UKIntechOpen201810.5772/intechopen.74485
    [Google Scholar]
  74. DanthurebandaraM. Van PasselS. VanderreydtI. Van AckerK. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.Waste Manag20154545846710.1016/j.wasman.2015.06.02226119012
    [Google Scholar]
  75. MazzoniL. AlmazroueiM. GhenaiC. JanajrehI. A comparison of energy recovery from MSW through plasma gasification and entrained flow gasification.Energy Procedia20171423480348510.1016/j.egypro.2017.12.233
    [Google Scholar]
  76. QiH. CuiP. LiuZ. XuZ. YaoD. WangY. ZhuZ. YangS. Conceptual design and comprehensive analysis for novel municipal sludge gasification-based hydrogen production via plasma gasifier.Energy Convers Manage202124511463510.1016/j.enconman.2021.114635
    [Google Scholar]
  77. CartaM. DrioliE. GiornoL. Gas separation.Encyclopedia of MembranesBerlin, HeidelbergSpringer20151310.1007/978‑3‑642‑40872‑4_261‑1
    [Google Scholar]
  78. ChengZ. JinH. LiuS. GuoL. XuJ. SuD. Hydrogen production by semicoke gasification with a supercritical water fluidized bed reactor.Int J Hydrogen Energy20164136160551606310.1016/j.ijhydene.2016.06.075
    [Google Scholar]
  79. LiN. LiY. ZhouH. LiuY. SongY. ZhiK. HeR. YangK. LiuQ. Direct production of high hydrogen syngas by steam gasification of Shengli lignite/chars: Significant catalytic effect of calcium and its possible active intermediate complexes.Fuel201720381782410.1016/j.fuel.2017.05.010
    [Google Scholar]
  80. JiangY. YanH. GuoQ. WangF. WangJ. Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char.Fuel Process Technol201919111010.1016/j.fuproc.2019.03.017
    [Google Scholar]
  81. YangF. YuQ. DuanW. QiZ. QinQ. Study of electrochemical catalytic coal gasification: Gasification characteristics and char structure evolution.ACS Omega2021646310263103610.1021/acsomega.1c0413534841145
    [Google Scholar]
  82. KambleA.D. SaxenaV.K. ChavanP.D. MendheV.A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context.Int J Min Sci Technol201929217118610.1016/j.ijmst.2018.03.011
    [Google Scholar]
  83. BianC. ZhangR. DongL. BaiB. LiW. JinH. CaoC. Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends.Energy Fuels2020349111651117410.1021/acs.energyfuels.0c02182
    [Google Scholar]
  84. AliD.A. GadallaM.A. AbdelazizO.Y. HultebergC.P. AshourF.H. Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities.J Nat Gas Sci Eng20173712613710.1016/j.jngse.2016.11.044
    [Google Scholar]
  85. KuoP.C. WuW. Thermodynamic analysis of a combined heat and power system with CO 2 utilization based on co-gasification of biomass and coal.Chem Eng Sci201614220121410.1016/j.ces.2015.11.030
    [Google Scholar]
  86. OlukayodeN. YangW. XiangK. YeS. SunZ. HanZ. SuiS. A novel chemical–electrochemical hydrogen production from coal slurry by a two-step process: Oxidation of coal by ferric ions and electroreduction of hydrogen ions.ACS Omega2022797865787310.1021/acsomega.1c0675935284700
    [Google Scholar]
  87. ZhangY. ZhangL. KangL. LiuY. Techno-economic analysis of a hybrid system with carbon capture for simultaneous power generation and coal-to-hydrogen conversion.Ind Eng Chem Res202362187048705710.1021/acs.iecr.2c04325
    [Google Scholar]
  88. FreniS. CalogeroG. CavallaroS. Hydrogen production from methane through catalytic partial oxidation reactions.J Power Sources2000871-2283810.1016/S0378‑7753(99)00357‑2
    [Google Scholar]
  89. GómezJ. MmbagaJ.P. HayesR.E. ToledoM. GraciaF. Modelling hydrogen production by the rich combustion of heavy fuel oil.Int J Hydrogen Energy20164140179331794310.1016/j.ijhydene.2016.08.111
    [Google Scholar]
  90. FigenH.E. BaykaraS.Z. Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts.Int J Hydrogen Energy201540247439745110.1016/j.ijhydene.2015.02.109
    [Google Scholar]
  91. SilvaA.M. FariasA.M.D. CostaL.O.O. BarandasA.P.M.G. MattosL.V. FragaM.A. NoronhaF.B. Partial oxidation and water–gas shift reaction in an integrated system for hydrogen production from ethanol.Appl Catal A Gen20083341-217918610.1016/j.apcata.2007.10.004
    [Google Scholar]
  92. WangM. WangG. SunZ. ZhangY. XuD. Review of renewable energy-based hydrogen production processes for sustainable energy innovation.Global Energy Interconnect20192543644310.1016/j.gloei.2019.11.019
    [Google Scholar]
  93. ValizadehS. HakimianH. FarooqA. JeonB.H. ChenW.H. Hoon LeeS. JungS.C. Won SeoM. ParkY.K. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review.Bioresour Technol202236512814310.1016/j.biortech.2022.12814336265786
    [Google Scholar]
  94. ScapiniT. DalastraC. CamargoA.F. KubeneckS. ModkovskiT.A. JúniorS.L.A. TreichelH. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass.Bioresour Technol2022344Pt B12632510.1016/j.biortech.2021.12632534785329
    [Google Scholar]
  95. DemirbasM.F. BalatM. BalatH. Potential contribution of biomass to the sustainable energy development.Energy Convers Manage20095071746176010.1016/j.enconman.2009.03.013
    [Google Scholar]
  96. ChoiY.K. ChoM.H. KimJ.S. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal.Energy20159116016710.1016/j.energy.2015.08.027
    [Google Scholar]
  97. DemirbasA. Products from lignocellulosic materials via degradation processes.Energy Sou Recov Util Environ Effects2007301273710.1080/00908310600626705
    [Google Scholar]
  98. ZuideveldP.L. Overview of shell gasification projects.Available from:https://www.osti.gov/etdeweb/biblio/20260225 2002
  99. KaurR. GeraP. JhaM.K. BhaskarT. Thermochemical route for biohydrogen production.BiohydrogenAmsterdam, NetherlandsElsevier201918721810.1016/B978‑0‑444‑64203‑5.00008‑3
    [Google Scholar]
  100. CollR. SalvadóJ. FarriolX. MontanéD. Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation.Fuel Process Technol2001741193110.1016/S0378‑3820(01)00214‑4
    [Google Scholar]
  101. YoonS.J. ChoiY.C. LeeJ.G. Hydrogen production from biomass tar by catalytic steam reforming.Energy Convers Manage2010511424710.1016/j.enconman.2009.08.017
    [Google Scholar]
  102. NewboroughM. CooleyG. Developments in the global hydrogen market: The spectrum of hydrogen colours.Fuel Cells Bull2020202011162210.1016/S1464‑2859(20)30546‑0
    [Google Scholar]
  103. LiJ. ZengJ. ZhaoF. SunX. WangS. LuX.F. A review on highly efficient ru-based electrocatalysts for acidic oxygen evolution reaction.Energy Fuels20243813115211154010.1021/acs.energyfuels.4c02080
    [Google Scholar]
  104. YangC. BiL. CaiZ. LiZ. SunS. WangX. ZhangM. YueM. ZhengD. LuoY. HamdyM.S. FaroukA. YaoY. SunX. TangB. Poly(3-thiophenemalonic acid) modified NiFe layered double hydroxide electrocatalyst for stable seawater oxidation at an amperescale current density.ACS Mater Lett20246125248525510.1021/acsmaterialslett.4c02054
    [Google Scholar]
  105. Hydrogen Shot.Available from: https://www.energy.gov/eere/fuelcells/hydrogen-shot 2023
  106. YuF. YuL. MishraI.K. YuY. RenZ.F. ZhouH.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis.Mater Today Phys2018712113810.1016/j.mtphys.2018.11.007
    [Google Scholar]
  107. YodwongB. GuilbertD. PhattanasakM. KaewmaneeW. HinajeM. VitaleG. AC-DC converters for electrolyzer applications: State of the art and future challenges.Electronics20209691210.3390/electronics9060912
    [Google Scholar]
  108. Hydrogen Production: Electrolysis.Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis 2023
  109. Shiva KumarS. RamakrishnaS.U.B. KrishnaS.V. SrilathaK. DeviB.R. HimabinduV. Synthesis of titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis.S Afr J Chem Eng2018251546110.1016/j.sajce.2017.12.004
    [Google Scholar]
  110. UrsuaA. GandiaL.M. SanchisP. Hydrogen production from water electrolysis: Current status and future trends.Proc IEEE2012100241042610.1109/JPROC.2011.2156750
    [Google Scholar]
  111. Shiva KumarS. HimabinduV. Hydrogen production by PEM water electrolysis – A review.Mater Sci Energy Technol20192344245410.1016/j.mset.2019.03.002
    [Google Scholar]
  112. ChiJ. YuH. Water electrolysis based on renewable energy for hydrogen production.Chin J Catal201839339039410.1016/S1872‑2067(17)62949‑8
    [Google Scholar]
  113. RaoX. ZhangS. ZhangJ. Carbon semi-tubes for electrochemical energy catalysis.Electrochem Energy Rev202581710.1007/s41918‑025‑00238‑z
    [Google Scholar]
  114. MegíaP.J. VizcaínoA.J. CallesJ.A. CarreroA. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review.Energy Fuels20213520164031641510.1021/acs.energyfuels.1c02501
    [Google Scholar]
  115. ScottK. Introduction to electrolysis.Ener Environ Ser2019Nov12710.1039/9781788016049‑00001
    [Google Scholar]
  116. BraunsJ. TurekT. Alkaline water electrolysis powered by renewable energy: A review.Processes20208224810.3390/pr8020248
    [Google Scholar]
  117. Large scale alkaline electrolyzers may be built at €444/kW in 2030.Available from: https://www.pv-magazine.com/2022/02/09/large-scale-alkaline-electrolyzers-may-be-built-at-e444-kw-in-2030/ 2023
  118. TemamA.G. AlshoaibiA. GetanehS.A. AwadaC. NwanyaA.C. EjikemeP.M. EzemaF.I. Recent advances in selected nanostructured electroactive materials for electrochemical water splitting.J Mater Sci202560146059608610.1007/s10853‑025‑10814‑9
    [Google Scholar]
  119. GrigorievS. PorembskyV. FateevV. Pure hydrogen production by PEM electrolysis for hydrogen energy.Int J Hydrogen Energy200631217117510.1016/j.ijhydene.2005.04.038
    [Google Scholar]
  120. MilletP. DragoeD. GrigorievS. FateevV. EtievantC. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission.Int J Hydrogen Energy200934114974498210.1016/j.ijhydene.2008.11.114
    [Google Scholar]
  121. DuY. LiuJ. ChenJ. WangS. TangY. WangA-L. FuG. LuX.F. Design principle and regulation strategy of noble metal‐based materials for practical proton exchange membrane water electrolyzer.Adv Energy Mater20251510240411310.1002/aenm.202404113
    [Google Scholar]
  122. ThakurV. KumarP. SharmaS. AhirP. ThakurA. KumarS. Advanced techno-economic assessment methods of green hydrogen storage processes. KothariR. PathaniaD. ACS Symposium Series2024vol. 147424928910.1021/bk‑2024‑1474.ch011
    [Google Scholar]
  123. SchmidtO. GambhirA. StaffellI. HawkesA. NelsonJ. FewS. Future cost and performance of water electrolysis: An expert elicitation study.Int J Hydrogen Energy20174252304703049210.1016/j.ijhydene.2017.10.045
    [Google Scholar]
  124. WeißA. SiebelA. BerntM. ShenT.H. TileliV. GasteigerH.A. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer.J Electrochem Soc20191668F487F49710.1149/2.0421908jes
    [Google Scholar]
  125. KrishnanS. KoningV. Theodorus de GrootM. de GrootA. MendozaP.G. JungingerM. KramerG.J. Present and future cost of alkaline and PEM electrolyser stacks.Int J Hydrogen Energy20234883323133233010.1016/j.ijhydene.2023.05.031
    [Google Scholar]
  126. MillerH.A. BouzekK. HnatJ. LoosS. BernäckerC.I. WeißgärberT. RöntzschL. Meier-HaackJ. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions.Sustain Energy Fuels2020452114213310.1039/C9SE01240K
    [Google Scholar]
  127. Moreno-GonzálezM. MardleP. ZhuS. GholamkhassB. JonesS. ChenN. BrittonB. HoldcroftS. One year operation of an anion exchange membrane water electrolyzer utilizing Aemion+® membrane: Minimal degradation, low H2 crossover and high efficiency.J Power Sou Adv20231910010910.1016/j.powera.2023.100109
    [Google Scholar]
  128. ZhengY. MaW. SerbanA. AllushiA. HuX. Anion exchange membrane water electrolysis at 10 A ⋅ cm −2 over 800 hours.Angew Chem Int Ed202564120241369810.1002/anie.20241369839363762
    [Google Scholar]
  129. PushkarevaI.V. PushkarevA.S. GrigorievS.A. ModishaP. BessarabovD.G. Comparative study of anion exchange membranes for low-cost water electrolysis.Int J Hydrogen Energy20204549260702607910.1016/j.ijhydene.2019.11.011
    [Google Scholar]
  130. Enapter eyes 83% cost reduction for its unique AEM hydrogen electrolysers by 2025.Available from: https://kleanindustries.com/insights/market-analysis-reports/enapter-eyes-83-percent-cost-reduction-unique-aem-hydrogen-electrolysers-by-2025/ 2025
  131. Green hydrogen at USD 3 per kilo - The global energy association.Available from: https://globalenergyprize.org/en/2022/10/07/green-hydrogen-at-usd-3-per-kilo/ 2025
  132. ParkJ.E. KangS.Y. OhS-H. KimJ.K. LimM.S. AhnC-Y. ChoY-H. SungY-E. High-performance anion-exchange membrane water electrolysis.Electrochim Acta20192959910610.1016/j.electacta.2018.10.143
    [Google Scholar]
  133. ButtlerA. SpliethoffH. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review.Renew Sustain Energy Rev2018822440245410.1016/j.rser.2017.09.003
    [Google Scholar]
  134. HauchA. KüngasR. BlennowP. HansenA.B. HansenJ.B. MathiesenB.V. MogensenM.B. Recent advances in solid oxide cell technology for electrolysis.Science20203706513eaba611810.1126/science.aba611833033189
    [Google Scholar]
  135. GaikwadP.S. MondalK. ShinY.K. van DuinA.C.T. PawarG. Enhancing the Faradaic efficiency of solid oxide electrolysis cells: Progress and perspective.NPJ Comput Mater20239114910.1038/s41524‑023‑01044‑1
    [Google Scholar]
  136. BiL. BoulfradS. TraversaE. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.Chem Soc Rev201443248255827010.1039/C4CS00194J25134016
    [Google Scholar]
  137. NechacheA. HodyS. Alternative and innovative solid oxide electrolysis cell materials: A short review.Renew Sustain Energy Rev202114911132210.1016/j.rser.2021.111322
    [Google Scholar]
  138. KhanM.A. ZhaoH. ZouW. ChenZ. CaoW. FangJ. XuJ. ZhangL. ZhangJ. Recent progresses in electrocatalysts for water electrolysis.Electrochem Energy Rev20181448353010.1007/s41918‑018‑0014‑z
    [Google Scholar]
  139. BuiT. LeeD. AhnK.Y. KimY.S. Techno-economic analysis of high-power solid oxide electrolysis cell system.Energy Convers Manage202327811670410.1016/j.enconman.2023.116704
    [Google Scholar]
  140. Electrolysers - energy system.Available from: https://www.iea.org/energy-system/low-emission-fuels/electrolysers 2023
  141. HolladayJ.D. HuJ. KingD.L. WangY. An overview of hydrogen production technologies.Catal Today2009139424426010.1016/j.cattod.2008.08.039
    [Google Scholar]
  142. AbanadesS. Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy.Chem Eng2019336310.3390/chemengineering3030063
    [Google Scholar]
  143. AcarC. BicerY. DemirM.E. DincerI. Transition to a new era with light-based hydrogen production for a carbon-free society: An overview.Int J Hydrogen Energy20194447253472536410.1016/j.ijhydene.2019.08.010
    [Google Scholar]
  144. HaggarA.M. AwadallahA.E. Aboul-EneinA.A. SayedG.H. Correlation between the as-grown carbon nano tubes and prolonged activity toward hydrogen production over Co–Mo/MgO.Mater Chem Phys202228812638610.1016/j.matchemphys.2022.126386
    [Google Scholar]
  145. VekshaA. WangY. FooJ.W. NaruseI. LisakG. Defossilization and decarbonization of hydrogen production using plastic waste: Temperature and feedstock effects during thermolysis stage.J Hazard Mater202345213127010.1016/j.jhazmat.2023.13127036989781
    [Google Scholar]
  146. BaykaraS. Experimental solar water thermolysis.Int J Hydrogen Energy200429141459146910.1016/j.ijhydene.2004.02.011
    [Google Scholar]
  147. ShooshtariR.S.H ShahsavandA. Clean hydrogen energy production via purification of hydrogen sulfide thermolysis products employing supersonic separator.Int J Hydrogen Energy20234898387493876510.1016/j.ijhydene.2023.06.148
    [Google Scholar]
  148. BeghiG. E. A decade of research on thermochemical hydrogen at the Joint Research Centre - Ispra.Hydrogen SystemsAeolisPergamon198615317110.1016/B978‑1‑4832‑8375‑3.50022‑9
    [Google Scholar]
  149. OrucO. DincerI. Assessing the potential of thermo-chemical water splitting cycles: A bridge towards clean and sustainable hydrogen generation.Fuel202128611932510.1016/j.fuel.2020.119325
    [Google Scholar]
  150. Hydrogen production: Thermochemical water splitting.Available from:https://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting 2023
  151. KamatP.V. SivulaK. Celebrating 50 years of photocatalytic hydrogen generation.ACS Energy Lett2022793149315010.1021/acsenergylett.2c01889
    [Google Scholar]
  152. GangulyP. HarbM. CaoZ. CavalloL. BreenA. DervinS. DionysiouD.D. PillaiS.C. 2D nanomaterials for photocatalytic hydrogen production.ACS Energy Lett2019471687170910.1021/acsenergylett.9b00940
    [Google Scholar]
  153. TakataT. JiangJ. SakataY. NakabayashiM. ShibataN. NandalV. SekiK. HisatomiT. DomenK. Photocatalytic water splitting with a quantum efficiency of almost unity.Nature2020581780941141410.1038/s41586‑020‑2278‑932461647
    [Google Scholar]
  154. GangulyP. ByrneC. BreenA. PillaiS.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances.Appl Catal B2018225517510.1016/j.apcatb.2017.11.018
    [Google Scholar]
  155. KumarM. MeenaB. SubramanyamP. SuryakalaD. SubrahmanyamC. Recent trends in photoelectrochemical water splitting: The role of cocatalysts.NPG Asia Mater20221418810.1038/s41427‑022‑00436‑x
    [Google Scholar]
  156. PreethiV. KanmaniS. Photocatalytic hydrogen production.Mater Sci Semicond Process201316356157510.1016/j.mssp.2013.02.001
    [Google Scholar]
  157. ChenX. ShenS. GuoL. MaoS.S. Semiconductor-based photocatalytic hydrogen generation.Chem Rev2010110116503657010.1021/cr100164521062099
    [Google Scholar]
  158. CorredorJ. RiveroM.J. RangelC.M. GloaguenF. OrtizI. Comprehensive review and future perspectives on the photocatalytic hydrogen production.J Chem Technol Biotechnol201994103049306310.1002/jctb.6123
    [Google Scholar]
  159. WuL. LongoA. DzadeN.Y. SharmaA. HendrixM.M.R.M. BolA.A. de LeeuwN.H. HensenE.J.M. HofmannJ.P. The origin of high activity of amorphous MoS 2 in the hydrogen evolution reaction.ChemSusChem201912194383438910.1002/cssc.20190181131319020
    [Google Scholar]
  160. DasD. VeziroǧluT.N. Hydrogen production by biological processes: A survey of literature.Int J Hydrogen Energy2001261132810.1016/S0360‑3199(00)00058‑6
    [Google Scholar]
  161. KapdanI.K. KargiF. Bio-hydrogen production from waste materials.Enzyme Microb Technol200638556958210.1016/j.enzmictec.2005.09.015
    [Google Scholar]
  162. NajafpourG.D. ShahaviM.H. NeshatS.A. Assessment of biological Hydrogen production processes: A review.IOP Conf Ser Earth Environ Sci201636101206810.1088/1755‑1315/36/1/012068
    [Google Scholar]
  163. AdeliK. NachtaneM. FaikA. SaifaouiD. BoulezharA. How green hydrogen and ammonia are revolutionizing the future of energy production: A comprehensive review of the latest developments and future prospects.Appl Sci20231315871110.3390/app13158711
    [Google Scholar]
  164. Turquoise hydrogen production by methane pyrolysis.Available from: https://www.digitalrefining.com/article/1002720/turquoise-hydrogen-production-by-methane-pyrolysis 2024
  165. Decarbonizing natural gas.Available from: https://www.eni.com/eninext/en-US/portfolio/sustainable-mobility/c-zero.html 2024
  166. C-zero | decarbonizing natural gas.Available from:https://www.czero.energy 2023
  167. McCoyM. C-Zero.Glob Enterp20219942343510.1021/cen‑09942‑cover4
    [Google Scholar]
  168. C-zero raises $11.5m series a to produce clean hydrogen from natural gas.Available from: https://hydrogen-central.com/c-zero-raises-series-a-produce-clean-hydrogen/ 2024
  169. Gold Hydrogen | Natural hydrogen power production.Available from:https://www.goldhydrogen.com.au/ 2024
  170. WalthamD. ‘Gold’ hydrogen: Natural deposits are turning up all over the world – but how useful is it in our move away from fossil fuels?Available from: http://theconversation.com/gold-hydrogen-natural-deposits-are-turning-up-all-over-the-world-but-how-useful-is-it-in-our-move-away-from-fossil-fuels-220230 2024
  171. Gold Hydrogen | Carbon-Neutral Fuel | Cemvita.Available from:https://www.cemvita.com/gold-hydrogen 2024
  172. Green hydrogen prices have nearly tripled as energy costs climb: S&P.Available from:https://www.utilitydive.com/news/green-hydrogen-prices-global-report/627776/ 2024
  173. Cemvita’s Successful Field Test Demonstrates Gold HydrogenTM Production in situ.Available from: https://www.cemvita.com/news/cemvitas-successful-field-test-demonstrates-gold-hydrogen-tm-production-in-situ 2024
  174. Hysata.Available from: https://hysata.com/ 2024
  175. HodgesA. HoangA.L. TsekourasG. WagnerK. LeeC.Y. SwiegersG.F. WallaceG.G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen.Nat Commun2022131130410.1038/s41467‑022‑28953‑x35292657
    [Google Scholar]
  176. CollinsL. Hysata: ‘This is why our innovative electrolyser will make green hydrogen significantly cheaper.Available from:https://www.hydrogeninsight.com/innovation/hysata-this-is-why-our-innovative-electrolyser-will-make-green-hydrogen-significantly-cheaper/2-1-1549658 2024
  177. CollinsL. World’s cheapest green hydrogen’ | Start-up with ultra-efficient electrolyser to develop pilot factory after securing $29m.Available from:https://www.rechargenews.com/energy-transition/worlds-cheapest-green-hydrogen-start-up-with-ultra-efficient-electrolyser-to-develop-pilot-factory-after-securing-29m/2-1-1270403 2024
  178. Next steps for pioneering renewable hydrogen technology.Available from: https://arena.gov.au/news/next-steps-for-pioneering-renewable-hydrogen-technology/ 2024
  179. Hysata puts hydrogen electrolyser tech to test in real-world setting.Available from: https://www.pv-magazine-australia.com/2023/08/14/hysata-puts-hydrogen-electrolyser-tech-to-test-in-real-world-setting/ 2024
  180. Hysata (A$42M for revolutionary high-efficiency electrolyzer producing the world’s lowest cost green hydrogen) - Technology Wealth.Available from: https://technologywealth.com/startups/hysata/ 2024
  181. GuoJ. ZhangY. ZavabetiA. ChenK. GuoY. HuG. FanX. LiG.K. Hydrogen production from the air.Nat Commun2022131504610.1038/s41467‑022‑32652‑y36068193
    [Google Scholar]
  182. Generating hydrogen fuel from the very air we breathe.Available from: https://cosmosmagazine.com/technology/hydrogen-air-electrolysis/ 2024
  183. DaviesP. A new device creates hydrogen from air | climate hub.Available from:https://research.unimelb.edu.au/strengths/initiatives/environment-hub/our-capability/a-new-device-creates-hydrogen-from-air 2023
  184. NesenyukV. PV-powered direct air electrolysis module to produce hydrogen from moisture in air.Available from:https://www.pv-magazine.com/2022/09/08/pv-powered-direct-air-electrolysis-module-to-produce-hydrogen-from-moisture-in-air/ 2024
  185. World’s first direct air electrolyzer makes hydrogen from humidity.Available from: https://newatlas.com/energy/direct-air-electrolyzer-hydrogen-humidity/ 2024
  186. EhrnstY. SherrellP.C. RezkA.R. YeoL.Y. Acoustically‐induced water frustration for enhanced hydrogen evolution reaction in neutral electrolytes.Adv Energy Mater2023137220316410.1002/aenm.202203164
    [Google Scholar]
  187. RezkA.R. TanJ.K. YeoL.Y. HYbriD Resonant Acoustics (HYDRA).Adv Mater201628101970197510.1002/adma.20150486126743122
    [Google Scholar]
  188. UniversityR. Sound vibrations turbo charge green hydrogen production.Available from: https://techxplore.com/news/2022-12-vibrations-turbo-green-hydrogen-production.html 2024
  189. Hydrogen Production via Methane Pyrolysis: An Overview of ‘Turquoise’ H2.Available from:https://www.chemengonline.com/fullscreen/hydrogen-production-via-methane-pyrolysis-an-overview-of-turquoise-h2/ 2025
  190. Gold H2 launches microbial hydrogen tech | the energy data.Available from: https://theenergydata.com/gold-h2-launches-microbial-hydrogen-tech/ 2025
  191. Hysata - high-efficiency ‘capillary-fed’ electrolyser pilot project.Available from: https://arena.gov.au/projects/high-efficiency-capillary-fed-electrolyser-pilot-project/ 2025
  192. Sound vibrations turbo charge green hydrogen production.Available from:https://techxplore.com/news/2022-12-vibrations-turbo-green-hydrogen-production.html 2025
  193. Green hydrogen economy - predicted development of tomorrow.Available from: https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html 2025
  194. Top 10 green hydrogen producing companies in the world.Available from:https://www.blackridgeresearch.com/blog/list-of-top-green-hydrogen-producing-companies-in-the-world 2024
  195. Executive summary – Global hydrogen review 2021 – analysis.Available from: https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary 2024
  196. Hydrogen energy industry opportunities in Scotland.Available from:https://www.sdi.co.uk/business-in-scotland/find-your-industry/energy-transition-industries/hydrogen 2024
  197. Hydrogen overview | ministry of new and renewable energy | india.Available from:https://mnre.gov.in/hydrogen-overview/ 2024
  198. National green hydrogen mission| national portal of india.Available from:https://www.india.gov.in/spotlight/national-green-hydrogen-mission 2024
  199. SJVN inaugurates India’s first multipurpose Green Hydrogen pilot project.Available from: https://auto.economictimes.indiatimes.com/news/industry/sjvn-inaugurates-indias-first-multipurpose-green-hydrogen-pilot-project/109612051 2024
  200. ReportR.I.L-I.A. Reliance industries ltd - integrated annual report 2022 - 2023.Available from:https://www.ril.com/ar2022-23/accelerating-progress-towards-a-net-carbon-zero-future.html 2024
  201. T. text provides general information S. Assumes no liability for the information given being complete or correct D. to varying update cycles and S. C. D. M. up-to-D. D. T.Available from: https://www.statista.com/topics/9608/renewable-energy-in-india/ 2024
  202. SquadritoG. MaggioG. NicitaA. The green hydrogen revolution.Renew Energy202321611904110.1016/j.renene.2023.119041
    [Google Scholar]
  203. IshaqH. DincerI. CrawfordC. A review on hydrogen production and utilization: Challenges and opportunities.Int J Hydrogen Energy20224762262382626410.1016/j.ijhydene.2021.11.149
    [Google Scholar]
  204. Green Hydrogen: Challenges for Commercialization - IEEE Smart Grid.Available from: https://smartgrid.ieee.org/bulletins/february-2021/green-hydrogen-challenges-for-commercialization 2024
  205. MakaA.O.M. MehmoodM. Green hydrogen energy production: Current status and potential.Clean Energy2024821710.1093/ce/zkae012
    [Google Scholar]
/content/journals/rice/10.2174/0124055204394287250628013729
Loading
/content/journals/rice/10.2174/0124055204394287250628013729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test