Skip to content
2000
image of Development and Optimization of Mefenamic Acid Microspheres Utilizing Hydrophilic Polymers for Enhanced Drug Delivery

Abstract

Aims

The aim of this study is to develop mefenamic acid-loaded microspheres using a hydrophilic polymer and a solvent evaporation method for sustained drug release, aiming to reduce the frequency of dosing.

Background

Mefenamic acid is an anti-inflammatory drug commonly used to manage pain, especially menstrual cramps. Microspheres, which are spherical particles ranging from 1 to 1000 micrometres, are effective in enhancing the sustained release of medications. The solvent evaporation method is widely used in the preparation of microspheres to improve drug delivery profiles.

Method

A UV study of mefenamic acid was conducted to analyze all necessary parameters. Mefenamic acid and ethyl cellulose polymer were dissolved and stirred at 700 rpm using the solvent evaporation method. A surfactant-containing aqueous phase was prepared and maintained under stirring, into which the organic phase was introduced and continuously stirred to form microspheres. The formed microspheres were characterized by loading capacity, drug content, entrapment efficiency, and product yield. Scanning Electron Microscopy was used to confirm the spherical shape of the microspheres. An release study was conducted using a diffusion technique to evaluate the drug release profile.

Result

The microspheres were successfully formed with a spherical shape, as observed in SEM images. The evaluation showed favorable loading capacity, entrapment efficiency, and drug content. The release study demonstrated a sustained release profile, indicating the effectiveness of the hydrophilic polymer in prolonging drug release.

Conclusion

The developed mefenamic acid-loaded microspheres using a hydrophilic polymer the solvent evaporation method achieved sustained drug release, potentially reducing the need for frequent dosing. The method and formulation show promise for enhancing the therapeutic efficacy of mefenamic acid.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204375681250513064952
2025-05-15
2025-09-02
Loading full text...

Full text loading...

References

  1. Rouholamini NA. Asgharian R. Tajerzadeh H. Gilani K. Vatanara A. Darabi M. The effects of fine lactose as a third component on aerosolization of cefotaxime sodium from dry powder formulations. Daru 2006 14 3 109 115
    [Google Scholar]
  2. Abraham G.A. Gallardo A. San Román J. Fernández-Mayoralas A. Zurita M. Vaquero J. Polymeric matrices based on graft copolymers of PCL onto acrylic backbones for releasing antitumoral drugs. J. Biomed. Mater. Res. A 2003 64A 4 638 647 10.1002/jbm.a.10297 12601775
    [Google Scholar]
  3. Gupta A.K. Naregalkar R.R. Vaidya V.D. Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007 2 1 23 39 10.2217/17435889.2.1.23
    [Google Scholar]
  4. Gupta A.K. Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005 26 18 3995 4021 10.1016/j.biomaterials.2004.10.012
    [Google Scholar]
  5. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  6. Harwood R.J. Handbook of Pharmaceutical Excipients. London, UK Pharmaceutical Press 5th ed 2005
    [Google Scholar]
  7. Hejazi R. Amiji M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 2003 89 2 151 165 10.1016/S0168‑3659(03)00126‑3 12711440
    [Google Scholar]
  8. Cohen I. Li H. Hougland J.L. Mrksich M. Nagel S.R. Using selective withdrawal to coat microparticles. Science 2001 292 5515 265 267 10.1126/science.1059175 11303097
    [Google Scholar]
  9. Lamprecht A. Yamamoto H. Takeuchi H. Kawashima Y. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin. J. Control. Release 2004 98 1 1 9 10.1016/j.jconrel.2004.02.001 15245884
    [Google Scholar]
  10. Liu J. Meisner D. Kwong E. Wu X.Y. Johnston M.R. A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA–paclitaxel microspheres. Biomaterials 2007 28 21 3236 3244 10.1016/j.biomaterials.2007.03.022 17434581
    [Google Scholar]
  11. Sudhamani T. Reddy K.N. Kumar V.R. Revathi R. Ganesan V. Preparation and evaluation of ethyl cellulose microspheres of ibuprofen for sustained drug delivery. Int. J. Pharm. Res. Dev. 2010 2 8 120 121
    [Google Scholar]
  12. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. Polymers for Oral Drug Delivery Technologies Woodhead Publishing 2025 263 333 10.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  13. Rajput T. Mohite P. Ghule S. Vinchurkar K. Singh S. Nanofabrication of losartan potassium sustained release floating microspheres using different grades of ethyl cellulose and its insight on release profiles. Curr. Pharm. Des. 2024 30 28 2257 2265 10.2174/0113816128309675240530060752 38910484
    [Google Scholar]
  14. Ibrahim M.A. Koorbanally N.A. Islam S. Anti-oxidative, (α-glucosidase and α-amylase inhibitory activity of Vitex doniana: Possible exploitation in the management of type 2 diabetes. Acta Pol. Pharm. 2016 73 5 1235 1247 29638064
    [Google Scholar]
  15. Nicolini M.V.S. Timóteo Vieira W.T. da Silva M.G.C. de Oliveira Nascimento L. Vieira M.G.A. Mefenamic acid modified-release by encapsulation in a k-carrageenan/sericin blend. J. Ind. Eng. Chem. 2023 121 63 76 10.1016/j.jiec.2023.01.007
    [Google Scholar]
  16. Nief R.A. Hussein A.A. Preparation and evaluation of meloxicam microsponges as transdermal delivery system. Iraqi J. Pharm Sci. 2014 23 2 62 74 10.31351/vol23iss2pp62‑74
    [Google Scholar]
  17. Bonyadi S. Ghanbari K. Ghiasi M. All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4 /PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J. Chem. 2020 44 8 3412 3424 10.1039/C9NJ05954G
    [Google Scholar]
  18. Ali H.M.S. Al-Khedairy E.B.H. Formulation and evaluation of prednisolone-loaded alginate beads for taste masking. Egypt. J. Hosp. Med. 2023 90 2 2178 2186 10.21608/ejhm.2023.285683
    [Google Scholar]
  19. Assas N. Elbahri Z. Baitiche M. Djerboua F. Effects of some process parameters on the niflumic acid controlled release polymeric microspheres: Optimization using designs of experiments. Asia-Pac. J. Chem. Eng. 2019 14 2 e2283 10.1002/apj.2283
    [Google Scholar]
  20. Datta D. Das A. Ghosh R. Eudragit® RL100 microspheres as delayed-release system for ibuprofen: In vitro evaluation. Int. J. Pharm. Pharm. Sci. 2022 14 12 6 10
    [Google Scholar]
  21. Arumugam K.A. Borawake P.D. Shinde J.V. Formulation and evaluation of floating microspheres of ciprofloxacin by solvent evaporation method using different polymers. Int. J. Pharm. Pharma. Sci. 2021 13 7 101 108 10.22159/ijpps.2021v13i7.41204
    [Google Scholar]
  22. Abdelmalak N.S. El-Menshawe S.F. A new topical fluconazole microsponge loaded hydrogel: Preparation and characterization. Int. J. Pharm. Pharm. Sci. 2012 4 1 460 468
    [Google Scholar]
  23. Pahwa S. Tomar M.K. Tyagi L.K. Gupta C. Maan P. Sethi V.A. Formulation, characterization, and antibacterial study of microsponge-loaded gel of clarithromycin for topical drug delivery. Drug Deliv. Lett. 2022 12 2 122 134 10.2174/2210303112666220412134241
    [Google Scholar]
  24. Patil P.S. Suryawanshi S.J. Patil S.S. Pawar A.P. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J. Taibah Univ. Med. Sci. 2024 19 2 252 262 10.1016/j.jtumed.2023.12.004 38616800
    [Google Scholar]
  25. Wannasarit S. Mahattanadul S. Issarachot O. Puttarak P. Wiwattanapatapee R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Sci. 2020 143 105204 10.1016/j.ejps.2019.105204 31870812
    [Google Scholar]
  26. Zhang P. Shadambikar G. Almutairi M. Bandari S. Repka M.A. Approaches for developing acyclovir gastro-retentive formulations using hot melt extrusion technology. J. Drug Deliv. Sci. Technol. 2020 60 102002 10.1016/j.jddst.2020.102002
    [Google Scholar]
  27. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2025 26 4 243 266 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  28. Anand A. Manjula S.N. Fuloria N.K. Sharma H. Mruthunjaya K. Inulin as a prebiotic and its effect on gut microbiota BT. Inulin for Pharmaceutical Applications: A Versatile Biopolymer Singapore Singapore Akram W. Mishra N. Haider T. 2025 113 135 10.1007/978‑981‑97‑9056‑2_6
    [Google Scholar]
  29. Halagali P. Tippavajhala V.K. Rathnanand M. Sharma H. Pathak R. Inulin as a natural ingredient in cosmetics and personal care products BT. Inulin for Pharmaceutical Applications: A Versatile Biopolymer. Singapore Singapore Akram W. Mishra N. Haider T. 2025 137 146 10.1007/978‑981‑97‑9056‑2_7
    [Google Scholar]
  30. Suryawanshi M. Kurtkoti S. Mulla T. Shah E. Sharma H. Bhatt H. Edible biopolymers for food applications. Green Biopolymers for Packaging Applications. Boca Raton CRC Press 2024 228 254 10.1201/9781003455356‑10
    [Google Scholar]
  31. Suryawanshi M. Mulla T. Suryawanshi I. Vinchurkar K. Kallawala U. Sharma H. Modified starch in food packaging. Green Biopolymers for Packaging Applications Boca Raton CRC Press 2024 255 271 10.1201/9781003455356‑11
    [Google Scholar]
  32. Kapoor D.U. Sharma H. Maheshwari R. Pareek A. Gaur M. Prajapati B.G. Castro G.R. Thanawuth K. Suttiruengwong S. Sriamornsak P. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydr. Polym. 2024 339 122266 10.1016/j.carbpol.2024.122266 38823930
    [Google Scholar]
/content/journals/rice/10.2174/0124055204375681250513064952
Loading
/content/journals/rice/10.2174/0124055204375681250513064952
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: spherical ; hydrophilic polymer ; microspheres ; ethyl acetate ; evaluation ; diffusion ; Mefenamic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test