Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Introduction

A series of Cu-montmorillonite clay composites (MtCs), prepared through cation exchange and wet impregnation with varying amounts of copper, were tested for the direct oxidation of methane to methanol.

Methods

The catalysts were characterized using several analytical techniques, including surface area BET, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Ammonia Temperature-Programmed Desorption (NH-TPD), and pyridine desorption, followed by Fourier Transform Infrared (FTIR) spectroscopy. Catalytic tests were conducted at various temperatures and pressures using hydrogen peroxide as the oxidizing agent.

Results

The characterization results indicated the incorporation of copper species did not significantly modify the clay composite morphology. The TEM images of the samples with low copper content (0.8 Cu wt.%) showed the copper particles to be uniformly distributed. Conversely, for the higher copper content samples (3.5 Cu wt.%) prepared by wet impregnation, the copper particles were distributed around the montmorillonite clay composites. It has been observed that silica (MtC-Si) and aluminum (MtC-SiAl) montmorillonite clay composites have exhibited notable differences in acid site strength and distribution, influencing the dispersion and type of copper species being active for direct oxidation of methane to methanol.

Conclusion

The findings indicated that the well-dispersed copper species, favored by the structure MtCs, resulted in enhanced catalytic activity for methane’s oxidation to methanol.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204337755241121192521
2024-12-26
2025-10-30
Loading full text...

Full text loading...

References

  1. CunhaD.G.P. MedeirosD.J.L. Direct methane to methanol patents.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.Elsevier202410.1016/B978‑0‑443‑15740‑0.00061‑6
    [Google Scholar]
  2. HolmenA. Direct conversion of methane to fuels and chemicals.Catal. Today20091421-22810.1016/j.cattod.2009.01.004
    [Google Scholar]
  3. HakemianA.S. RosenzweigA.C. The biochemistry of methane oxidation.Annu. Rev. Biochem.200776122324110.1146/annurev.biochem.76.061505.175355 17328677
    [Google Scholar]
  4. SchrammV.L. Introduction: Principles of enzymatic catalysis.Chem. Rev.200610683029303010.1021/cr050246s
    [Google Scholar]
  5. SmeetsP.J. HadtR.G. WoertinkJ.S. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.J. Am. Chem. Soc.201013242147361473810.1021/ja106283u 20923156
    [Google Scholar]
  6. PannovG.I. SobolevV.I. KharitonovA.S. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed.J. Mol. Catal.1990611859710.1016/0304‑5102(90)85197‑P
    [Google Scholar]
  7. DubkovK.A. OvanesyanN.S. ShteinmanA.A. StarokonE.V. PanovG.I. Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites.J. Catal.2002207234135210.1006/jcat.2002.3552
    [Google Scholar]
  8. GroothaertM.H. SmeetsP.J. SelsB.F. JacobsP.A. SchoonheydtR.A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.J. Am. Chem. Soc.200512751394139510.1021/ja047158u 15686370
    [Google Scholar]
  9. WoertinkJ.S. SmeetsP.J. GroothaertM.H. A [Cu2 O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.Proc. Natl. Acad. Sci.200910645189081891310.1073/pnas.0910461106 19864626
    [Google Scholar]
  10. ZhangH. LiJ. WangD. WangY. XiongH. A review on the active sites for direct oxidation of methane to methanol by copper-zeolites: Coordination structure, formation and activity.Coord. Chem. Rev.202450321563710.1016/j.ccr.2023.215637
    [Google Scholar]
  11. LiG. VassilevP. SanchezS.M. LercherJ.A. HensenE.J.M. PidkoE.A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol.J. Catal.201633830531210.1016/j.jcat.2016.03.014
    [Google Scholar]
  12. GrundnerS. MarkovitsM.A.C. LiG. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.Nat. Commun.201561754610.1038/ncomms8546 26109507
    [Google Scholar]
  13. NarsimhanK. IyokiK. DinhK. LeshkovR.Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature.ACS Cent. Sci.20162642442910.1021/acscentsci.6b00139 27413787
    [Google Scholar]
  14. GalarneauA. BarodawallaA. PinnavaiaT.J. Porous clay heterostructures (PCH) as acid catalysts.Chem. Commun.1997171661166210.1039/a703101g
    [Google Scholar]
  15. PolverejanM. PaulyT.R. PinnavaiaT.J. Acidic porous clay heterostructures (PCH): Intragallery assembly of mesoporous silica in synthetic saponite clays.Chem. Mater.20001292698270410.1021/cm0002618
    [Google Scholar]
  16. SushkevichV.L. PalaginD. RanocchiariM. BokhovenV.J.A. Selective anaerobic oxidation of methane enables direct synthesis of methanol.Science2017356633752352710.1126/science.aam9035 28473586
    [Google Scholar]
  17. ZhouC. LiS. HeS. ZhaoZ. JiaoY. ZhangH. Temperature-dependant active sites for methane continuous conversion to methanol over Cu-zeolite catalysts using water as the oxidant.Fuel202232912548310.1016/j.fuel.2022.125483
    [Google Scholar]
  18. HammondC. FordeM.M. RahimA.M.H. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5.Angew. Chem. Int. Ed.201251215129513310.1002/anie.201108706 22488717
    [Google Scholar]
  19. KalamarasC. PalomasD. BosR. HortonA. CrimminM. HellgardtK. Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: The effect of Si/Al molar ratio.Catal. Lett.2016146248349210.1007/s10562‑015‑1664‑7
    [Google Scholar]
  20. CabreraS. HaskouriE.J. GuillemC. Generalised syntheses of ordered mesoporous oxides: The atrane route.Solid State Sci.20002440542010.1016/S1293‑2558(00)00152‑7
    [Google Scholar]
  21. LeofantiG. TozzolaG. PadovanM. PetriniG. BordigaS. ZecchinaA. Catalyst characterization: Characterization techniques.Catal. Today1997343-430732710.1016/S0920‑5861(96)00056‑9
    [Google Scholar]
  22. ChmielarzL. KowalczykA. SkoczekM. Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols.Appl. Clay Sci.201816011612510.1016/j.clay.2017.12.015
    [Google Scholar]
  23. YuanM. SuY. DengW. ZhouH. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6.Chem. Eng. J.201937512209110.1016/j.cej.2019.122091
    [Google Scholar]
  24. KontaJ. Textural variation and composition of bentonite derived from Basaltic Ash.Clays Clay Miner.198634325726510.1346/CCMN.1986.0340305
    [Google Scholar]
  25. ZakiM.I. HasanM.A. SagheerA.F.A. PasupuletyL. In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides.Colloids Surf. A Physicochem. Eng. Asp.2001190326127410.1016/S0927‑7757(01)00690‑2
    [Google Scholar]
  26. ChmielarzL. KuśtrowskiP. DziembajR. CoolP. VansantE.F. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species.Catal. Today20071191-418118610.1016/j.cattod.2006.08.017
    [Google Scholar]
  27. ParkM.B. AhnS.H. MansouriA. RanocchiariM. BokhovenV.J.A. Comparative study of diverse copper zeolites for the conversion of methane into methanol.ChemCatChem20179193705371310.1002/cctc.201700768
    [Google Scholar]
  28. FordeM.M. ArmstrongR.D. McVickerR. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: Tuning alcohol selectivity through catalyst pre-treatment.Chem. Sci.2014593603361610.1039/C4SC00545G
    [Google Scholar]
  29. HammondC. ConradS. HermansI. Oxidative methane upgrading.ChemSusChem2012591668168610.1002/cssc.201200299 22848012
    [Google Scholar]
  30. WangB. SuazoA.S. TorresP.Y. NikollaE. Advances in methane conversion processes.Catal. Today201728514715810.1016/j.cattod.2017.01.023
    [Google Scholar]
  31. RaviM. RanocchiariM. BokhovenV.J.A. The direct catalytic oxidation of methane to methanol—A critical assessment.Angew. Chem. Int. Ed.20175652164641648310.1002/anie.201702550 28643885
    [Google Scholar]
  32. DusselierM. DavisM.E. Small-pore zeolites: Synthesis and catalysis.Chem. Rev.2018118115265532910.1021/acs.chemrev.7b00738 29746122
    [Google Scholar]
  33. TomkinsP. RanocchiariM. BokhovenV.J.A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond.Acc. Chem. Res.201750241842510.1021/acs.accounts.6b00534 28151649
    [Google Scholar]
/content/journals/rice/10.2174/0124055204337755241121192521
Loading
/content/journals/rice/10.2174/0124055204337755241121192521
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test